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Preface

The refinement of experimental techniques has greatly stimulated progress in
quantum optics. Understanding of the quantum nature of matter and light has
been significantly widened and new insights have been gained. A number of
fundamental predictions arising from the concepts of quantum physics have
been proved by means of optical methods.

In our book Quantum Optics, which arose from lectures that we have given
for many years in Jena, Güstrow and Rostock, an attempt is made to develop
the theoretical concepts of modern quantum optics, with emphasis on cur-
rent research trends. It is based on our book, Lectures on Quantum Optics
(Akademie Verlag/VCH Publishers, Berlin/New York, 1994) and its revised
and enlarged second edition, Quantum Optics –An Introduction (Wiley-VCH,
Berlin, 2001), which we wrote together with S. Wallentowitz. Taking into ac-
count representative developments in the field, in the second edition we have
included new topics such as quantization of radiation in dispersing and ab-
sorbing media, quantum-state measurement and reconstruction, and quan-
tized motion of laser-driven trapped atoms. Following this line, in the present
edition we have again included new topics. The new Chapter 10 is devoted
to medium-assisted electromagnetic vacuum effects, with special emphasis
on spontaneous emission and van der Waals and Casimir forces. In the sub-
stantially revised and extended Chapter 8, a unified concept of measurement-
based nonclassicality and entanglement criteria for bosonic systems is pre-
sented. The new measurement principles needed in this context are explained
in Chapter 6. Two sections are added to Chapter 9 in which the problem of un-
wanted losses in quantum-state extraction from leaky optical cavities is stud-
ied. A consideration of decoherence effects in the motion of trapped atoms is
added to Chapter 13.

Quantum Optics should be useful for graduate students in physics as well
as for research workers who want to become familiar with the ideas of quan-
tum optics. A basic knowledge of quantum mechanics, electrodynamics and
classical statistics is assumed.
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1
Introduction

Since the first experimental demonstration of nonclassical light in 1977, quan-
tum optics has been a very rapidly developing and growing field of modern
physics. There are a number of books on the subject [e. g., Agarwal (1974);
Allen and Eberly (1975); Carmichael (1993, 1998); Cohen-Tannoudji, Dupont-
Roc and Grynberg (1989, 1992); Gardiner (1991); Gerry and Knight (2004);
Haken (1985); Klauder and Sudarshan (1968); Loudon (1983); Louisell (1973);
Mandel and Wolf (1995); Meystre and Sargent (1990); Orszag (2000); Peřina
(1985, 1991); Schleich (2001); Scully and Zubairy (1997); Shore (1990); Vogel
and Welsch (1994); Vogel, Welsch and Wallentowitz (2001); Walls and Milburn
(1994)], and it is covered in many journals.1 Presently, in one journal alone
(Physical Review A) hundreds of articles on a broad spectrum of quantum-
optical and related topics appear every year. Moreover, there are close con-
nections to other traditional fields, such as nonlinear optics, laser spectroscopy
and optoelectronics, and the boundaries have often been flexible. The recent
improvements in experimental techniques allow one to control the quantum
states of various systems with increasing precision. These possibilities have
also stimulated the development of rapidly increasing new fields of research
such as atom optics and quantum information.

The aim of this book is to describe the fundamentals of quantum optics,
and to introduce the basic theoretical concepts to a depth sufficient to apply
them practically and to understand and treat specialized problems which have
arisen in recent research. On the basis of a general quantum-field-theoretical
approach, important topics are presented in a unified manner. Keeping in
mind that any real light field is due to sources, time-dependent commutation
rules are considered carefully. Nonclassical light is studied and a detailed
analysis of measurement schemes is given, including the effect of passive op-
tical instruments, such as beam splitters, spectral filters and leaky cavities.
From this background, the basic concepts are developed that allow one to de-

1) For example, see Europhysics Letters, European Physical Journal D,
Journal of Modern Optics, Journal of Optics B, Journal of Physics
A and B, Journal of the Optical Society of America B, Nature, Op-
tics Communications, Optics Letters, Physical Review A, Physical
Review Letters, Physics Letters A, Science.



2 1 Introduction

termine the quantum states of various systems from measured data. Meth-
ods of quantum-state preparation are outlined for particular systems, such as
propagating light fields, cavity fields and the quantized motion of a trapped
atom.

Any attempt to give a complete overview on the present state of the field,
together with a complete list of references, would be a hopeless venture. We
have therefore decided to refer to selected work that may be useful in the
context of particular topics, with special emphasis on textbooks, review ar-
ticles and research-stimulating original articles. Before giving a guide to the
topics covered, we mention two important fields that, apart from some ba-
sic ideas, are not considered, although they are closely related to quantum
optics. These are the large fields of nonlinear optics [see, e. g., Bloembergen
(1965); Boyd (1991); Peřina (1991); Schubert and Wilhelmi (1986); Shen (1984)]
and laser physics and laser spectroscopy [see, e. g., Sargent, Scully and Lamb
(1977); Haken (1970); Levenson and Kano (1988); Milonni and Eberly (1988);
Stenholm (1984)].

1.1
From Einstein’s hypothesis to photon anti-bunching

At the beginning of the last century, one of the unresolved problems in physics
was the photoelectric effect. When light falls on a metallic surface, photoelec-
trons may be ejected (Fig. 1.1), whose energy is insensitive to the intensity,

e−

h̄ω

MP

Fig. 1.1 Photoelectric effect: light of frequency ω falls on a metallic
plate (MP) and ejects electrons (e−).

but increases with the frequency of the incident light. This result is obviously
in contradiction to the concepts of classical physics. From a classical point of
view, one would expect the energy of the emitted electrons to increase with
the light intensity. Einstein’s explanation of the photoelectric effect in 1905,
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by postulating the existence of light quanta, photons, may be regarded as the
birth of quantum optics. He assumed that light is composed of quanta of en-
ergy

E = h̄ω (1.1)

and momentum

p = h̄k =
h
λ

. (1.2)

In this way, quantities that typically describe the wave aspects of light are
related to those that describe particle aspects with the “coupling constant” be-
tween wave and particle features being given by the Planck constant h̄. Hence
the kinetic energy of an emitted electron, Ekin, is given by the difference be-
tween the energy of the absorbed photon, h̄ω, and the binding energy of the
electron in the metal, Eb:

Ekin = h̄ω − Eb , (1.3)

which implies that, in agreement with observations, the energy of the pho-
toelectrons increases with the frequency of the incident light. Increasing the
intensity of the light corresponds to increasing the number of light quanta
falling on the metal surface, which gives rise to an increasing number of pho-
toelectrons.

The photoelectric effect plays an important role in the photoelectric detec-
tion of light, the theory of which (Chapter 6) was developed at the end of the
1950s for classical radiation and extended to quantized radiation in the 1960s.
Its experimental application has led to a deeper understanding of the statistics
of light.

The invention of the laser at the beginning of the 1960s allowed qualita-
tively new developments in optical research and the growth of new fields
such as nonlinear optics and laser spectroscopy. Intensive studies of lasers
have stimulated the introduction of a series of basic theoretical concepts in
quantum optics: coherent states (Chapter 3), the theory of phase-space func-
tions (Chapter 4) and the quantum theory of damping (Chapter 5).

Modern quantum optics would be unthinkable without the availability
of measurement techniques, such as the Hanbury Brown–Twiss experiment,
which was first performed in 1956. By using a beam splitter and two pho-
todetectors, the coincidences of photoelectric events were recorded and com-
pared with the product of independently measured events (for the experimen-
tal setup see Fig. 8.1, p. 271). In the case of thermal light an excess of coinci-
dences was observed. That is, the measured intensity correlation G(2)(τ) as a
function of the time delay τ, decays from its initial value at τ = 0 towards a
stationary value, cf. Fig. 1.2. This effect, which is called photon bunching, can
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G(2)(τ)

τ

Fig. 1.2 Delay-time dependence of the intensity correlation as typically
observed in a Hanbury Brown–Twiss experiment performed with light
from a thermal source.

be understood by assuming that the light quanta arrive in bunches, so that the
joint probability of events exceeds the product of the two probabilities mea-
sured independently of each other. Although this explanation is reasonable,
it affords no proof of the existence of photons, since an intensity correlation
behavior of the type observed can also be understood classically. It should
be emphasized that, in the opposite case, where the measured intensity corre-
lation has a positive initial slope (photon anti-bunching) there is no classical
explanation (Chapter 8).

Notwithstanding the success of Einstein’s hypothesis, the existence of pho-
tons was still a matter of discussion in the 1970s,2 and the demonstration of
photon anti-bunching in 1977 may be regarded as the first direct proof of their
existence. The experimental apparatus was of the Hanbury Brown–Twiss type
and the detected light was the resonance fluorescence (Chapter 11) from an
atomic beam with such a low mean number of atoms that at most one atom
contributed to the emitted light. Let us suppose that at a certain instant a
single two-level atom that is (resonantly) driven by a laser pump is in the up-
per quantum state and ready to emit a photon. If the atom emits a photon,
it undergoes a transition from the upper to the lower quantum state, which
implies that it cannot emit a second photon simultaneously with the first one.
The atom can emit a second photon only when it is again excited by the pump
field. In other words, the measured intensity correlation vanishes for zero
delay, G(2)(τ → 0) = 0, and in the detection scheme considered there are no
equal-time coincidences of photoelectric events. Note that any classical wave
or wavepacket is divided by a 50%:50% beam splitter into two parts of equal
intensity, which never leads to a vanishing intensity correlation at zero time
delay. Photon anti-bunching is essentially a nonclassical property of light and
its detection stimulated the formation of quantum optics as a specific field of
research.

2) See, e. g., the paper by Karp (1976), “Test for the non-existence of
photons”, and the response by Mandel (1977), “Photoelectric count-
ing measurements as a test for the existence of photons”.
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1.2
Nonclassical phenomena

Nonclassical phenomena, that is, phenomena that are basically quantum me-
chanical, have been studied intensively in quantum optics and related fields.
Nonclassical light has been considered and a number of (nonlinear-optical)
methods have been developed to generate it (Chapter 8). Roughly speaking,
in many cases the noise in nonclassical light is reduced below some standard
quantum limit (e. g., the vacuum noise level), which is usually observed in the
case of ideal laser light. As already mentioned, anti-bunched light shows an
intensity anti-correlation at zero time delay. Another example of nonclassical
light is sub-Poissonian light, which gives rise to a photocounting distribu-
tion narrower than a Poissonian one. Sub-Poissonian light was first observed
in 1983, in resonance fluorescence from a low-intensity atomic beam. If the
noise of a phase-sensitive field quantity, such as the electric-field strength, is
reduced (as a function of the phase parameter) below the vacuum level, then
the light is called squeezed light. This was first generated in 1985 by means of
four-wave mixing.

A number of specific quantum states of radiation and other bosonic systems
have been studied, which can be used to define various quantum-mechanical
representations of observables (Chapter 3). They may also serve as examples
of typical nonclassical effects. For example, photon-number states may be
regarded as reflecting particle-like features of radiation rather than wave-like
features. On the contrary, when a radiation field is prepared in a coherent
state, then its properties, apart from the vacuum noise, become close to those
of a classical, nonfluctuating wave.

An old and troublesome problem in quantum mechanics is the description
of amplitude and phase and their measurement (Chapters 3 and 7). Since the
1920s, a number of attempts have been made to introduce phase operators
and phase states in the quantum theory of light. Concepts based on quantum-
mechanical first-principle definitions as well as measurement-assisted defini-
tions have been considered.

In general, a radiation field is not prepared in a pure quantum state but in
a mixture of states. In this case, information on the quantum statistics of the
field is contained in the density operator. Rather than representations in an
orthogonal Hilbert-space basis, representations in terms of phase-space func-
tions are frequently preferred. The concept of phase-space functions (Chap-
ter 4) bears a formal resemblance to classical statistics and allows, to some
extent, the application of methods of classical probability theory.

Generation of nonclassical states on demand offers novel possibilities of ex-
ploiting quantum features in various fields of applied physics such as mea-
surement technology and information processing. In particular, the increas-
ing number of experimental realizations of nonclassical states of radiation and
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matter requires methods for characterizing the variety of nonclassical effects
to be expected (Chapter 8). In this context, the question of measurable non-
classicality criteria arises, i. e., criteria that are directly applicable to experi-
ments. Similarly, the question of measurable criteria for entangled states must
be answered – states which play a key role in quantum communication such
as quantum cryptography, quantum-state teleportation and quantum compu-
tation.

The quantum nature of radiation and matter becomes obvious both in their
resonant and off-resonant interaction. Whereas spontaneous emission (Chap-
ter 10) and resonance fluorescence (Chapter 11) from a single atom and the
Jaynes–Cummings-type interaction of a single atom with a high-quality cav-
ity field (Chapter 12) are examples of resonant interaction, van der Waals and
Casimir forces (Chapter 10) are typical examples of virtual-photon-assisted
off-resonant interaction.

1.3
Source-attributed light

Any real radiation field may be thought of as being due to sources, which es-
sentially determine the quantum statistics of the radiation. Quantization of
the radiation field requires, in principle, quantization of the matter and the
radiation-matter interaction as well (Chapter 2). As is well known, commu-
tation relations play an important role in quantum physics. Whereas com-
mutation relations at equal times are given from quantum-mechanical first
principles, determination of the time-dependent commutation relations re-
quires knowledge of the dynamics of the coupled light–matter system. There-
fore, to study general aspects of the generation, detection and processing of
quantized light (such as quantum-optical correlation functions observed in the
photoelectric detection of light), it is helpful to introduce appropriate source-
quantity representations of field commutators (Chapter 2).

Light detection and processing are frequently performed in a source-free
region of space, and the question arises as to the conditions under which it is
possible to treat a quantized radiation field as being effectively free, that is to
ignore the sources when considering the radiation. A criterion for an effec-
tively free field may be seen in the agreement of the commutation relations of
the field quantities at different times with the free-field commutation relations
(Chapter 2). It is worth noting that the question of whether or not the com-
mutation relations of field quantities at different times reduce to the free-field
commutation relations, can be answered by means of their source-quantity
representations, that is, by expressing them in terms of free-field commutators
and so-called time-delayed terms. The latter can give rise to a nonvanishing
contribution when the space-time arguments of the two field quantities un-
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der consideration can be connected to each other by the propagation of light
from one of the space-time points to the other through the sources. Clearly,
a light field may be regarded as being effectively free when the distances of
the relevant points of observation from the light source are large enough and
the considered time intervals are small enough to suppress the time-delayed
terms. This rule can be established not only for the full field but also for ap-
propriately chosen (multi-mode) parts of the field, such as the incoming and
outgoing fields frequently introduced in connection with experimental appa-
ratus. For example, if a (multi-mode) part of an optical light field propagates
away from the sources and cannot return to them, then it may be regarded in
many cases as being effectively free, independently of the chosen space-time
points.

In practice, various optical instruments, which may substantially modify
the propagation of light compared with that in free space, are used and a care-
ful consideration of the time-dependent commutation relations is necessary to
actually specify the free-field conditions and the correlation functions measur-
able by means of standard photodetectors. Typical examples are the theory of
spectral filtering of quantized light (Chapter 6) and the treatment of an optical
cavity with output coupling (Chapter 9).

To derive tractable equations of motions for a coupled light–matter system,
various approximation schemes have been developed and applied, such as the
dipole approximation and the rotating-wave approximation (Chapter 2). Fur-
thermore, in nonlinear optics the concept of effective Hamiltonians is widely
used, for example in the treatment of multi-photon absorption and emission,
parametric optical processes (e. g., the optical parametric oscillator) and multi-
wave mixing.

For gaining deeper insight into the quantum nature of light–matter inter-
actions, models that are almost exactly solvable play an important role. In
particular, there have been detailed studies of the resonant interaction of a
single two-level atom with a (multi-mode) radiation field in free space within
the framework of optical Bloch equations (Chapter 5) to describe resonance
fluorescence (Chapter 11), and of the resonant interaction of a single two-
level atom with a single-mode field in a high-quality cavity on the basis of
the Jaynes–Cummings model (Chapter 12).

1.4
Medium-assisted electromagnetic fields

As is already known from classical optics, the use of instruments in optical
experiments needs careful examination with regard to their action on the light
under study [see, e. g., Born and Wolf (1980)]. In quantum optics an additional
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consideration is the influence of the presence of instruments on the quantum
statistics of the light. For example, let us consider a 50%:50% beam splitter
oriented at 45o to an incident light beam (Fig. 1.3). In classical optics the beam
splitter divides the incoming beam into two (apart from a phase shift) equal
outgoing parts propagating perpendicular to each other (Fig. 1.3a), and with
the same scaling factor the classical noise of the incident field is transferred
to the two fields in the output channels of the beam splitter. It is intuitively
clear that, in quantum optics, the noise of the vacuum in the unused input
port of the beam splitter introduces additional noise in the two output beams
(Fig. 1.3b). Therefore, the quantum statistics of the output fields may differ
significantly from that of the input field.

(a) (b)

BS BS

output1output1

output2output2 inputinput

vacuum

Fig. 1.3 Outline of the action of a 50%:50% beam splitter (BS). In clas-
sical optics (a) an incident light beam (input) is divided into two (apart
from a phase shift) equal output beams (output1, output2). In quantum
optics (b) the incident light beam and the quantum noise of the vacuum
in the unused input port are combined to yield vacuum-noise-assisted
output beams.

The above example shows that it is necessary to take into account the pres-
ence of optical instruments when considering the quantization of the radiation
field. In principle, optical instruments could be included as part of the matter
to which the radiation field is coupled and treated microscopically. However,
in many cases, passive instruments are linearly responding macroscopic bod-
ies that can be treated phenomenologically by introducing a spatially varying
permittivity. In general, light propagation through such bodies is accompa-
nied by dispersion and absorption, so that the permittivity is a complex func-
tion of frequency. Since in quantum physics any type of loss is unavoidably
connected with fluctuations, for treatment of the effect of material absorp-
tion, quantization in an extended Hilbert space is required (Chapter 2). In
some cases, in particular when the spectral range of the radiation is effectively
limited to an appropriately chosen narrow interval, the effects of absorption
and dispersion may become negligibly small and the description of the instru-
ments considerably simplified. They can be modeled by bodies with real per-
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mittivities that may vary only in space. Obviously, both the time-dependent
commutation relations and the quantum-statistical correlation functions of the
field under study depend on the specific bodies used.

Typical examples of optical instruments whose action can be treated in this
way are beam splitters and spectral filters of the Fabry–Perot type. Their main
features can already be described by means of the simple model of a dielectric
plate (Chapter 6). Moreover, progress in quantum optics would be unimag-
inable without the use of resonator-like equipment. A typical example is an
optical cavity filled with an active medium and bounded by dielectric walls to
allow for input and output coupling (Chapter 9). In particular, in the case of a
high-quality cavity, applying the formalism of electromagnetic-field quantiza-
tion in linear media naturally yields a description of the radiation field inside
and outside the cavity in terms of quantum damping theory.

The formalism of electromagnetic-field quantization in linear media can
also be used to treat body-assisted electromagnetic vacuum effects in a unified
way (Chapter 10). Whereas the classical vacuum is the trivial state where the
electromagnetic field identically vanishes, the quantum vacuum is very active
and its interaction with atomic systems gives rise to a number of observable
effects that are purely nonclassical. Since in the presence of macroscopic bod-
ies the structure of the electromagnetic field is changed compared with that in
free space, the electromagnetic vacuum is changed also, which can lead, e. g.,
to inhibition or enhancement of spontaneous emission. Moreover, forces of
the van der Waals type in micro- and nano-structures can be controlled in this
way.

1.5
Measurement of light statistics

To gain information on the quantum statistics of light from measured data, a
careful consideration of the employed measurement scheme is needed (Chap-
ter 6). In standard photoelectric detection of light the detection process is
based on the internal photoelectric effect. In the spirit of Einstein’s hypoth-
esis, by absorbing a photon, a detector atom can undergo a transition from an
initial state to a continuum of final states, ejecting a photoelectron. A combi-
nation of quantum mechanics (to treat the elementary acts of light absorption)
and classical statistics (to deal with the macroscopic sample of photoelectrons
produced in a chosen time interval of detection) yields the observed counting
statistics in terms of either normally and time-ordered field correlation func-
tions or the photon-number statistics.

There are various kinds of detection schemes that can be used to measure
statistical properties of light that are not accessible from the photon-number
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statistics. On combining (single-mode) light fields by means of beam split-
ters before measuring the counting statistics (of the combined field), the quan-
tum statistics of phase-sensitive light properties can be obtained. In particular,
four-port homodyne detection (see Fig. 6.6, p. 206) and eight-port homodyne
detection (see Fig. 6.8, p. 224) are typical examples of this measurement strat-
egy.

If in a four-port homodyne detection one of the (single-mode) input fields
is prepared in a coherent state with a sufficiently large mean number of pho-
tons, then the measured difference-count probabilities can be related to the
phase-rotated quadrature probability distributions of the second input field.
Using an eight-port scheme renders it possible to relate the measured joint
difference-count probability to the Q function of the second input field, that is
the phase-space function that applies directly to the calculation of expectation
values of anti-normally ordered operator functions. Also, unbalanced homo-
dyning is of interest since it leads to simple reconstruction methods for the
quantum states.

Homodyne correlation measurements are of particular interest when a
weak local oscillator is used. In this case new types of correlation proper-
ties can be observed. In principle, one may determine all normally ordered
moments, including those containing unequal numbers of creation and anni-
hilation operators. Such moments, which are not accessible by direct detection
methods, are required, e. g., for implementing nonclassicality and entangle-
ment criteria (Chapter 8).

1.6
Determination and preparation of quantum states

It is well known that the density matrix of a quantum system contains all
the information necessary to completely determine its properties. Hence the
determination of the density matrix from measured data is therefore an im-
portant problem (Chapter 7). The first reconstruction of a light-field density
matrix from measured data was reported in 1993. Clearly, the density ma-
trix can only be obtained from quantities that also contain the complete in-
formation on the system. For example, this information is contained in any
phase-space function. Since the Q function of a (single-mode) field can be ob-
tained from the data measured in eight-port homodyne detection (Chapter 6),
the density matrix of the field can be obtained, in principle, from these data
also. Moreover, knowledge of the phase-rotated quadrature probability distri-
butions for every phase parameter in a π interval is equivalent to knowledge
of any phase-space function, which implies that the density matrix can also
be obtained from the phase-rotated quadrature distributions with the phase
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parameter varying in a π interval. Since these probability distributions can
be obtained from the data measured in a succession of four-port homodyne
detections (Chapter 6), the four-port homodyne detection scheme can also be
used for the experimental determination of the density matrix.

An alternative way of determining the quantum state from measured data
consists of a method that is local in phase space. For a radiation mode, the
measurement scheme consists of unbalanced homodyning. By use of a local
oscillator, the field to be measured is displaced in phase space, with the com-
plex displacement amplitude being controlled by the phase and amplitude of
the local oscillator. The resulting displacement amplitude defines the point in
phase space where a chosen phase-space function can be determined locally.
The phase-space function of interest is obtained in a simple manner as an ap-
propriately weighted sum of the photon-number statistics of the displaced
light field.

The basic concepts of determining the quantum state can also be modified
to allow the determination of the quantum state of a high-Q cavity-field by
transmission of probe atoms (Chapter 12). Moreover, methods have been
developed for determining the motional quantum state of a trapped atom
(Chapter 13) and the entangled state for the combined vibronic (vibrational-
electronic) quantum state of an atom undergoing a quantized center-of-mass
motion in a trap potential.

Appropriate methods of quantum-state preparation are needed for gener-
ating nonclassical states. The improvements of experimental techniques al-
lowed one to prepare sophisticated quantum states such as entangled states of
the Schrödinger-cat type or Einstein–Podolsky–Rosen states. Experiments of
this type can be performed, for example, by using interactions of single atoms
with high-Q cavity fields (Chapter 12) or by using the vibronic dynamics of
trapped atoms (Chapter 13).

1.7
Quantized motion of cold atoms

The progress in developing techniques for cooling trapped atoms to extremely
low temperatures has rendered it possible to visualize the quantum nature
of the atomic center-of-mass motion, which is no longer hidden by thermal
background noise. Control of the quantized atomic center-of-mass motion
allows one to realize, e. g., atom interferometry, Bose–Einstein condensation
and atom-laser like devices.3

If an atom is confined in a harmonic trap potential (Chapter 13), the laser-
driven vibronic interaction shows some resemblance to the atom–field inter-

3) In atom lasers, the wavy nature of the atomic motion plays the role
of the electromagnetic waves in conventional lasers and it is interest-
ing to generate coherent (atomic) matter waves.



12 References

action in a high-Q cavity. An exactly solvable, nonlinear Jaynes–Cummings
model is suited to describing the dynamics of the laser-driven trapped ion in
the resolved sideband regime, where individual vibronic transitions are ad-
dressed by the laser. Besides the multi-quantum generalization of the stan-
dard Jaynes–Cummings model of cavity QED, there appears an additional
nonlinear dependence of the interaction Hamiltonian on the vibrational ex-
citation of the atom in the trap potential. The nonlinearity gives rise to in-
teresting effects in the atomic dynamics, which can be employed to measure
motional quantum states and prepare specific ones. In particular, it is possi-
ble to drive the motional quantum state of the atom in a nonlinear manner
without affecting the electronic one.

In the first experimental realization of the nonlinear Jaynes–Cummings dy-
namics with a Raman-driven trapped ion, significant decoherence effects had
already been observed. A detailed understanding of the underlying mech-
anisms is of great importance for any practical application of trapped atoms,
e. g., in quantum information processing. In particular, in the case of a Raman-
driven atom being cooled down to its motional ground state the decoherence
is dominated by the, rarely occurring, excitation of an auxiliary electronic state
used for the enhancement of the Raman coupling strength.
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2
Elements of quantum electrodynamics

In order to arrive at the basic concepts for describing the quantum effects
of radiation, it is necessary to consider the quantization of the electromag-
netic field attributed to atomic sources in the presence of macroscopic bodies.
For example, in many cases of practical interest the (passive) optical instru-
ments through which radiation passes can be regarded as being more or less
complicated dielectric bodies. In the quantization scheme developed here we
will therefore allow for the presence of a dielectric medium with space- and
frequency-dependent complex permittivity satisfying the Kramers–Kronig re-
lations. For example, a standard situation is the spectral filtering of light pro-

S

SA
PD

ωs{ωλ}

Fig. 2.1 Spectral photodetection scheme. After passing through a
(Fabry–Perot-type) spectral apparatus (SA), whose spectral response
function discriminates against values of the frequency ωλ not equal to a
given setting frequency ωs, the light produced by the sources (S) falls on
a photoelectric detection device (PD).

duced by some types of source, cf. Fig. 2.1. In homodyne detection a signal
field is combined with a (local oscillator) reference field through a beam split-
ter. By means of photoelectric detection of the mixed output fields, phase
information on the signal field becomes accessible. Further, resonators such
as leaky optical cavities filled with optically active (nonlinear) matter are
frequently used in quantum optics for generating and/or amplifying light,
cf. Fig. 2.2.

Starting from the well-known classical equations of motion of microscopic
electrodynamics (Section 2.1), canonical quantization of both the free electro-
magnetic field (Section 2.2) and the electromagnetic field with sources (Sec-
tion 2.3) is performed. The theory is then extended to electrodynamics in di-
electric media, transferring the powerful concepts of phenomenological clas-
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E

AM
M1 M2

Eout

Ein

Fig. 2.2 Scheme of a resonator-like cavity bounded by a perfectly re-
flecting mirror M1 and a fractionally transparent mirror M2, the cavity
being filled with optically active matter (AM). The mirror M2 guarantees
that the intra-cavity field (electric field strength E) is in contact with the
incoming field (Ein) and the outgoing field (Eout), which may be utilized
for subsequent optical processing.

sical electrodynamics to quantum theory (Section 2.4). With regard to the de-
scription of specific processes, frequently used concepts of approximate in-
teraction Hamiltonians are discussed (Section 2.5). By formal solution of the
Heisenberg equations of motion (Section 2.6), fundamental time-dependent
commutation relations are derived (Section 2.7). This makes it possible to ex-
press observable field correlation functions in terms of source-quantity corre-
lation functions (Section 2.8).

The standard concepts of canonical quantization are considered, for ex-
ample, in the books of Cohen-Tannoudji, Dupont-Roc and Grynberg (1989),
Haken (1985), Loudon (1983), Louisell (1973), Meystre and Sargent III (1990),
Milonni (1994), Peřina (1991) and Schubert and Wilhelmi (1986). The concepts
of inclusion in the quantization of dielectric media, are based on original work
[Knöll, Vogel and Welsch (1987); Glauber and Lewenstein (1991); Huttner and
Barnett (1992); Gruner and Welsch (1996); Scheel, Knöll and Welsch (1998); Ho,
Buhmann, Knöll, Welsch, Scheel and Kästel (2003)].

2.1
Basic classical equations

In classical physics the electromagnetic field obeys Maxwell’s equations1

∇B(r) = 0, (2.1)

∇ × E(r) = −Ḃ(r), (2.2)

∇E(r) = ε−1
0 ρ(r), (2.3)

∇ × B(r) = µ0j(r) + µ0ε0Ė(r) (2.4)

1) Here, and in the following, for notational convenience we denote the
scalar product of two vectors simply by ab, the vector product by
a × b and the tensor product by a ⊗ b.
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[(µ0ε0)−1/2 = c, velocity of light in vacuum], with ρ and j, respectively, being
the total charge and current densities, which, according to Eqs (2.3) and (2.4),
obey the continuity equation

ρ̇(r) + ∇j(r) = 0 (2.5)

as the local form of the charge conservation law. Other local balance equations
that result from Maxwell’s equations are the energy balance

ẇ(r) + ∇S(r) + j(r)E(r) = 0 (2.6)

and the momentum balance

ṗ(r) −∇T(r) + f(r) = 0. (2.7)

Here,

w(r) =
ε0

2
E2(r) +

1
2µ0

B2(r) (2.8)

and

p(r) = ε0E(r)× B(r) (2.9)

are the electromagnetic energy and momentum densities, respectively, and

fL(r) = ρ(r)E(r) + j(r)× B(r) (2.10)

and

T(r) = ε0E(r) ⊗ E(r) + µ−1
0 B(r) ⊗ B(r) − w(r)I (2.11)

are the Lorentz force density and the Maxwell stress tensor, respectively (I is
the unity tensor). Further, the angular momentum density of the electromag-
netic field,

l(r) = r × p(r) = ε0r × [E(r) × B(r)] (2.12)

can be introduced, and from Eq. (2.7) it follows that

l̇(r) + ∇[T(r) × r] + r × f(r) = 0. (2.13)

Note that T is a symmetric tensor.
So far we have considered the equations for the electromagnetic-field vari-

ables. Provided that the charge and current densities are known, the field
strengths can be calculated from the equations given above. In practice, both
the charge positions and velocities depend sensitively on the field quantities
(and vice versa), because of the field–matter interaction. Thus for a complete
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description of electrodynamics we also need the equations of motion for the
charged particles (electrons, ions, etc.). Let us consider a collection of non-
relativistic, point-like particles. Denoting the charge and the mass of the ath
particle by Qa and ma respectively, we may write2

ρ(r) = ∑
a

Qa δ(r − ra), (2.14)

j(r) = ∑
a

Qaṙa δ(r − ra), (2.15)

where the position vectors ra of the particles obey the well-known Newtonian
equations of motion

mar̈a = Qa [E(ra) + ṙa × B(ra)]. (2.16)

Introducing the scalar potential V and the vector potential A by

B(r) = ∇ × A(r), (2.17)

E(r) = −Ȧ(r) −∇V(r), (2.18)

the Maxwell equations (2.1) and (2.2) are seen to be satisfied identically. In-
serting Eqs (2.17) and (2.18) into the remaining Maxwell equations (2.3) and
(2.4) yields

∇ ×∇ × A(r) + µ0ε0Ä(r) + µ0ε0∇V̇(r) = µ0j(r) (2.19)

and

−ε0
[
∆V(r) + ∇Ȧ(r)

]
= ρ(r). (2.20)

Accordingly, we may rewrite Eq. (2.16) as

mar̈a = −Qa[∇V(ra) + Ȧ(ra)] + Qa ṙa × [∇ × A(ra)]. (2.21)

The field equations (2.19) and (2.20) and the Newtonian equations of motion
(2.21) can be derived from the Lagrangian

L = 1
2

∫
d3r

{
ε0[Ȧ(r) + ∇V(r)]2 − µ−1

0 [∇ × A(r)]2
}

+ 1
2 ∑

a
maṙ2

a +
∫

d3r [j(r)A(r)− ρ(r)V(r)]. (2.22)

Hamilton’s principle of least action

δ
∫

dt L = 0 (2.23)

2) Note that Eqs (2.14) and (2.15) satisfy the equation of continu-
ity (2.5).
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then leads to the field equations (2.19) and (2.20) and the Newtonian equations
of motion (2.21) via the Euler–Lagrange equations

d
dt

δL
δȦ(r)

− δL
δA(r)

= 0,
d
dt

δL
δV̇(r)

− δL
δV(r)

= 0, (2.24)

d
dt

∂L
∂ṙa

− ∂L
∂ra

= 0, (2.25)

as may be proved by straightforward calculation.
The gauge freedom enables us to choose the potentials in a different way.

In particular, in the Coulomb gauge, the vector potential is chosen to be a
transverse vector function,

∇A(r) = 0, (2.26)

which leads to the following simplifications of Eqs (2.19) and (2.20):

∆A(r)− 1
c2 Ä(r) = −µ0 j⊥(r), (2.27)

− ε0 ∆V(r) = ρ(r), (2.28)

where

j⊥(r) = j(r)− ε0∇V̇(r) (2.29)

is the transverse current density (∇j⊥=0). From Eq. (2.28), the scalar potential
V is simply the instantaneous Coulomb potential of the charged particles:

V(r) =
1

4πε0

∫
d3r′

ρ(r′)
|r−r′ | =

1
4πε0

∑
a

Qa

|r−ra|
. (2.30)

Recalling the continuity equation (2.5), then from Eqs (2.29) and (2.30) we see
that j⊥ can be expressed in term of j:3

j⊥(r) = j(r) + ∇ ⊗
∫

d3r′
∇j(r′)

4π|r−r′ | . (2.31)

In the Coulomb gauge the first term in Eq. (2.18) is the transverse part of the
electric field and the second term the longitudinal part, i. e.,

E(r) = E⊥(r) + E‖(r), (2.32)

E⊥(r) = −Ȧ(r), (2.33)

E‖(r) = −∇V(r). (2.34)

3) Note that the longitudinal (F‖) and transverse (F⊥) parts of a vector
field F are given by F‖(⊥)(r)=

∫
d3r′ δ‖(⊥)(r−r′)F(r′), with δ‖(r)=

−∇ ⊗ ∇(4π|r|)−1 and δ⊥(r)= δ(r)−δ‖(r) being respectively the
longitudinal and transverse tensor-valued δ-functions.
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Integrating by parts and using Eq. (2.28), we may rewrite Eq. (2.22) to obtain
the Lagrangian in the Coulomb gauge

L = 1
2

∫
d3r

{
ε0Ȧ2(r) − µ−1

0 [∇ × A(r)]2
}

+ 1
2 ∑

a
maṙ2

a − WCoul +
∫

d3r j(r)A(r), (2.35)

where

WCoul = 1
2

∫
d3r ρ(r)V(r) (2.36)

is the Coulomb energy of the charged particles. It can be rewritten, on recall-
ing Eqs (2.28), (2.30) and (2.34), as4

WCoul =
ε0

2

∫
d3r [∇V(r)]2 =

ε0

2

∫
d3r [E‖(r)]2 =

1
8πε0

∑
a,a′

′ QaQa′

|ra−ra′ |
. (2.37)

Since the scalar potential is no longer an independent field variable, the La-
grangian L defined by Eq. (2.35) depends only on ra, ṙa, A(r) and Ȧ(r). In
deriving the equations of motion from this Lagrangian, the principle of least
action should be modified such that

δ−
∫

dt L = 0, (2.38)

where the δ− notation indicates that the vector potential A is varied in the space
of transverse vector functions g(r) satisfying the condition ∇g=0. The inho-
mogeneous wave equation (2.27) together with the gauge condition (2.26) may
then be represented in the form of the following Euler–Lagrange equation:

d
dt

δ−L
δ−Ȧ(r)

− δ−L
δ−A(r)

= 0. (2.39)

Here, the functional derivative δ−/δ−g(r) of a functional F[g(r)] is defined by

δ−F
δ−g(r)

= lim
ε→0

1
ε

{
F[g(r′) + ε δ⊥(r − r′)]− F[g(r′)]

}
. (2.40)

2.2
The free electromagnetic field

In the absence of charged particles the Lagrangian (2.35) reduces to the La-
grangian of the free electromagnetic field (in the Coulomb gauge)

L = 1
2

∫
d3r

{
ε0Ȧ2(r) − µ−1

0 [∇ × A(r)]2
}

, (2.41)

4) Note that the infinite self-energies of the charges (terms with a= a′)
must be removed from the Coulomb energy.



2.2 The free electromagnetic field 21

from which the Hamiltonian

H =
∫

d3r Π(r)Ȧ(r)− L (2.42)

is obtained, with

Π(r) =
δ−L

δ−Ȧ(r)
= ε0Ȧ(r) (2.43)

being the canonical momentum field. Note that the canonical momentum also
belongs to the space of transverse vector functions, ∇Π(r)=0.

2.2.1
Canonical quantization

Applying the canonical quantization scheme, we regard the canonically con-
jugate fields A and Π as Hilbert-space operators Â and Π̂ and replace the
classical (transverse) Poisson brackets

{Ak(r), Πk′(r′)} = δ⊥kk′(r − r′), (2.44)

{Ak(r), Ak′(r′)} = {Πk(r), Πk′(r′)} = 0 (2.45)

by the corresponding commutators multiplied by (ih̄)−1:

[Âk(r), Π̂k′(r′)] = ih̄δ⊥kk′(r − r′), (2.46)

[Âk(r), Âk′(r′)
]

= 0 =
[
Π̂k(r), Π̂k′(r′)]. (2.47)

Combining Eqs (2.41), (2.42) and (2.43) and substituting for A and Π the oper-
ators Â and Π̂, respectively, yields the Hamiltonian Ĥ in the form

Ĥ = 1
2

∫
d3r

{
ε−1

0 Π̂2(r) + µ−1
0 [∇ × Â(r)]2

}
. (2.48)

According to Eqs (2.17), (2.32)–(2.34) (for V=0) and (2.43), the operators of the
canonically conjugate fields are related to the operators of the magnetic and
electric fields as B̂=∇×Â and Ê⊥=Ê=−Π̂/ε0, and the Hamiltonian (2.48) is
nothing other than the energy of the electromagnetic field,

Ĥ = 1
2

∫
d3r

[
ε0Ê2(r) + µ−1

0 B̂2(r)
]
. (2.49)

From Eq. (2.47) it is not difficult to verify, on recalling the relation ∇×δ(r) =
∇×δ⊥(r), that

[Êk(r), B̂k′(r′)] = −εkk′m
ih̄
ε0

∂δ(r − r′)
∂xm

, (2.50)

with εijk being the (anti-symmetric) Levi–Civita tensor.5

5) Here, and in the following, we adopt the convention of summation
over repeated vector-component indices.
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2.2.2
Monochromatic-mode expansion

In the Heisenberg picture, the operators carry the full time dependence and
evolve according to equations of motion that correspond, apart from possible
ordering prescriptions, to the classical ones. In particular, the vector potential
of the free electromagnetic field satisfies the operator-valued wave equation
(2.27) for vanishing current. It can easily be proved that the canonical field
equations of motion are

˙̂A(r) =
1
ih̄

[Â(r), Ĥ] =
1
ε0

Π̂(r), (2.51)

˙̂Π(r) =
1
ih̄

[Π̂(r), Ĥ] =
1

µ0
∆Â(r), (2.52)

which are indeed equivalent to the wave equation

∆Â(r) − 1
c2

¨̂A(r) = 0. (2.53)

2.2.2.1 Separation of variables

To solve the wave equation (2.53), we apply the familiar procedure of separa-
tion of variables and represent the vector potential in terms of monochromatic
modes, that is, we write

Â(r, t) =
1√
ε0

∑
λ

cλAλ(r)q̂λ(t). (2.54)

Inserting Eq. (2.54) into Eq. (2.53), we can easily see that the mode functions
Aλ(r) must solve the Helmholtz equation

∆Aλ(r) +
ω2

λ

c2 Aλ(r) = 0, (2.55)

and the associated mode operators q̂λ(t) evolve like harmonic oscillators,
namely

¨̂qλ + ω2
λq̂λ = 0. (2.56)

The constants cλ in Eq. (2.54) are introduced for normalization purposes and
will be specified later. Clearly, the mode functions must satisfy the condition
∇Aλ =0, because of the Coulomb gauge.

Since the Laplace operator ∆ in Eq. (2.55) is Hermitian, the orthogonality
relation∫

d3r A∗
λ(r)Aλ′(r) = 0 (ωλ �= ωλ′) (2.57)
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is valid, which may be proved by taking the product of the complex conjugate
of Eq. (2.55) with Aλ′ , subtracting the corresponding equation, with λ and λ′

exchanged, and integrating by parts. Obviously, orthogonality may also be
derived for the functions Aλ, Aλ′ in place of A∗

λ, Aλ′ in Eq. (2.57). After or-
thogonalizing the mode functions Aλ which belong to the same frequency ωλ,
we may choose the mode functions in such a way that the ortho-normalization
relation

|cλ|2
∫

d3r A∗
λ(r)Aλ′(r) = δλλ′ (2.58)

is valid. Further, the modes may be regarded as forming a complete set of
functions in the space of transverse vector functions, so that the completeness
relation may be given as

∑
λ

|cλ|2Aλ(r)⊗ A∗
λ(r′) = δ⊥(r − r′). (2.59)

Clearly, the expansion of the vector potential in terms of monochromatic
modes, as given in Eq. (2.54), is not attached to the Heisenberg picture, but
can be performed in any picture, that is, we may write

Â(r) =
1√
ε0

∑
λ

cλAλ(r)q̂λ =
1√
ε0

∑
λ

c∗λA∗
λ(r)q̂†

λ, (2.60)

without specifying the temporal evolution. Similarly, the formalism of mode
expansion can be applied to the canonical momentum Π̂ to obtain6

Π̂(r) =
√

ε0 ∑
λ

c∗λA∗
λ(r) p̂λ =

√
ε0 ∑

λ

cλAλ(r) p̂†
λ. (2.61)

We have allowed for complex mode functions, because it is often convenient
to use these rather than real ones. In that case, the canonically conjugate mode
operators q̂λ and p̂λ are non-Hermitian operators in general, as is seen from
Eqs (2.60) and (2.61). From Eqs (2.60) and (2.61), together with Eq. (2.58), we
find that the q̂†

λ, p̂†
λ and q̂λ′ , p̂λ′ which belong to the same frequency are related

to each other as

q̂†
λ = ∑

λ′

[∫
d3r cλAλ(r)cλ′Aλ′(r)

]
q̂λ′ , (2.62)

p̂†
λ = ∑

λ′

[∫
d3r cλAλ(r)cλ′Aλ′(r)

]∗
p̂λ′ . (2.63)

Note that in the λ′ sums the terms with ωλ′ �= ωλ are zero. In the case
of real mode functions the q̂λ and p̂λ are obviously Hermitian operators

6) Note that from Eqs (2.51) and (2.52) it follows that Π̂ obeys the same
wave equation as the vector potential.
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(q̂†
λ = q̂λ, p̂†

λ = p̂λ). From the commutation relations (2.46) and (2.47) it follows
that the q̂λ and p̂λ satisfy the (equal-time) commutation relations

[q̂λ, p̂λ′ ] = ih̄δλλ′ , (2.64)

[q̂λ, q̂λ′ ] = 0 = [ p̂λ, p̂λ′ ], (2.65)

as may be proved by straightforward calculation, inverting the expansions
(2.60) and (2.61). Expanding in Eq. (2.48) the canonically conjugate fields Â
and Π̂ according to Eqs (2.60) and (2.61), respectively, after some lengthy but
straightforward calculation we may express the Hamiltonian of the electro-
magnetic field in terms of the mode operators q̂λ and p̂λ:

Ĥ = 1
2 ∑

λ

( p̂λ p̂†
λ + ω2

λq̂λ q̂†
λ). (2.66)

As expected, Ĥ takes the familiar form of the Hamiltonian of an infinite set
of uncoupled harmonic oscillators, whose excitation quanta of energy h̄ωλ are
called photons (of type λ).

2.2.2.2 Photon annihilation and creation operators

Usually the photon annihilation and creation operators âλ and â†
λ which are

defined according to the relations7

q̂λ =

√
h̄

2ωλ

{
âλ + ∑

λ′

[∫
d3r cλAλ(r)cλ′Aλ′(r)

]∗
â†

λ′

}
, (2.67)

p̂λ = i

√
h̄ωλ

2

{
â†

λ − ∑
λ′

[∫
d3r cλAλ(r)cλ′Aλ′(r)

]
âλ′

}
(2.68)

are preferred to the (coordinate and momentum) operators q̂λ and p̂λ. Ex-
pressing in Eqs (2.60) and (2.61) the operators q̂λ and p̂λ in terms of the opera-
tors âλ and â†

λ yields the canonically conjugate field operators Â and Π̂ in the
form

Â(r) = ∑
λ

Aλ(r)âλ + H.c., (2.69)

Π̂(r) = −ε0 ∑
λ

iωλAλ(r)âλ + H.c., (2.70)

7) Note that when real mode functions are used, then Eqs (2.67)
and (2.68) reduce to the equations q̂λ =

√
h̄/(2ωλ)(âλ + â†

λ) and
p̂λ = i

√
h̄ωλ/2(â†

λ− âλ). On the other hand, these equations can al-
ways be used to define canonically conjugate Hermitian operators
q̂′λ and p̂′λ, which are of course different from the operators q̂λ and
p̂λ in Eqs (2.67) and (2.68) if complex mode functions are used.
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where H.c. denotes the Hermitian conjugate. For notational convenience we
have specified the cλ to be

cλ =

√
2ωλε0

h̄
, (2.71)

which implies that the ortho-normalization condition (2.58) reads as∫
d3r A∗

λ(r)Aλ′(r) =
h̄

2ωλε0
δλλ′ . (2.72)

Inverting Eqs (2.69) and (2.70), we find that âλ and â†
λ may be expressed in

terms of the field operators Â and Π̂ as

âλ =
1
h̄

∫
d3r A∗

λ(r)[ε0ωλÂ(r) + iΠ̂(r)], (2.73)

â†
λ =

1
h̄

∫
d3r Aλ(r)[ε0ωλÂ(r) − iΠ̂(r)]. (2.74)

As expected, Eqs (2.73) and (2.74) together with the commutation relations
(2.46) and (2.47) imply bosonic commutation relations for the photonic anni-
hilation and creation operators âλ and â†

λ:

[âλ, â†
λ′ ] = δλλ′ , (2.75)

[âλ, âλ′ ] = 0 = [â†
λ, â†

λ′ ]. (2.76)

Using Eqs (2.67) and (2.68) and expressing in (2.66) the canonically conju-
gate operators q̂λ and p̂λ in terms of the photon annihilation and creation op-
erators âλ and â†

λ, we may represent the Hamiltonian of the electromagnetic
field in the form

Ĥ = 1
2 ∑

λ

h̄ωλ

(
â†

λ âλ + âλ â†
λ

)
= ∑

λ

h̄ωλ

(
n̂λ + 1

2

)
, (2.77)

where

n̂λ = â†
λ âλ (2.78)

is the operator of the number of quanta of the λth oscillator, i. e., the operator
of the number of photons in the λth field mode (for its eigenstates, see Sec-
tion 3.1). Obviously, in the Heisenberg picture the equation of motion for âλ

reads

˙̂aλ =
1
ih̄

[
âλ, Ĥ

]
= −iωλ âλ. (2.79)

In Eq. (2.77), the term

Ev = ∑
λ

1
2 h̄ωλ (2.80)
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is the energy of the electromagnetic vacuum. It is the sum of the ground-
state energies of the harmonic oscillators associated with all the modes of the
electromagnetic field.8 Since there are infinitely many modes, Ev is infinite. In
practice, this is of less importance, because only changes in the total energy
are measurable. In the presence of macroscopic bodies, however, Ev depends
on the geometry of the bodies and their arrangement and can be changed by
changing the geometry. Such a (finite) change in the (infinite) vacuum energy
can be thought of as being associated with a force acting on the bodies – the
Casimir force9 (Section 10.2.2). Provided that the (in general small) effect can
be disregarded, the vacuum energy may be omitted.

2.2.2.3 The plane-wave expansion

For notational convenience, here and in the following a discrete mode struc-
ture is assumed, which requires that the electromagnetic field extends over a
finite volume. In fact, the quantization volume is the whole universe, which
implies a mode continuum. In order to apply the discrete-mode expansion
formalism, in the first stage a large but finite rectangular box of volume
V=L1L2L3 is commonly considered and periodic boundary conditions are
assumed, namely

Aλ(r) = Aλ(r + L), L = (n1L1, n2L2, n3L3) (2.81)

(ni, integer). In the second stage, passing to the limit as Li→∞ (i=1, 2, 3), for
the infinite quantization volume is allowed. The Helmholtz equation (2.55) to-
gether with the boundary conditions (2.81) is solved by traveling plane waves
(λ→ l, σ)

cl,σAl,σ(r) = V−1/2el,σ eiklr, (2.82)

where the (wave-number) vector kl takes the discrete values

kl = 2π

(
l1
L1

,
l2
L2

,
l3
L3

)
(2.83)

(l={li}, li integer), and the dispersion relation

k2
l c2 = ω2

l (2.84)

holds. Further, the Coulomb gauge ∇Aλ =0 leads to the transversality condi-
tion

el,σkl = 0. (2.85)

8) The state of the field in which all the oscillators are in the ground
state, i. e., no photons are excited in any of the field modes, is called
the vacuum state.

9) The Casimir force is an example of observable consequences of the
interaction of matter with the electromagnetic vacuum (Chapter 10).
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Thus for any given wave vector kl two independent polarization vectors el,σ
(σ=1, 2) exist, which may be chosen orthogonal to each other,

el,σel,σ′ = δσσ′ . (2.86)

With regard to resonator-like systems, it is also usual to consider the electro-
magnetic field inside a finite cavity with perfectly reflecting walls. Physically,
such boundary conditions cannot be realized rigorously, but only approxi-
mately in certain frequency ranges.10

Representing the electromagnetic field in terms of the traveling plane waves
given in Eq. (2.82) [together with Eqs (2.71) and (2.84)], yields the vector po-
tential (2.69) and the canonical momentum (2.70) in the form

Â(r) = ∑
l,σ

√
h̄

2ε0cklV
el,σeiklr âl,σ + H.c., (2.87)

Π̂(r) = −i ∑
l,σ

√
h̄ε0ckl

2V el,σeiklrâl,σ + H.c.. (2.88)

In the limit as V →∞, Eqs (2.87) and (2.88) represent the fields in the whole
space. According to Eq. (2.83), with increasing V the modes become more and
more dense in the k domain. Defining new operators

âσ(k) = lim
V→∞

âl,σ√
(∆k)3

, (2.89)

where

∆k =
2π

V1/3 , (2.90)

we see that in the limit as V → ∞ (i. e., ∆k → 0) the l sums in Eqs (2.87) and
(2.88) approach integrals as follows:

Â(r) = ∑
σ

∫
d3k

√
h̄

2ε0ck(2π)3 eσ(k)eikrâσ(k) + H.c., (2.91)

and Π̂(r) accordingly. The commutation relations for the operators âσ(k)
and â†

σ(k) may be found from the original commutation relations as given

10) Nevertheless, the set of modes obtained
from the boundary conditions that are
realized by perfectly reflecting walls can
be used to describe the electromagnetic
field inside the cavity correctly. Note that
the number of modes which contribute to

the field can drastically increase with de-
creasing distance of the point of observa-
tion from the cavity walls, because of the
wrong boundary conditions. Clearly, such
a set of modes cannot be used to describe
the field outside the cavity, in general.
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in Eqs (2.75) and (2.76) together with Eq. (2.89). We derive

[âσ(k), â†
σ′(k′)] = lim

∆k→0

1
(∆k)3 [âl,σ, â†

l ′,σ′ ]

= δσσ′ lim
∆k→0

δll ′

(∆k)3 = δσσ′δ(k − k′). (2.92)

Obviously, the operator

n̂σ(k) = â†
σ(k) âσ(k) (2.93)

represents the operator of the photon-number density in the k domain for cho-
sen polarization σ. Integration over all k yields the operator of the total num-
ber of photons of that polarization.

2.2.3
Nonmonochromatic modes

So far we have expressed the electromagnetic field in terms of monochromatic
modes, i. e., solutions of the Helmholtz equation (2.55) and the associated
harmonic-oscillator variables. The modes are characterized by the eigenfre-
quencies of the field (for the chosen boundary conditions). Frequently wave
packets are observed, rather than monochromatic waves, and photonic op-
erators which describe a wave packet as a whole may be more suited to
the description of the electromagnetic field than those associated with the
monochromatic waves forming the wave packet.

Applying a unitary transformation to the photon annihilation operators âλ

associated with the monochromatic modes, we may introduce new operators

â′ν = ∑
λ

Uνλâλ (2.94)

where the Uνλ as the elements of a unitary matrix obey the relation

U−1
νλ = U∗

λν (2.95)

Obviously, the operators â′ν and â′ν
†, respectively, are again annihilation and

creation operators which satisfy bosonic commutation relations,

[â′ν, â′ν′
†] = δνν′ , (2.96)

[â′ν, â′ν′ ] = [â′ν
†, â′ν′

†] = 0, (2.97)

as is easily seen from Eqs (2.75) and (2.76) in conjunction with Eq. (2.94) and
its Hermitian conjugate. These operators can of course be regarded as being
the annihilation and creation operators of photons, with

n̂′
ν = â′ν

† â′ν (2.98)
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being the corresponding number operators. Clearly, the thus defined pho-
tons can exhibit quite different properties from those associated with the
monochromatic modes.

By inverting the relation (2.94), i. e.,

âλ = ∑
ν

U∗
νλâ′ν , (2.99)

and expressing in Eqs (2.69) and (2.70) the operators âλ, â†
λ in terms of the new

operators â′ν, â′ν
†, we find [Titulaer and Glauber (1966)]

Â(r) = ∑
ν

A′
ν(r) â′ν + H.c., (2.100)

and Π̂(r) accordingly, where the nonmonochromatic mode functions A′
ν(r)

are defined by

A′
ν(r) = ∑

λ

U∗
νλAλ(r). (2.101)

Recalling the ortho-normalization condition (2.72), we derive
∫

d3r A′
ν
∗(r)A′

ν′(r) =
h̄

2ε0
∑
λ

ω−1
λ UνλU∗

ν′λ , (2.102)

which reveals that the functions A′
ν(r) are not orthogonal to each other

in general. Introduction of the operators â′ν, â′ν
† in Eq. (2.77) yields the

electromagnetic-field Hamiltonian in the form

Ĥ = 1
2 ∑

ν,ν′
h̄ωνν′(â′ν

† â′ν′ + â′ν′ â
′
ν
†), (2.103)

where

ωνν′ = ∑
λ

ωλUνλU∗
ν′λ = ω∗

ν′ν . (2.104)

As expected, the nonmonochromatic photons are coupled to each other and
have no fixed energy in general.

In the Heisenberg picture, the photon annihilation operators associated
with the monochromatic modes evolve as

âλ(t) = âλe−iωλt, (2.105)

as can be seen from Eq. (2.79). Using Eq. (2.105), then from Eqs (2.94) and
(2.100) we obtain

Â(r, t) = ∑
ν

A′
ν(r, t) â′ν + H.c., (2.106)
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with

A′
ν(r, t) = ∑

λ

U∗
νλAλ(r)e−iωλt (2.107)

in place of Eqs (2.100) and (2.101). The time-dependent nonmonochromatic
modes A′

ν(r, t) are also called spatio-temporal modes (of the vector potential).

Let the (excited) spatio-temporal modes A′
ν(r, t) be nonoverlapping pulse-

like wave packets,11 each of them can be described by a mid-frequency Ων

and a slowly varying amplitude, i. e.,

Â(r, t) = ∑
ν

Ãν(r, t) â′νe−iΩνt + H.c., (2.108)

where (|ωλ−Ων|	Ων)

Ãν(r, t) = A′
ν(r, t)eiΩνt = ∑

λ

U∗
νλAλ(r)e−i(ωλ−Ων)t. (2.109)

Obviously, nonmonochromatic modes of this type can be regarded, according
to Eq. (2.102), as being approximately orthogonal to each other. In the same
approximation, the operators â′ν and â′ν

†, which are associated with the νth
wave packet, annihilate and create, respectively, a photon which carries an
average energy of h̄Ων. Hence the operators

â′ν(t) = â′νe−iΩνt (2.110)

and their Hermitian conjugates in Eq. (2.108) can be regarded as being the
operators in the Heisenberg picture, and the Hamiltonian is

Ĥ 
 1
2 ∑

ν

h̄Ων(â′ν
† â′ν + â′ν â′ν

†). (2.111)

2.3
Interaction of the electromagnetic field with charged particles

In Section 2.1 we have considered collections of charged particles interacting
with the electromagnetic field, without specifying the different roles that they
play in practice. Roughly speaking, there are two different kinds of matter in
optics. The first kind comprises the charged particles that are subject to spe-
cific active (nonlinear) interactions with the electromagnetic field, whereas the
second kind plays the role of a passive (linear) matter background. In contrast

11) This is the case when, e. g., different wave packets have no common
monochromatic modes or when the wave packets are spatially well
separated.
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to the first kind of matter, whose interaction with the electromagnetic field
requires a dynamical description, the effect of the second kind is commonly
described phenomenologically by introducing appropriate constitutive equa-
tions. Of course, these equations also result from a dynamical description
of the interaction of the corresponding charged particles with the electromag-
netic field. We therefore start with the dynamical description of all the charged
particles involved in the interaction with the electromagnetic field.

2.3.1
Minimal coupling

For the quantization of the system of (microscopic) Maxwell’s equations (2.1)–
(2.4) [together with Eqs (2.14) and (2.15)] we return to the Lagrangian (2.35) in
the Coulomb gauge which leads to the classical Hamiltonian

H = ∑
a

paṙa +
∫

d3r Π(r)Ȧ(r)− L, (2.112)

where the canonical electromagnetic-field momentum Π is again given by
Eq. (2.43), and

pa =
∂L
∂ṙa

= ma ṙa + Qa A(ra) (2.113)

is the canonical momentum of the ath charged particle. Combining Eqs (2.35)
and (2.112)–(2.113) and going from the classical to the quantum-mechanical
description, yields the Hamiltonian of the coupled radiation–matter system
in the form

Ĥ = 1
2

∫
d3r

{
ε−1

0 Π̂2(r) + µ−1
0 [∇ × Â(r)]2

}
+ ∑

a

1
2ma

[p̂a − QaÂ(r̂a)]2 + ŴCoul, (2.114)

where the canonically conjugate variables are now Hilbert-space operators
whose nonvanishing (equal-time) commutators are12

[r̂ka, p̂k′a′ ] = ih̄δaa′δkk′ (2.115)

and [Eq. (2.46)][
Âk(r), Π̂k′(r′)

]
= ih̄δ⊥kk′(r − r′). (2.116)

According to Eqs (2.17), (2.32)–(2.34) and (2.43), the operators of the canon-
ically conjugate fields are related to the operators of the magnetic and elec-
tric fields as B̂=∇×Â and Ê⊥=−Π̂/ε0. Note that the commutation relation

12) Note that [p̂a, Â(r̂a)] = [p̂a, Π̂(r̂a)] = 0, because of the Coulomb
gauge.
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(2.50) does not change, even when Ê is the full electric field composed of both
a transverse and a longitudinal part.

The Hamiltonian (2.114) consists of three terms: the energy of the trans-
verse electromagnetic field, the kinetic energy of the charged particles and
their Coulomb energy.13 The interaction of the particles with the transverse
electromagnetic field, i. e., with that part of the field which is related to radia-
tion, is introduced by replacing, in the kinetic energy, the mechanical particle
momenta mv̂a with displaced canonical momenta according to the rule

mav̂a = p̂a − Qa Â(r̂a) (2.117)

[see Eq. (2.113)]. This kind of coupling is called minimal coupling. Obvi-
ously, the concept of mode expansion as developed in Section 2.2.2 can also
be applied to the electromagnetic field interacting with charged particles.14 In
particular, photon annihilation and creation operators can be introduced, and
Â and Π̂ can be represented as shown in Eqs (2.69) and (2.70), respectively.
Accordingly, the energy of the transverse electromagnetic field can be given
in the form (2.77).

It is often convenient to decompose the minimal-coupling Hamiltonian in
the form

Ĥ = ĤR + ĤC + Ĥint, (2.118)

where

ĤR = 1
2

∫
d3r

{
ε−1

0 Π̂2(r) + µ−1
0 [∇ × Â(r)]2

}
= ∑

λ

h̄ωλ

(
n̂λ + 1

2

)
, (2.119)

ĤC = ∑
a

p̂2
a

2ma
+ ŴCoul, (2.120)

Ĥint = −∑
a

Qa

ma
p̂aÂ(r̂a) + ∑

a

Q2
a

2ma
Â2(r̂a). (2.121)

Here ĤR is the Hamiltonian of the transverse electromagnetic field, ĤC is
the Hamiltonian of the charged particles including their mutual interaction

13) This decomposition of the Hamiltonian is
independent of the chosen gauge and the
choice of the canonically conjugate vari-

ables, unless an explicit time dependence
is introduced.

14) Note that mode expansion corresponds
to a canonical transformation, which is of
course not attached to the free electromag-
netic field. Since the temporal evolution
of the mode operators is now governed by
the Hamiltonian of the coupled radiation–

matter system, the spatio-temporal modes
(2.107) introduced within the framework
of nonmonochromatic mode expansion
(Section 2.2.3) refer to freely propagating
wave packets.
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through the Coulomb coupling, and Ĥint describes the interaction between
the two systems.

2.3.2
Multipolar coupling

The interaction between (localized) atomic systems (atoms, molecules, etc.)
and the electromagnetic field, is typically treated in terms of the polarization
and magnetization associated with the atomic charges. Moreover, in the phe-
nomenological Maxwell theory these quantities play a fundamental role. Let
us consider a collection of point-like particles which form an atomic system
localized at some position rA and define the polarization PA such that

∇PA(r) = −ρ(r) + ρA(r). (2.122)

Here, the charge density ρA = QAδ(r − rA) attributed to the total charge
QA =∑a Qa of the atomic system can be regarded as being the charge density
of the atomic system as a whole. Accordingly, the difference charge density ρ

−ρA represents the density of the “invisible” charges which give rise to a po-
larization of the system. We combine Eq. (2.122) with the Gaussian law (2.3)
to obtain15

∇D(r) = ρA(r), (2.123)

where

D(r) = ε0E(r) + PA(r) (2.124)

is the displacement field, whose source is just the charge density ρA(r) of the
atomic system as a whole. Taking the derivative of Eq. (2.122) with respect to
time and recalling the continuity equation, we find that

∇[j(r)− jA(r) − ṖA(r)] = 0, (2.125)

where jA =QA ṙAδ(r−rA) is the current density associated with ρA. Note that
ρ̇A +∇jA =0. From Eq. (2.125) it follows that the vector field j−jA(r)− ṖA(r)
can be given by the curl of another vector field MA according to

∇ × MA(r) = j(r)− jA(r) − ṖA(r). (2.126)

Obviously, MA plays the role of the magnetization. Defining the magnetic
field

H(r) = µ−1
0 B(r) − MA(r) (2.127)

15) When there are additional charged particles which are not included
in the polarization, then the corresponding charge density must of
course appear on the right-hand side in Eq. (2.123).
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and using Eqs (2.124) and (2.126), we can rewrite the Maxwell equation (2.4)
as

∇ × H(r) = jA(r) + Ḋ(r). (2.128)

With regard to (2.126), the terms ṖA and ∇ × MA are also called polarization
and magnetization currents respectively.

Let us restrict our attention to a neutral atomic system (QA =0) whose po-
sition does not change (ṙA =0).16 Substituting into Eqs (2.122) and (2.126) the
expressions (2.14) and (2.15) for the charge and current densities, respectively,
and using, e. g., the Fourier-integral representation of the δ function, it can be
proved that

PA(r) = ∑
a

Qa

∫ 1

0
ds (ra − rA)δ[r − rA − s(ra − rA)] (2.129)

and

MA(r) = ∑
a

Qa

∫ 1

0
ds s(ra − rA)× ṙaδ[r − rA − s(ra − rA)] (2.130)

solve these equations.17

2.3.2.1 The multipolar-coupling Lagrangian

The total derivative with respect to time of a function of the generalized co-
ordinates can of course be added to the Lagrangian L of a system to obtain a
new Lagrangian L′, which yields the same equations of motion and is there-
fore fully equivalent to the old Lagrangian. We return to the Lagrangian (2.35)
and write it in the form

L = L0 + Lint , (2.131)

where

Lint =
∫

d3r j(r)A(r). (2.132)

Adding to L the derivative with respect to time of the function

F = −
∫

d3r PA(r)A(r) (2.133)

yields the new Lagrangian

L′ = L +
dF
dt

= L0 + L′
int (2.134)

16) For nonvanishing charge density ρA that is not fixed, see Power and
Thirunamachandran (1980).

17) Note that Eqs (2.122) and (2.126), respectively, only determine the
longitudinal part of P and the transverse part of M.
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with

L′
int = −

∫
d3r

{
PA(r)Ȧ(r) − MA(r)[∇× A(r)]

}
, (2.135)

where we have used Eq. (2.126) and integrated by parts.18 Thus with the use
of Eqs (2.129) and (2.130)

L′
int = −∑

a
Qa

∫ 1

0
ds

{
(ra − rA)Ȧ[rA + s(ra − rA)]

− [s(ra − rA)× ṙa][∇ × A[rA+s(ra − rA)]]
}

. (2.136)

It is worth noting that the transverse electromagnetic field appears in the new
Lagrangian in terms of the field strengths B = ∇ × A and E⊥ =−Ȧ. In par-
ticular, the charges interact with the transverse field via the coupling of the
magnetization to the induction field and the coupling of the polarization to
the transverse electric field,

L′
int =

∫
d3r [PA(r)E⊥(r) + MA(r)B(r)]

= ∑
a

Qa

∫ 1

0
ds

{
(ra − rA)E⊥[rA + s(ra − rA)]

+ [s(ra − rA)× ṙa]B[rA + s(ra − rA)]
}

. (2.137)

This kind of coupling is called multipolar coupling. Taylor expansion of
E⊥[rA +s(ra−rA)] and B[rA + s(ra − rA)] around rA expresses L′

int in terms
of the familiar electric and magnetic multipole moments of the atomic charge
and current distributions.

2.3.2.2 The multipolar-coupling Hamiltonian

It can easily be verified that the new canonical momenta are

Π′(r) =
δ−L′

δ−Ȧ(r)
= ε0Ȧ(r) − P⊥

A(r) = −ε0E⊥(r) − P⊥
A(r) (2.138)

and

p′
a =

∂L′

∂ṙa
= maṙa − Qa

∫ 1

0
ds s(ra − rA) × {∇ × A[rA + s(ra − rA)]}

= maṙa − Qa

∫ 1

0
ds s(ra − rA) × B[rA + s(ra − rA)], (2.139)

and the multipolar-coupling Hamiltonian thus is

H = ∑
a

p′
a ṙa +

∫
d3r Π′(r)Ȧ(r)− L′. (2.140)

18) Note that the relation A(∇ × MA)=∇(MA × A)+MA(∇ × A) is
valid.
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It again consists of the energy of the transverse electromagnetic field, the ki-
netic energy of the charged particles and their Coulomb energy, but with these
energies being expressed in terms of the new variables.

Now quantization can be performed by regarding the canonically conjugate
variables as operators and postulating the standard (equal-time) commutators
such as

[r̂ak, p̂′a′k′ ] = ih̄δaa′δkk′ (2.141)

and [
Âk(r), Π̂′

k′(r′)
]

= ih̄δ⊥kk′(r − r′). (2.142)

According to Eqs (2.138)–(2.140), the multipolar-coupling Hamiltonian takes
the form

Ĥ = 1
2

∫
d3r

{
ε−1

0 [Π̂′(r) + P̂⊥
A(r)]2 + µ−1

0 [∇ × Â(r)]2
}

+ 1
2 ∑

a

1
ma

{
p̂′

a + Qa

∫ 1

0
ds s(r̂a−r̂A)×

[∇ × Â[rA+s(r̂a−r̂A)]
]}2

+ŴCoul.

(2.143)

Applying mode expansion to the vector potential Â and the canonical momen-
tum field Π̂′, all the formulas given in Section 2.2.2 for Â and Π̂ are of course
also valid with regard to Â and Π̂′. In particular Â and Π̂′ can be expressed in
terms of photon annihilation and creation operators in exactly the same way
as in Eqs (2.69) and (2.70).

The Hamiltonian (2.143) can be rewritten as a sum of three terms,

Ĥ = ĤR′ + ĤC′ + Ĥint′ . (2.144)

The first term in Eq. (2.144) is the Hamiltonian of the transverse electromag-
netic field which consists of B̂ and ε0Ê⊥+ P̂⊥

A and can be given in the familiar
form (2.77):

ĤR′ = 1
2

∫
d3r

{
ε−1

0 Π̂′2(r) + µ−1
0 [∇ × Â(r)]2

}
= ∑

λ

h̄ωλ

(
â′λ

† â′λ + 1
2

)
. (2.145)

The second term in Eq. (2.144) refers to the charged particles:

ĤC′ = ∑
a

p̂′
a

2

2ma
+ ŴCoul +

1
2ε0

∫
d3r P̂⊥

A
2(r). (2.146)

From Eqs (2.122)–(2.124) it follows that

ε0Ê‖(r) = −P̂‖
A(r) (2.147)
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for a neutral atomic system, and hence ŴCoul can be rewritten as [cf. Eq. (2.37)]

ŴCoul =
1

2ε0

∫
d3r P̂‖

A
2(r). (2.148)

Combining Eqs (2.146) and (2.148) then yields the particle Hamiltonian in the
form

ĤC′ = ∑
a

p̂′
a

2

2ma
+

1
2ε0

∫
d3r P̂2

A(r). (2.149)

The interaction between the electromagnetic field and the particles is gov-
erned by the final term in Eq. (2.144):

Ĥint′ =
1
ε0

∑
a

Qa

∫ 1

0
ds (r̂a − rA)Π̂′[rA + s(r̂a − rA)]

− ∑
a

Qa

2ma

∫ 1

0
ds s

{
[(r̂a−rA)×p̂′

a][∇×Â[rA+s(r̂a−rA)]] + H.c.
}

+ ∑
a

Q2
a

2ma

{∫ 1

0
ds s(r̂a − rA) × [∇ × Â[rA + s(r̂a − rA)]]

}2

. (2.150)

The first term in Eq. (2.150) results from the interaction of the transverse dis-
placement field ε0Ê⊥+ P̂⊥

A with the polarization P̂A of the atomic system. The
second term results from the interaction between the magnetic induction field
B̂ and the (paramagnetic) magnetization M̂′

A of the atomic system, with M̂′
A

being obtained from M̂A by replacing the mechanical momenta ma ˙̂ra of the
particles with the canonical momenta p̂′

a. The final term is quadratic in the
magnetic induction field B̂ and can be regarded as being the diamagnetic en-
ergy of the atomic system.

The above given results can easily be extended to an ensemble of (neutral)
atomic systems at different (fixed) positions rA. The total polarization P̂ and
the total magnetization M̂ are the sums of the polarizations P̂A and M̂A of the
atomic systems:

P̂(r) = ∑
A

P̂A(r), (2.151)

M̂(r) = ∑
A

M̂A(r), (2.152)

and the multipolar-coupling Hamiltonian of the total system is

Ĥ = ĤR′ + ∑
A

ĤA + ∑
A,A′

′
ĤAA′ (2.153)

(A �= A′), where ĤA = ĤC′ + Ĥint′ with ĤC′ and Ĥint′ being respectively given
by Eqs (2.149) and (2.150), and ĤAA′ is the contact term

ĤAA′ =
1

2ε0

∫
d3r P̂A(r)P̂A′(r), (2.154)
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which approaches zero if the atomic systems A and A′ are well separated
from each other, so that the interaction between the systems is solely caused
by transverse fields.

2.3.2.3 The Power–Zienau unitary transformation

The transition from the minimal-coupling Hamiltonian to the multipolar-
coupling Hamiltonian is a canonical transformation of the dynamical vari-
ables, corresponding to a unitary transformation. For a single atomic system,
the unitary transformation operator reads19

Û = exp
[

i
h̄

∫
d3r P̂A(r)Â(r)

]
. (2.155)

Obviously, this transformation, which is called the Power–Zienau transforma-
tion, does not change r̂a and Â,

Â′(r) = ÛÂ(r)Û† = Â(r), (2.156)

r̂′a = Ûr̂aÛ† = r̂a, (2.157)

and it is not difficult to verify, on applying Eq. (C.10), that it transforms Π̂ and
p̂a according to Eqs (2.138) and (2.139), respectively,

Π̂′(r) = ÛΠ̂(r)Û† = Π̂(r) − P̂⊥
A(r), (2.158)

p̂′
a = Ûp̂aÛ† = p̂a − QaÂ(r̂a)

− Qa

∫ 1

0
ds s(ra − rA) × {∇ × A[rA+s(ra−rA)]}. (2.159)

Hence expressing, in the minimal-coupling Hamiltonian (2.114), the original
dynamical variables in terms of the transformed ones, yields the multipolar-
coupling Hamiltonian (2.143). Note that Ĥ′

R = ĤR′ .
So far we have transformed the dynamical variables but have left the Hamil-

tonian unchanged. This type of Power–Zienau transformation should not be
confused with another one in which both the dynamical variables and the
Hamiltonian are transformed according to the prescriptions

Π̂′′(r) = Û†Π̂(r)Û = Π̂(r) + P̂⊥
A(r), (2.160)

p̂′′
a = Û†p̂aÛ = p̂a + QaÂ(r̂a)

+ Qa

∫ 1

0
ds s(ra − rA) × {∇ × A[rA+s(ra−rA)]}, (2.161)

Ĥ′′ = Û†ĤÛ. (2.162)

19) The extension to many atomic systems is straightforward. The uni-
tary operator is Û=∏A ÛA, with ÛA from Eq. (2.155).
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The new Hamiltonian Ĥ′′ expressed in terms of the new variables formally
looks like the old minimal-coupling Hamiltonian Ĥ expressed in terms of the
originally used variables. Expressing in Ĥ′′ the new variables in terms of the
original ones, we arrive at a multipolar-coupling Hamiltonian

Ĥ′′ = 1
2

∫
dr3 {

ε−1
0

[
Π̂(r) + P̂⊥

A(r)
]2 + µ−1

0
[∇ × Â(r)

]2}
+ 1

2 ∑
a

1
ma

{
p̂a + Qa

∫ 1

0
ds s(r̂a−r̂A) × [∇ × Â[rA+s(r̂a−r̂A)]]

}2

+ŴCoul.

(2.163)

The Hamiltonians (2.143) and (2.163) look the same at first glance but in
fact they are different. Since the expectation value 〈Ô〉 of a physical quantity
associated with an operator Ô must not change, the use of the transformed
Hamiltonian (2.163) requires that both the operator Ô and the density operator
�̂ of the system must be transformed to

Ô′′ = Û†ÔÛ (2.164)

and

�̂′′ = Û†�̂Û, (2.165)

so that

ih̄
d〈Ô〉

dt
= Tr{�̂[Ô, Ĥ]} = Tr{�̂′′[Ô′′, Ĥ′′]}. (2.166)

Further, the physical meaning of the canonical momenta in the Hamiltonians
(2.143) and (2.163) are different. In particular, Π̂′ in Eq. (2.143) is related to
the (transverse) displacement field ε0Ê⊥ + P̂⊥

A , whereas Π̂ in Eq. (2.163) – if
�̂ be not transformed – is related to the (transverse) electric field Ê⊥, and the
interaction term that corresponds to the first term in Eq. (2.150) describes an
interaction of the polarization P̂A of the atomic system with Ê⊥ instead of
Ê⊥+ε0P̂⊥

A .

2.4
Interaction of the electromagnetic field with charged particles in the presence of
dielectric media

In classical optics, dielectric matter is commonly described in terms of a phe-
nomenologically introduced macroscopic dielectric susceptibility (or permit-
tivity). This concept of macroscopic electrodynamics has the benefit of being
universally valid, because it uses only general physical properties, without
the need for involved ab initio calculations. Let P and ρP, respectively, be
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the (macroscopic) polarization and polarization charge density of a dielectric
medium,

∇P(r) = −ρP(r) (2.167)

[Eq. (2.122) with P and ρP in place of PA and ρ− ρA, respectively]. The dis-
placement field

D(r) = ε0E(r) + P(r) (2.168)

[Eq. (2.124) with P in place of PA] then satisfies the Maxwell equation

∇D(r) = ρ(r) (2.169)

[Eq. (2.123) with ρ in place of ρA], where ρ(r) may be some additional charge
density not included in ρP. Introduction of the displacement field (2.168) into
the Maxwell equation (2.4) yields

∇ × H(r) = j(r) + Ḋ(r) (2.170)

[Eq. (2.128) with j in place of jA], with

H(r) =
1

µ0
B(r) (2.171)

for nonmagnetic media. Obviously, the polarization current density is

jP(r) = Ṗ(r). (2.172)

Let us consider an arbitrarily inhomogeneous medium whose polarization
linearly and locally responds to the electric field and, for simplicity, restrict
our attention to isotropic media. Causality and the dissipation-fluctuation
theorem then require that

P(r, t) = ε0

∫ ∞

0
dτ χ(r, τ)E(r, t− τ) + PN(r, t), (2.173)

where χ(r, τ) is the dielectric susceptibility (in the time domain) and PN is the
noise polarization associated with absorption. Substitution of this expression
into Eq. (2.168) together with Fourier transformation converts this equation
to20

D(r, ω) = ε0E(r, ω) + P(r, ω) = ε0ε(r, ω)E(r, ω) + PN(r, ω), (2.174)

20) Here and in the following the Fourier transform F(ω) of a real func-
tion F(t) is defined according to the relation F(t)=

∫ ∞
0 dω F(ω)e−iωt

+c.c..
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and thus

P(r, ω) = ε0[ε(r, ω)− 1]E(r, ω) + PN(r, ω), (2.175)

where the (relative) permittivity

ε(r, ω) = 1 +
∫ ∞

0
dτ eiωτχ(r, τ) (2.176)

is a complex function of frequency in general, ε(r, ω)=Re ε(r, ω)+ iIm ε(r, ω),
the real and imaginary parts, which are respectively responsible for dispersion
and absorption, being uniquely related to each other through the Kramers–
Kronig relations

Re ε(r, ω)− 1 =
P
π

∫
dω′ Im ε(r, ω′)

ω′ − ω
, (2.177)

Im ε(r, ω) = −P
π

∫
dω′ Re ε(r, ω′) − 1

ω′ − ω
(2.178)

(P , principal value). Further, ε(r, ω) as a function of complex ω satisfies the
relation

ε(r,−ω∗) = ε∗(r, ω) (2.179)

and is holomorphic in the upper complex half-plane without zeros. In particu-
lar, it approaches unity in the high-frequency limit, i. e., ε(r, ω)→1 if |ω|→∞.

2.4.1
Nondispersing and nonabsorbing media

Let us suppose that the electromagnetic field under study extends over a fre-
quency interval (∆ω) so that the ω integrals effectively run only over this in-
terval, i. e.,

E(r, t) =
∫
(∆ω)

dω E(r, ω)e−iωt + c.c. (2.180)

and B(r, t) accordingly. Further, let us assume that the frequency interval is
sufficiently small and sufficiently far from medium resonances, so that both
dispersion and absorption may be disregarded. In this case, the permittivity
becomes approximately real and independent of frequency,21

ε(r, ω) ≈ ε(r, ω0) ≈ ε∗(r, ω0) ≡ ε(r) (2.181)

21) Note that a constant and real permittivity in the whole frequency
domain can be realized only for unity permittivity, i.e, the vacuum.
Otherwise, causality would be violated.
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(ω0, mid-frequency), and the noise polarization can be disregarded,
PN(r, ω)≈0. Integration of Eq. (2.174) over the frequency interval (∆ω) then
yields the approximately valid constitutive equation

D(r) = ε0ε(r)E(r). (2.182)

At this point the scalar potential V [Eq. (2.17)] and the vector potential
A [Eq. (2.18)] can be introduced and the equations of motion for the poten-
tials can be derived from the Maxwell equations (2.169) and (2.170) together
with Eqs (2.171) and (2.182). It can be shown that these field equations and
the Newtonian equations of motion for the particles can be derived from a
Lagrangian as given by Eq. (2.22) except that the square of the electric field
strength must be replaced according to

E2(r) = [Ȧ(r) + ∇V(r)]2 �→ ε(r)[Ȧ(r) + ∇V(r)]2. (2.183)

Using the generalized Coulomb gauge

∇[ε(r)A(r)] = 0, (2.184)

it is not difficult to verify that the equations for the vector potential and the
scalar potential can be disentangled to obtain

∇ ×∇ × A(r) +
ε(r)
c2 Ä(r) = µ0j⊥(r) (2.185)

and

−ε0∇[ε(r)∇V(r)] = ρ(r) (2.186)

in place of Eqs (2.27) and (2.28), where the transverse current density is

j⊥(r) = j(r)− ε0ε(r)∇V̇(r) (2.187)

in place of Eq. (2.29). From Eq. (2.186) it follows that the scalar potential V can
be represented as a functional of the charge density ρ. Thus it can be expressed
in terms of the coordinates ra of the charged particles and no longer plays the
role of an independent field variable. Note that A contains a longitudinal
contribution in general, so that Eq. (2.33) and (2.34) are no longer valid.

The Lagrangian in the generalized Coulomb gauge (2.184) can then be taken
from Eq. (2.35) together with Eq. (2.36) except that the term |Ȧ|2 must be re-
placed according to

Ȧ2(r) �→ ε(r)Ȧ2(r). (2.188)

Hence we may write

L = 1
2

∫
d3r

{
ε0ε(r)Ȧ2(r)− µ−1

0 [∇ × A(r)]2
}

+ 1
2 ∑

a
maṙ2

a − WCoul +
∫

d3r j(r)A(r). (2.189)
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Note that WCoul is again defined by Eq. (2.36), but with V now being the po-
tential that solves Eq. (2.186):

WCoul = 1
2

∫
d3r ρ(r)V(r) = 1

2 ε0

∫
d3r ε(r)[∇V(r)]2. (2.190)

Let δ⊥(ε)(r) be the generalized transverse δ function that projects onto the
space of vector functions g(r) satisfying the condition ∇(εg)=0. Defining the
functional derivative δ− (ε)F/δ− (ε)g(r) by replacing δ⊥(r−r′) with δ⊥(ε)(r−r′)
in Eq. (2.40), it is seen that the relation between the canonical momentum and
the vector potential,

Π(r) =
δ− (ε)L

δ− (ε)Ȧ(r)
= ε0Ȧ(r), (2.191)

looks like that in Eq. (2.43). Obviously, the relation (2.113) between the me-
chanical and canonical particle momenta does not change either. Now the
Hamiltonian

H = ∑
a

paṙa +
∫

d3r ε(r)Π(r)Ȧ(r) − L (2.192)

can be introduced which generalizes Eq. (2.112).
The transition from classical to quantum theory again consists of the re-

placement of the canonically conjugate c-number variables ra, pa, A(r) and
Π(r) by the Hilbert-space operators r̂a, p̂a, Â(r) and Π̂(r). The nonvanish-
ing (equal-time) commutators are given by Eqs (2.115) and (2.116), but with
δ⊥(ε)(r−r′) in place of δ⊥(r−r′) in Eq. (2.116), i. e.,22

[
Âk(r), Π̂k′(r′)

]
= ih̄δ

⊥(ε)
kk′ (r − r′), (2.193)

and the Hamiltonian that corresponds to the minimal-coupling Hamiltonian
(2.114) reads

Ĥ = 1
2

∫
d3r

{
ε(r)ε−1

0 Π̂2(r) + µ−1
0 [∇ × Â(r)]2

}
+ ∑

a

1
2ma

[
p̂a − QaÂ(r̂a)

]2 + ŴCoul . (2.194)

The solutions of the time-independent wave equation

∇ ×∇ × Aλ(r) − ω2
λ

c2 ε(r)Aλ(r) = 0 (2.195)

22) When ε does not depend on r, then εδ⊥(ε)(r)=δ⊥(r). Obviously,
the commutation relation (2.193) does not lead to the commutation
relation (2.46), whose violation indicates that a bandwidth-limited
field is considered and not the complete one.
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(generalized Helmholtz equation) can be used to introduce the monochro-
matic modes of the electromagnetic field in a spatially varying dielectric
medium. In particular, they can be chosen to satisfy the generalized ortho-
normalization relation23

|cλ|2
∫

d3r ε(r)A∗
λ(r)Aλ′(r) = δλλ′ , (2.196)

and the completeness relation reads

∑
λ

|cλ|2Aλ(r)⊗ A∗
λ(r′) = δ⊥(ε)(r − r′). (2.197)

Equations (2.196) and (2.197), respectively, replace Eqs (2.58) and (2.59) in Sec-
tion 2.2.2. In particular, in bulk material ε does not depend on r and Eq. (2.195)
reduces to Eq. (2.55) except that ε0 must be replaced according to ε0 �→ εε0.
Substitution of εε0 for ε0 in Eqs (2.87) and (2.88) thus yields the expansion of
Â and Π̂ in terms of traveling plane waves, where the dispersion relation is
k2

l c2 =εω2 in place of Eq. (2.84). It should be pointed out that when ε does not
depend on r, then ε can be a (real) function of frequency.

Equations (2.69) and (2.70) can be used to express Â and Π̂ in terms of the
monochromatic modes and the associated photon annihilation and creation
operators, and the first contribution to the Hamiltonian (2.194) thus takes the
form (2.77), as can be proved by straightforward calculation.24 The Hamil-
tonian can then be decomposed, on symmetrizing p̂aÂ(r̂a), in close anal-
ogy to Eqs (2.118)–(2.121). Finally, the Hamiltonian that corresponds to the
multipolar-coupling Hamiltonian (2.143) can also be constructed.

2.4.2
Dispersing and absorbing media

As already mentioned, absorption is always associated with additional noise
described by the noise polarization in the constitutive equation (2.173) [or
(2.174)]. Hence, the corresponding dynamical variables of the medium must
be included in the quantization scheme, which implies extension of the Hilbert
space. For the sake of transparency let us first restrict our attention to the case
when the dielectric medium is the only matter that is present.

2.4.2.1 The medium-assisted electromagnetic field

The medium-assisted electromagnetic field satisfies the Maxwell equations
(2.1), (2.2), (2.169) and (2.170) for ρ=j=0. Let us again restrict our attention to

23) Note that with respect to the integration measure ε(r)d3r in the defi-
nition of scalar products, the differential operator ε−1(r)∇ × ∇× is
Hermitian.

24) Note that the photons defined in this way do not only refer to the
transverse part of the electromagnetic field.



2.4 Dielectric background media 45

nonmagnetic matter, so that Eq. (2.171) holds. With regard to the constitutive
equation (2.174), we convert the Maxwell equations by Fourier transformation
to

∇B(r, ω) = 0, (2.198)

∇ × E(r, ω) = iωB(r, ω), (2.199)

ε0∇ε(r, ω)E(r, ω) = ρ
N
(r, ω), (2.200)

∇ × B(r, ω) = µ0j
N

(r, ω)− i
ω

c2 ε(r, ω)E(r, ω), (2.201)

where we have introduced the (Fourier transformed) noise charge density

ρ
N

(r, ω) = −∇PN(r, ω) (2.202)

and the noise current density

j
N

(r, ω) = −iωPN(r, ω), (2.203)

which obey the continuity equation

∇j
N

(r, ω) = iωρ
N

(r, ω). (2.204)

From the Maxwell equations (2.199) and (2.201) it follows that E(r, ω) and
B(r, ω) can be represented in the form of

E(r, ω) = iµ0ω
∫

d3r′ G(r, r′, ω)j
N

(r′, ω) (2.205)

and

B(r, ω) = (iω)−1∇ × E(r, ω), (2.206)

where the Green tensor G(r, r′, ω) has to be determined from the equation

∇ ×∇ × G(r, r′, ω)− ω2

c2 ε(r, ω)G(r, r′, ω) = δ(r − r′) (2.207)

together with the boundary condition at infinity, G(r, r′, ω)→ 0 if |r− r′|→ 0
(for the properties of the Green tensor, see Appendix A). It is easily seen that
the Maxwell equations (2.198) and (2.200) are satisfied identically.

The transition from classical to quantum theory and quantization of the
medium-assisted electromagnetic field now consists in the replacement of the
classical c-number fields by operator valued ones. Let f̂(r, ω) [and f̂†(r, ω)] be
the bosonic fields,

[ f̂k(r, ω), f̂ †
k′(r′, ω′)] = δkk′δ(r−r′)δ(ω−ω′), (2.208)
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[ f̂k(r, ω), f̂k′(r′, ω′)] = 0, (2.209)

which are attributed to the elementary excitations of the system composed of
the electromagnetic field and the medium within the framework of linear elec-
trodynamics. They can be regarded as playing the role of a set of (canonically
conjugate) dynamical variables of the composed system, so that all quantities
of the system can be expressed in terms of them. For this it is sufficient, to
know the relation between P̂N(r, ω) und f̂(r, ω). The linear relation that en-
sures preservation of the fundamental equal-time commutation relations is

P̂N(r, ω) = i

√
h̄ε0

π
Im ε(r, ω) f̂(r, ω). (2.210)

Recalling Eq. (2.203) and using Eq. (2.210), we convert E(r, ω) [Eq. (2.205)] and
B(r, ω) [Eq. (2.206)] into the quantum-mechanical operators

Ê(r, ω) = i

√
h̄

πε0

ω2

c2

∫
d3r′

√
Im ε(r′, ω) G(r, r′, ω)f̂(r′, ω) (2.211)

and

B̂(r, ω) = (iω)−1∇ × Ê(r, ω). (2.212)

Integration over ω then yields the operators of the electric field and the mag-
netic induction field in the Schrödinger picture:

Ê(r) =
∫ ∞

0
dω Ê(r, ω) + H.c., (2.213)

B̂(r) =
∫ ∞

0
dω B̂(r, ω) + H.c.. (2.214)

The operator of the displacement field reads

D̂(r) =
∫ ∞

0
dω D̂(r, ω) + H.c., (2.215)

where, according to Eqs (2.174), (2.199), (2.201) and (2.203),

D̂(r, ω) = (µ0ω2)−1∇ ×∇ × Ê(r, ω). (2.216)

Using very general properties of the permittivity and the Green tensor, it can
be shown that Ê and B̂ satisfy the correct (equal-time) commutation relation
(2.50) (Appendix B). Obviously, the Hamiltonian of the composed system can
be given in the form of

Ĥ =
∫

d3r
∫ ∞

0
dω h̄ω f̂†(r, ω)f̂(r, ω). (2.217)
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Further, the vector potential in the Coulomb gauge

Â(r) =
∫ ∞

0
dω Â(r, ω) + H.c. (2.218)

and the canonical momentum field

Π̂(r) = −iε0

∫ ∞

0
dω ωÂ(r, ω) + H.c. (2.219)

can be defined, where

Â(r, ω) =

√
h̄

πε0

ω

c2

∫
d3r′

√
Im ε(r′, ω) G⊥(r, r′, ω)f̂(r′, ω), (2.220)

with G⊥(r, r′) being the (from the left) one-sided transverse Green tensor.25

It is not difficult to verify that Π̂ = −ε0Ê⊥ and ∇ × Â = B̂, and it can be
shown that Â and Π̂ satisfy the well-known commutation relation (2.46) (Ap-
pendix B). Note that Π̂ and −ε0Ê‖ are respectively the transverse part and
the longitudinal part of a common vector field, and Ê‖ can be attributed to a
scalar potential V̂,

−∇V̂(r) = Ê‖(r). (2.221)

The expansion of the electromagnetic field in terms of the classical Green
tensor and the dynamical-variable fields f̂(r, ω) and f̂†(r, ω) generalizes the
mode expansion based on the (macroscopic) wave equation (2.195) for real
permittivity.26 It should be pointed out that Eqs (2.69) and (2.70) also apply
to the transverse electromagnetic field in a medium, with the mode functions
being determined from the (microscopic) wave equation (2.55). Clearly, the
associated mode operators do not evolve freely, because of the interaction with
the medium. Equations (2.218) and (2.219) [together with Eq. (2.220)] can be
viewed as the solution of the interaction problem within the framework of
linear electrodynamics, the original mode operators being expressed in terms
of the operators of the elementary excitations of the composed system.27

2.4.2.2 The minimal-coupling Hamiltonian

When additional charged particles are present, then the interaction of the par-
ticles with the medium-assisted electromagnetic field can be described by the

25) Note that G⊥(‖)(r, r′, ω)=
∫

d3s δ⊥(‖)(r−s)G(s, r′, ω).
26) For an extension of the quantization scheme to magnetodielectric

media characterized by both complex permittivities and complex
permeabilities, see Ho, Buhmann, Knöll, Welsch, Scheel and Kästel
(2003).

27) For an inclusion of nonlinear, absorbing media in the quantization
scheme, see Scheel and Welsch (2006).
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minimal-coupling Hamiltonian

Ĥ =
∫

dr3
∫ ∞

0
dω h̄ω f̂†(r, ω)f̂(r, ω)

+ ∑
a

1
2ma

[p̂a − QaÂ(r̂a)]2 + ŴCoul, (2.222)

where

ŴCoul = ŴC
Coul + ŴCM

Coul. (2.223)

The first term in Eq. (2.222) is the energy of the electromagnetic field and the
medium. The second term is the kinetic energy of the charged particles, with
the vector potential Â(r) being expressed in terms of f̂(r, ω) and f̂†(r, ω) ac-
cording to Eqs (2.218) and (2.220). The third term is the total Coulomb energy,
which consists of the Coulomb energy of the charged particles, ŴC

Coul, and
the Coulomb energy of interaction of the charged particles with the medium,
ŴCM

Coul.

Let Ê‖
M be the contribution to Ê‖ from the medium.28 The interaction

Coulomb energy can then be given by

ŴCM
Coul =

∫
d3r ρ̂(r)V̂M(r), (2.224)

where ρ̂ is the charge density of the particles, and V̂M is the Coulomb potential
attributed to Ê‖

M such that, according to Eq. (2.221) (Ê‖ �→ Ê‖
M, V̂ �→ V̂M),

Ê‖
M =−∇V̂M. In particular when the charged particles form a neutral atomic

system, then ŴCM
Coul can be expressed in terms of the polarization of the atomic

system, ρ̂=−∇P̂A [cf. Eq. (2.122)], as

ŴCM
Coul → ŴAM

Coul = −
∫

d3r P̂A(r)Ê‖
M(r) =

1
ε0

∫
d3r P̂A(r)P̂‖

M(r), (2.225)

where the relation P̂‖
M =−ε0Ê‖

M = ε0∇V̂M has been used. In a straightforward
calculation it can be shown (by means of the commutation relations in Appen-
dix B) that the Hamiltonian (2.222) leads to both the operator-valued Maxwell
equations (2.1), (2.2) and (2.169), (2.170) and the operator valued Newtonian
equations of motion (2.16). Note that the scalar potential V̂M(r) or, equiva-

lently, Ê‖
M(r) must also be thought of as being expressed in terms of the dy-

namical variables f̂(r, ω) and f̂†(r, ω).

28) Note that Ê‖
M is defined according to Eqs (2.211) and (2.213) with the

(from the left) one-sided longitudinal Green tensor G‖ in place of G.
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2.4.2.3 The multipolar-coupling Hamiltonian

In order to perform the transition from the minimal-coupling Hamiltonian to
the multipolar-coupling Hamiltonian, we transform the variables by applica-
tion of the unitary operator Û defined by Eq. (2.155). According to Eqs (2.157)
and (2.159), the relations

r̂′a = Ûr̂aÛ† = r̂a (2.226)

and

p̂′
a = Ûp̂aÛ† = p̂a − QaÂ(r̂a)

− Qa

∫ 1

0
ds s(r̂a−rA) × {∇ × A[rA+s(r̂a−rA)]} (2.227)

are valid, and it is not difficult to prove that

f̂′(r, ω) = Ûf̂(r, ω)Û†

= f̂(r, ω)− i
h̄

√
h̄

πε0

ω

c2

√
Im ε(r, ω)

∫
d3r′ P̂A(r′)G⊥∗(r′, r, ω).

(2.228)

Using Eqs (2.226)–(2.228) together with Eqs (2.218)–(2.220) and applying
the relations (A.3) and (B.8), we express in Eq. (2.222) the old variables
r̂a, p̂a, f̂(r, ω), f̂†(r, ω) in terms of the new variables r̂′a= r̂a, p̂′

a, f̂′(r, ω), f̂′†(r, ω).
After some algebra we derive29

Ĥ =
∫

d3r
∫ ∞

0
dω h̄ωf̂′†(r, ω)f̂′(r, ω)

+ ∑
a

1
2ma

{
p̂′

a + Qa

∫ 1

0
ds s(r̂a−rA) × [∇ × A′[rA+s(r̂a−rA)]]

}2

+
1
ε0

∫
d3r P̂A(r)Π̂′(r) +

1
2ε0

∫
d3r P̂⊥

A
2(r) + Ŵ ′

Coul. (2.229)

Note that Â′ = Â [Eq. (2.156)],30 Ŵ ′
Coul = ŴCoul (V̂′

M = V̂M, P̂′
M = P̂M) and

Π̂′=Π̂− P̂⊥
A [Eq. (2.158)]. In particular for a neutral atom, we may write

29) Here the position rA of the (neutral) atomic system is again assumed
to be a given parameter. For an extension of the multipolar-coupling
scheme to moving systems where rA is also a dynamical variable
(rA �→ r̂A), which plays the role of the center-of-mass coordinate, see
Buhmann, Knöll, Welsch and Ho (2004).

30) The notation Â′ is used to indicate that the vector potential must be
thought of as being expressed in terms of f̂′ and f̂′†.
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1
2ε0

∫
d3r P̂⊥

A
2(r) + Ŵ ′

Coul

=
1

2ε0

∫
d3r P̂2

A(r) +
1
ε0

∫
d3r P̂A(r)P̂′‖

M(r) (2.230)

[see Eqs (2.223), (2.225), (2.148)].
The first term in Eq. (2.229) is the Hamiltonian of the medium and the

(medium-assisted) electromagnetic field. The other terms can be regrouped
to obtain the particle Hamiltonian ĤC′ defined by (2.149) and the interaction
Hamiltonian

Ĥint′ = Ĥ(1)
int′ + Ĥ(2)

int′ , (2.231)

where the term

Ĥ(1)
int′ =

1
ε0

∫
d3r P̂A(r)P̂′

M(r) (2.232)

obviously corresponds to the sum over the contact terms in Eq. (2.153), and

Ĥ(2)
int′ =

1
ε0

∑
a

Qa

∫ 1

0
ds (r̂a − rA)

{
Π̂′[rA+s(r̂a−rA)]− P̂′⊥

M [rA+s(r̂a−rA)]
}

−∑
a

Qa

2ma

∫ 1

0
ds s

{
[(r̂a−rA)×p̂′

a][∇×Â′[rA+s(r̂a−rA)]] + H.c.
}

+ ∑
a

Q2
a

2ma

{∫ 1

0
ds s(r̂a−rA) × [∇ × Â′[rA+s(r̂a−rA)]]

}2

. (2.233)

Equation (2.233) differs from Eq. (2.150) in the first term, which now describes
the interaction of the polarization P̂A of the atomic system with the trans-
formed transverse displacement field

D̂′⊥(r) = [ε0Ê⊥(r) + P̂⊥
M(r)]′

= −Π̂′(r) + P̂⊥
M(r) = ε0Ê⊥(r) + P̂⊥

A(r) + P̂⊥
M(r). (2.234)

Note that all the primed quantities are defined according to the definitions of
the unprimed quantities except that therein the old variables f̂(r, ω), f̂†(r, ω)
must be (formally) replaced by the new variables f̂′(r, ω), f̂′†(r, ω).

2.5
Approximate interaction Hamiltonians

As we have seen in Sections 2.3 and 2.4, the terms which contain the interac-
tion between the charged particles and the electromagnetic field look quite dif-
ferent in the minimal-coupling scheme and the multipolar-coupling scheme.



2.5 Approximate interaction Hamiltonians 51

In addition several other forms may be derived by appropriate transforma-
tion of the variables in the same basic Hamiltonian. Obviously, all the schemes
should produce the same exact results. Unfortunately, practicable calculations
typically require approximations, so that the results do not necessarily agree.
In what follows we restrict our attention to the minimal-coupling Hamiltonian
[Eqs (2.114) and (2.222)] and the multipolar-coupling Hamiltonian Eqs (2.143)
and (2.229)] and consider bound atomic states.

2.5.1
The electric-dipole approximation

In many cases of practical interest, when the interaction of the radiation field
with the charged particles can be viewed as a (quasi-)resonant interaction with
bound states of atomic systems, the quadratic contribution in the vector po-
tential to the minimal-coupling term (2.121) may, as a good approximation,
be ignored. An estimation shows [see, e. g., Schubert and Wilhelmi (1986)]
that this approximation may be justified as long as the electric field is weak
compared with the intra-atomic electric field (Eatom ≈ 1010 Vm−1), to which
the active charges are subjected, owing to their interaction with the atomic
cores. Similarly, the nonlinear multipolar-coupling term in Eq. (2.150) may be
disregarded [see, e. g., Loudon (1983)].

For bound atomic states the vector potential in the minimal-coupling energy
(2.121) is commonly expanded in powers of r̂a − rA.31 In the electric-dipole
approximation, only the zeroth-order term Â(rA) is retained and Eq. (2.121)
simplifies to

Ĥint = −∑
a

Qa

ma
p̂aÂ(rA) + ∑

a

Q2
a

2ma
Â2(rA). (2.235)

In particular, when the quadratic term in the vector potential can be omitted
(see also the remarks at the end of Section 2.5.2), then Ĥint further reduces to

Ĥint = −∑
a

Qa

ma
p̂aÂ(rA) =

i
h̄

[d̂, ĤC], (2.236)

where ĤC is given by Eq. (2.120) and

d̂ = ∑
a

Qa(r̂a−rA) (2.237)

is the electric-dipole operator, which does not depend on rA for a globally
neutral atomic system. Recall that for bound atomic states the probabilities of
finding the charges at places outside the atomic volume are effectively zero.

31) Here the atomic position rA is regarded as being a classical parame-
ter.
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Moreover, in the case of optical radiation the vector potential may be regarded
as being slowly varying within the atomic volume. Clearly, if (owing to sym-
metry properties) certain dipole transitions are forbidden, gradients (evalu-
ated at rA) of the vector potential must be taken into account, which are as-
sociated with magnetic-dipole transitions and higher-order (multipole) tran-
sitions.

In the multipolar-coupling scheme, the electric-dipole approximation is
commonly understood as the approximation in which, in the multipolar-
coupling energy (2.150), the magnetic-field terms, i. e., the terms contain-
ing ∇ × Â[rA + s(r̂a − rA)], are omitted and the canonical momentum field
Π̂′[rA +s(r̂a−rA)] is taken at the atomic position rA,

Ĥint′ = ε−1
0 d̂Π̂′(rA) = −d̂Ê′⊥(rA). (2.238)

The generalization of Eqs (2.235), (2.236) and (2.238) to the case where the
atomic system interacts with a medium-assisted electromagnetic field is
straightforward. In particular, it is not difficult to see that the first term

on the right-hand side in Eq. (2.233) and Ĥ(1)
int′ given by Eq. (2.232) can be

combined to obtain

Ĥint′ = ε−1
0 d̂[Π̂′(rA) + P̂′‖

M(rA)] = −d̂Ê′(rA), (2.239)

where Ê′(rA) is defined according to Eq. (2.213) together with Eq. (2.211)
[f̂′(r, ω) = Ûf̂(r, ω)Û†, cf. Eq. (2.228)].

If rA is treated as a (quantum mechanical) dynamical variable, (rA �→ r̂A)
the question may arise whether Eqs (2.235) and (2.238) [or (2.239)] (with r̂A
in place of rA) are properly chosen interaction energies. Although both the
minimal-coupling interaction energy (2.235) and the multipolar-coupling in-
teraction energy (2.238) [or (2.239)] are referred to as interaction energies in the
electric-dipole approximation, an essential difference between them becomes
apparent. In contrast to Eq. (2.238) [or (2.239)], which leads to the correct elec-
tric part of the Lorentz force acting on an electric dipole, Eq. (2.235) fails.

Let |m〉 (m=1, 2, 3, ...) and h̄ωm, respectively, denote the eigenkets and eigen-
values of the respective atomic Hamiltonian, i. e., ĤC|m〉 = h̄ωm|m〉 in the
minimal-coupling scheme and ĤC′ |m〉= h̄ωm|m〉 in the multipolar-coupling
scheme. Introducing the atomic flip operators Âmn = |m〉〈n|, and using the
orthogonality of the atomic states, we arrive at the commutation relation

[Âmn, Âm′n′ ] = δnm′ Âmn′ − δmn′ Âm′n. (2.240)

It is easily seen that Ĥint as given by Eq. (2.236) can be expressed in terms of
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the operators Âmm as

Ĥint = −i ∑
m,n

ωmnÂmn dmnÂ(rA)

= −i ∑
m,n

∑
λ

ωmndmnAλ(rA)âλ Âmn + H.c. (2.241)

(ωmn = ωm −ωn, dmn = 〈m|d̂|n〉), where the second line is obtained from the
first one by mode expansion of the vector potential according to Eq. (2.69).
Introduction of the atomic flip operators and, according to Eq. (2.70), the mode
expansion of the canonical momentum field converts Eq. (2.238) to

Ĥint′ = ε−1
0 ∑

m,n
Âmn dmnΠ̂′(rA)

= −i ∑
m,n

∑
λ

ωλdmnAλ(rA)â′λ Âmn + H.c. (2.242)

[â′λ =ÛâλÛ†, cf. Eq. (2.156)]. Alternatively, in Eq. (2.239), expressing Ê′(rA) in
terms of the dynamical variables f̂′(r, ω) and f̂′†(r, ω) according to Eq. (2.213),
together with Eq. (2.211), yields

Ĥint′ = −i

√
h̄

πε0
∑
m,n

∫ ∞

0
dω

ω2

c2

∫
d3r dmnG(rA, r, ω)f̂′(r, ω)Âmn + H.c..

(2.243)

Comparing Eqs (2.241) and (2.242), we see that the formal structure of Ĥint′

is similar to that of Ĥint except that the atomic transition frequencies are re-
placed by the mode frequencies. However, it should be stressed that both the
atomic flip operators (and the associated dipole matrix elements) and the pho-
ton annihilation and creation operators in the minimal-coupling scheme and
the multipolar-coupling scheme are not the same. Since the atomic Hamiltoni-
ans in the two schemes are different [cf. Eqs (2.120) and (2.149)], the atomic flip
operators (and the associated dipole matrix elements) refer to different atomic
states in general. Accordingly, the photon number states [as the eigenstates of
the photon number operators, cf. Section 3.1] are different in the two schemes,
because the photonic operators in the two schemes are related to each other
by the unitary transformation (2.155).

2.5.2
The rotating-wave approximation

In general, the light–matter interaction gives rise to a complicated (multi-level
and multi-mode) set of coupled Heisenberg equations of motion for the atomic
and photonic operators. However, in most practical cases the interaction pro-
cesses are slow compared with the free (optical) oscillation of the radiation
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field. This allows (on the basis of the unperturbed solution) a classification
of the various couplings with regard to efficient, resonant couplings and less
efficient, off-resonant ones. Neglect of the latter is usually called the rotating-
wave approximation.

Let us consider the multipolar-coupling Hamiltonian in electric-dipole ap-
proximation as given by Eq. (2.144) together with Eq. (2.242). If the radiation–
matter interaction were absent, the operator products Âmn â′λ would vary as
exp[i(ωmn −ωλ)t], which is approximately unity for resonant couplings sat-
isfying the condition ωλ ≈ ωmn. For a given mode of the radiation field
the remaining operator products Âm′n′ â′λ then vary with respect to these
terms as exp[i(ωm′n′ −ωmn)t] (ωm′n′ �= ωmn). Let us suppose that the times
|ωm′n′ −ωmn|−1 are sufficiently small compared with the characteristic time
τint of the resonant radiation–matter interaction describing the dynamics of
the system, |ωm′n′ − ωmn|−1 	 τint, and let us further confine ourselves to a
resolving-time scale δτ with |ωm′n′ −ωmn|−1	δτ	τint. On this time scale the
exponentials exp[i(ωm′n′ − ωmn)t] are rapidly varying and average approxi-
mately to zero, so that we may neglect the terms proportional to Âm′n′ â′λ in
the Hamiltonian. Physically this means that resonant one-photon processes
dominate the interaction between each relevant radiation field mode and the
atomic system.

When the radiation field under study is near resonant with certain atomic
transitions, then, in the rotating-wave approximation, the sum in Eq. (2.242)
can be truncated by the requirement that ωmn ≈ ωλ, which indicates that
terms with |ωmn−ωλ|δτ � 1 are disregarded. Since in this approximation
the radiation–matter interaction cannot be treated with a time resolution bet-
ter than δτ, one may refer to this approximation as a kind of coarse-grained
averaging. In the simplest case when the radiation field may be viewed as
being near resonant with only a single atomic transition, e. g., |1〉↔ |2〉 with
ω21≈ωλ (see Fig. 2.3), the multi-level atomic system effectively reduces to a
two-level system coupled to the radiation field and Eq. (2.242) approximates
to32

Ĥint′ = −d21Ê′⊥(+)(rA)Â12 + H.c.. (2.244)

Similarly, the minimal-coupling energy (2.241) approximately simplifies to

Ĥint = −iω21d21Â(+)(rA)Â12 + H.c.. (2.245)

32) Here we have used the convention of decomposition of an operator
F̂= F̂(+)+ F̂(−) into a positive-frequency part F̂(+) and a negative-
frequency part F̂(−). When F̂ is a field operator whose mode decom-
position is F̂=∑λ Fλ âλ +H.c., then F̂(+) is commonly identified with
∑λ Fλ âλ, and F̂(−)= (F̂(+))†.
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|j〉

|2〉

|1〉

h̄ωλ

Fig. 2.3 Scheme of resonant one-photon absorption and emission. The
atomic energy-level spacing E2 −E1 = h̄ω21, and the energy of photons
of mode λ satisfy the resonance condition ω21 ≈ωλ.

Since the approximation implies that

iω21Â(+)(r) 
 − ˙̂A(+)(r) 
 Ê⊥(+)(r), (2.246)

we may rewrite Eq. (2.245) as

Ĥint = −d21Ê⊥(+)(rA)Â12 + H.c., (2.247)

which reveals that in the rotating-wave approximation the minimal-coupling
energy is effectively the same as the multipolar-coupling energy.33 It should
be pointed out that this is not necessarily true when off-resonant (virtual) tran-
sitions must be taken into account. This is typically the case when, with re-
spect to the relevant radiation field modes, one-photon resonances are miss-
ing. To obtain effectively equivalent results in such a case, the Â2 term in
the basic formula (2.235) for the minimal-coupling energy in electric-dipole
approximation must not be omitted in general.34

33) Recall that when the atom interacts with a medium-assisted electro-
magnetic field and Eq. (2.244) [Eq. (2.247)] is used, then Ê′⊥(±)(rA)
[Ê⊥(±)(rA)] must be expressed in terms of f̂′(r, ω) [f̂(r, ω)] and
f̂′†(r, ω) [f̂†(r, ω)] according to Eq. (2.213) together with Eq. (2.211).

34) Typical examples are the intermolecular energy transfer [see Ho,
Knöll and Welsch (2002)] and the van der Waals potential [see Buh-
mann, Knöll, Welsch and Ho (2004)].
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2.5.3

Effective Hamiltonians

If, for a given radiation field, one-photon resonances are missing, a large man-
ifold of off-resonant terms in the m and n sums in, e. g., Eq. (2.242) must be
taken into account, and a rotating-wave approximation in the simple form in-
troduced above makes no sense. The efficiency of radiation–matter interaction
in the domain where one-photon resonances are absent is usually small, ex-
cept that strongly driven multi-photon resonances are allowed. In these cases
the concept of so-called effective interaction Hamiltonians is widely used to
simplify the problem by effectively reducing the number of coupled equations
of motion to be solved. In particular, this concept is often applied in nonlin-
ear optics.35 Typical nonlinear optical processes are multi-photon absorption
and emission, optical bistability, multi-wave mixing, such as the generation
of higher-order harmonics of radiation field modes and related effects of fre-
quency mixing, phase conjugation, etc.

To illustrate the concept, let us study the simplest case of near resonant two-
photon absorption and emission (Fig. 2.4). For this purpose we consider the
interaction of an atomic system with two parts of the radiation field, with the
corresponding center frequencies Ω1 and Ω2 (Ω2 �= Ω1) and the frequency of
a certain atomic transition ω21 satisfying the two-photon resonance condition
Ω1 + Ω2 ≈ω21. The frequencies Ω1 and Ω2 are assumed to be far from any
atomic transition frequency ωlm. According to Eq. (2.242), the relevant part of
the interaction Hamiltonian may be written in the form36

Ĥint = h̄
2

∑
N=1

∑
λN

∑
l,m

VlmλN
ÂlmâλN + H.c., (2.248)

where

VlmλN
= (ih̄)−1dlmAλN (rA)ωλN , (2.249)

and the λ1 and λ2 sums run over the radiation field modes with ωλ1 ≈ Ω1 and
ωλ2 ≈ Ω2, respectively. The Heisenberg equations of motion for the photonic
operators â†

λN
and the atomic operator Âlm are

˙̂a†
λN

= (ih̄)−1[â†
λN

, ĤR + Ĥint] = iωλN â†
λN

+ i ∑
l,m

VlmλN
Âlm, (2.250)

˙̂Alm = (ih̄)−1[Âlm, ĤC + Ĥint] = iωlmÂlm − iĜlm, (2.251)

35) Nonlinear optics is considered, for example, in the books of Bloem-
bergen (1965), Levenson and Kano (1988), Peřina (1991), Schubert
and Wilhelmi (1986), Shen (1984), Shore (1990) and Stenholm (1984).

36) Unless it should be explicitly distinguished between multipolar cou-
pling and minimal coupling, the prime used to indicate multipolar-
coupling quantities will be omitted for notational convenience.
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|n〉

|2〉

|1〉

h̄ωλ1

h̄ωλ2

Fig. 2.4 Scheme of resonant two-photon absorption and emission.
The atomic energy level spacing E2 −E1 = h̄ω21 and the energies h̄ωλ1
and h̄ωλ2 of photons of modes λ1 and λ2, respectively, satisfy the two-
photon resonance condition ω21 ≈ωλ1 +ωλ2 .

where

Ĝlm = h̄−1[Âlm, Ĥint′ ]

=
2

∑
N=1

∑
λN

∑
k

{
[VmkλN

Âlk−VklλN
Âkm]âλN + [V∗

kmλN
Âlk−V∗

lkλN
Âkm]â†

λN

}
.

(2.252)

Formal solution of Eq. (2.251) yields

Âlm(t) = eiωlm(t−t′) Âlm(t′) − i
∫ t−t′

0
dτ eiωlmτĜlm(t − τ). (2.253)

We now substitute into Eq. (2.250) for Âlm, the result of Eq. (2.253) together
with Eq. (2.252) to obtain

˙̂a†
λN

= iωλNâ†
λN

+ i ∑
l,m

VlmλN
eiωlm(t−t′) Âlm(t′)

+
2

∑
M=1

∑
λN

∑
l,m,k

∫ t−t′

0
dτ eiωlmτVlmλN

{
[VmkλM

Âlk(t − τ)

− VklλM
Âkm(t − τ)]âλM

(t − τ) + [V∗
kmλM

Âlk(t − τ)

− V∗
lkλM

Âkm(t − τ)]â†
λM

(t − τ)
}

. (2.254)

At this stage we apply the rotating-wave approximation. To pick out the
relevant terms on the right-hand side of Eq. (2.254), we first remove the free
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motion from the atomic and photonic operators:

âλN (t) = e−iωλN
t ˆ̃aλN (t), Âlm(t) = eiωlmt ˆ̃Alm(t). (2.255)

Further, we restrict attention to a time scale during which, in comparison with
the change of the system due to the two-photon light–matter interaction, the
(free-motion) off-resonant exponentials are rapidly varying. Since on this time
scale the rapidly-varying exponentials may be assumed to average approxi-
mately to zero, the terms associated with them may be disregarded. Using
this argument, from careful inspection of Eq. (2.254), we see that for N =1
(N =2) the relevant two-photon coupling arises from the ÂlkâλM

and ÂkmâλM

terms with l=2, k=1 and m=1, k=2 respectively, and M=2 (M=1). Thus we
may approximately write (n=1, 2)

˙̂a†
λN

= iωλN
â†

λN
+ ∑

λM

∑
m

∫ t−t′

0
dτ

[
V2mλN

Vm1λM
ei(ω1m+ωλM

)τ

− V2mλM
Vm1λN

e−i(ω1m+ωλN
)τ] ˆ̃A21(t−τ) ˆ̃aλM

(t−τ)ei(ω21−ωλM
)t,

(2.256)

where M = 2 if N = 1 and vice versa; recall that ω21 ≈ωλ1 + ωλ2 . Under the
assumption made, in the τ integral in Eq. (2.256) we may now take the slowly-
varying operators ˆ̃A21(t−τ) and ˆ̃aλM(t−τ) at τ =0, and, after performing the
τ integration, we may omit the rapidly-varying terms arising from the upper
limit of integration. Using Eq. (2.255), we finally arrive at the following effec-
tive equations of motion describing the dynamics of resonant coupling of the
two kinds of light modes to each other, via excitation of the atomic transition
|1〉↔|2〉:

˙̂a†
λ1

= iωλ1 â†
λ1

+ i ∑
λ2

κ
λ1λ2
21 Â21âλ2 , (2.257)

˙̂a†
λ2

= iωλ2 â†
λ2

+ i ∑
λ1

κ
λ2λ1
21 Â21âλ1 , (2.258)

where the effective coupling parameter is

κ
λ1λ2
21 = κ

λ2λ1
21 = ∑

m

(
V2mλ1Vm1λ2

ω1m + ωλ2

+
V2mλ2Vm1λ1

ω1m + ωλ1

)
. (2.259)

It is easily seen that the equations of motion (2.257) and (2.258) can be obtained
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by starting from an effective interaction Hamiltonian as follows:36

˙̂a†
λN

= (ih̄)−1[â†
λN

, ĤR + Ĥint(eff)], (2.260)

where

Ĥint(eff) = h̄ ∑
λ1,λ2

κ
λ1λ2
21 Â21âλ1 âλ2 + H.c. (ω21 ≈ ωλ1 + ωλ2). (2.261)

Clearly, the (effective) equations of motions for the photonic operators must
be complemented by those for the atomic operators Â21 (= Â†

12), Â11 and Â22.
Since the manipulations are quite similar to those leading to the photonic
equations of motion, we omit the derivation here. A straightforward calcu-
lation shows that

˙̂Alm = (ih̄)−1[Âlm, ĤC + Ĥint(eff)] (l = 1, 2, m = 1, 2). (2.262)

A generalization of the concept of effective interaction Hamiltonians to
other (higher than second-order) resonant multi-photon interaction processes
is straightforward. The iteration procedure must be repeated as long as the
higher-order resonances sought appear explicitly in the equations of motion.
Let us consider the three-photon resonant process shown schematically in
Fig. 2.5. An example of this type of process is the optical parametric oscil-
lator used for converting laser light with frequency ωL (≈ωλ3) into signal and
idler light with frequencies ωS(≈ωλ1) and ωI(≈ωλ2) respectively. Compared
with the process of two-photon absorption/emission, the state of the atom is
not changed during this process. Performing the procedure outlined above
yields an effective interaction Hamiltonian of the form

Ĥint(eff) = ∑
n

V̂n Ânn, (2.263)

where

V̂n = h̄ ∑
λ1,λ2,λ3

κ
λ1λ2λ3
n âλ1 âλ2 â†

λ3
+ H.c.. (2.264)

From the total Hamiltonian Ĥ = ĤR + ĤC + Ĥint(eff) we easily derive that
˙̂Ann =0, which allows one to eliminate the atomic variables in the equation

36) The use of the effective Hamiltonian dras-
tically simplifies the problem of the two-
photon resonance under study, since the
multi-level atomic system is effectively
reduced to a two-level system coupled to
the radiation field through the effective
interaction Hamiltonian, the multi-level

structure of the atomic system being in-
corporated in the new, effective coupling
parameter (2.259). It is, in general, small
compared with the one-photon coupling,
which is due to the quadratic dependence
on the one-photon coupling parameter as
well as the off-resonance denominators.
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|n〉

h̄ωλ3

|1〉

h̄ωλ1

h̄ωλ2

Fig. 2.5 Scheme of resonant three-photon interaction with the atom
in the ground state. The photon energies h̄ωλi

(i = 1, 2, 3) satisfy the
resonance condition ωλ3 ≈ωλ1 +ωλ2 .

of motion for the photonic ones. In particular, when the atom is initially
in its ground state it remains there for all time, and the temporal evolution
of any photonic operator is then governed by the pure photonic Hamilton-
ian ĤR +V̂1. That is, the problem of parametric amplification is reduced to a
purely photonic one.

2.6
Source-quantity representation of the electromagnetic field

As is well known, in the Heisenberg picture the equations of motion of the
operators are closely related to the equations of motion of the corresponding
classical quantities. The interaction of the electromagnetic field with charged
particles gives rise to a coupled set of nonlinear equations of motion, which
is, in general, hard to solve even in classical optics. In quantum optics the
operator character, together with the corresponding commutation relations
are responsible for typical quantum effects without classical counterparts and
introduce additional difficulties. In this context, the question arises of how to
transfer the standard rules of classical optics to quantum optics, for example,
those concerning light detection and light propagation through various kinds
of optical instruments such as resonator-like cavities, interferometers, beam
splitters, etc. To deal with these and related problems, it may be useful to
start from a radiation-field representation based on the formal solution of the
(coupled radiation–matter) Heisenberg equations of motion (source-quantity
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representation). From Section 2.4 we know that such an approach enables us
to include the effect of linear, causal background media in a consistent way in
the theory. With respect to nonlinear atom–field interactions, source-quantity
representations are of course not closed solutions, but they may be helpful in
order to gain insight into the classical and quantum aspects of the problems
under consideration.

Let us consider an ensemble of atomic systems and use the multipolar-
coupling scheme to describe its interaction with the electromagnetic field in
the electric-dipole approximation. We begin with the case of media being ab-
sent. The interaction energy is then simply the sum of the interaction energies
(2.238), i. e.,

Ĥint = ε−1
0

∫
d3r �̂P(r)Π̂(r) = −

∫
d3r �̂P(r)Ê⊥(r), (2.265)

where38

�̂P(r) = ∑
A

d̂Aδ(r − rA) (2.266)

(d̂A, electric-dipole operator of the Ath atomic system).39 Since the concept
of mode expansion applies, Π̂ can be represented in the form of Eq. (2.70). It
is not difficult to derive the Heisenberg equations of motion for the photonic
operators attributed to the modes,

˙̂aλ =
1
ih̄

[âλ, Ĥ] = −iωλ âλ +
1
h̄

∫
d3r′ ωλA∗

λ(r′)�̂P(r′). (2.267)

The general, retarded solution of Eq. (2.267) is

âλ(t) = âλ free(t) + âλ s(t), (2.268)

where

âλ free(t) = âλ free(t′)e−iωλ(t−t′), (2.269)

âλ s(t) =
1
h̄

∫
dt′

∫
d3r′ Θ(t − t′)e−iωλ(t−t′)ωλA∗

λ(r′)�̂P(r′, t′), (2.270)

Θ(t) being the unit step function. Note that �̂P(r, t) also obeys a Heisenberg
equation of motion, which is of course coupled to the photonic ones. The

determination of the time evolution of the operator �̂P therefore requires the
solution of a system of coupled equations of motion. Let

F̂(r) = F̂(+)(r) + F̂(−)(r), F̂(+)(r) = ∑
λ

Fλ(r) âλ, F̂(−) =
(
F̂(+))† (2.271)

38) Here the notation �̂P(r) is used to indicate that �̂P(r) is only the dipole
contribution to P̂(r).

39) Recall that in the multipolar-coupling scheme Ê⊥≡ Ê′⊥ is not neces-
sarily the electric field strength.
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be an appropriately chosen electromagnetic-field operator. Using Eqs (2.268)
and (2.270), we may decompose F̂(j) (j=±) into a free-field and a source-field
operator:

F̂(j)(r, t) = F̂(j)
free(r, t) + F̂(j)

s (r, t), (2.272)

where

F̂(+)
free(r, t) = ∑

λ

Fλ(r) âλ free(t), F̂(−)
free(r, t) = [F̂(+)

free(r, t)]†, (2.273)

F̂(j)
s (r, t) =

∫
dt′

∫
d3r′ Θ(t − t′)K(j)

(F)(r, t; r′, t′)�̂P(r′, t′). (2.274)

Here the tensor-valued kernel function (propagation function) K(+)
(F) (r, t; r′, t′)

is

K(+)
(F) (r, t; r′, t′) =

1
h̄ ∑

λ

ωλFλ(r) ⊗ A∗
λ(r′)e−iωλ(t−t′), (2.275)

and K(−)
(F) =(K(+)

(F) )∗. Inserting Eq. (2.274) into (2.272) yields

F̂(j)(r, t) =
∫

dt′
∫

d3r′ Θ(t − t′)K(j)
(F)(r, t; r′, t′)�̂P(r′, t′) + F̂(j)

free(r, t). (2.276)

If we identify F̂ with the operator of the vector potential Â, Eq. (2.276)
(Fλ �→ Aλ) is the source-quantity representation of Â(j). Analogously, if we
are interested in the canonical momentum field Π̂, application of Eq. (2.276)
(Fλ �→ −iωλε0Aλ) yields the source-quantity representation of Π̂(j). It is not
difficult to verify that the two kernel functions are related to each other as

−ε−1
0 K(+)

(Π)(r, t; r′, t′) = − ∂

∂t
K(+)

(A)(r, t; r′, t′)

=
i
h̄ ∑

λ

ω2
λAλ(r) ⊗ A∗

λ(r′) e−iωλ(t−t′). (2.277)

In practical calculations it is often useful to start from the field F̂(j)(r, t′) at
an appropriately chosen (finite) time t = t′ and to seek the field F̂(j)(r, t) at
times t≥ t′ and/or t≤ t′. Applying Eq. (2.276) [together with Eqs (2.269) and
(2.275)] yields

F̂(j)(r, t) =
∫ t

t′
dτ

∫
d3r′ K(j)

(F)(r, t; r′, τ)�̂P(r′, τ) + F̂(j)
free(r, t, t′), (2.278)

where the [in comparison with Eq. (2.273)] modified free-field operators are
now

F̂(+)
free(r, t, t′) = ∑

λ

Fλ(r)e−iωλ(t−t′) âλ(t′),

F̂(−)
free(r, t, t′) =

[
F̂(+)

free(r, t, t′)
]†.

(2.279)
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Note that F̂(+)
free(r, t)= lim

t′→−∞
F̂(+)

free(r, t, t′). Taking the inverse of

Â(+)(r, t′) = ∑
λ

Aλ(r) âλ(t′), (2.280)

we find [cf. Eq. (2.72)]

âλ(t′) =
2ε0ωλ

h̄

∫
d3r′ A∗

λ(r′)Â(+)(r′, t′), (2.281)

and thus, on combining Eqs (2.279) and (2.281),

F̂(j)
free(r, t, t′) = 2ε0

∫
d3r′ K(j)

(F)(r, t; r′, t′)Â(j)(r′, t′). (2.282)

It should be pointed out that Eq. (2.278) [together with Eq. (2.282)] holds for
both t≥ t′ and t≤ t′.

Equations (2.276) and (2.278) also remain valid in the case of medium-
assisted electromagnetic fields, except that the propagation function cannot
be obtained from Eq. (2.275) in general, but should be calculated on the basis
of the formalism given in Section 2.4.2 in order to also allow for absorbing
media.40 To derive the source-quantity representation, we replace, according
to Eq. (2.239), the interaction energy (2.265) with

Ĥint = ε−1
0

∫
d3r �̂P(r)[Π̂(r) + P̂‖

M(r)] = −
∫

d3r �̂P(r)Ê(r) (2.283)

and follow the line described above. Recalling Eq. (2.213) together with
Eq. (2.211), instead of Eq. (2.267) we now have

˙̂f(r, ω) =
1
ih̄

[
f̂(r, ω), Ĥ

]

= −iωf̂(r, ω) +

√
Im ε(r, ω)

h̄πε0

ω2

c2

∫
d3r′ �̂P(r′)G∗(r′, r, ω), (2.284)

from which it follows that

f̂(r, ω, t) = f̂free(r, ω, t) + f̂s(r, ω, t), (2.285)

where

f̂free(r, ω, t) = f̂free(r, ω, t′)e−iω(t−t′) (2.286)

40) When the medium can be approximately characterized by a (space-
dependent) real permittivity, then the propagation function can be
calculated by means of the generalized mode expansion described
in Section 2.4.1. Note that in this case the integration measure d3r′ in
Eqs (2.281) and (2.282) changes to ε(r′)d3r′.



64 2 Elements of quantum electrodynamics

and

f̂s(r, ω, t) =

√
Im ε(r, ω)

h̄πε0

ω2

c2

∫
dt′ Θ(t−t′)

∫
d3r′ �̂P(r′, t′)G∗(r′, r, ω, t′).

(2.287)

Inserting f̂(r, ω, t) in Eq. (2.211), making use of Eq. (2.213), and applying the
relation (A.3), we arrive at the source-quantity representation of Ê(r, t) in the
form of

Ê(r, t) = Êfree(r, t) + Ês(r, t), (2.288)

where

Êfree(r, t) = Ê(+)
free(r, t) + Ê(−)

free(r, t), (2.289)

Ê(+)
free(r, t) = i

√
h̄

πε0

∫ ∞

0
dω

ω2

c2

∫
d3r′

√
Im ε(r′, ω) G(r, r′, ω)f̂free(r′, ω, t)

(2.290)

and

Ês(r, t) = Ê(+)
s (r, t) + Ê(−)

s (r, t), (2.291)

Ê(+)
s (r, t) =

i
πε0c2

×
∫ ∞

0
dω ω2

∫
dt′ Θ(t − t′)e−iω(t−t′)

∫
d3r′ Im G(r, r′, ω)�̂P(r′, t′).

(2.292)

Note that Eq. (2.291) can be rewritten as

Ês(r, t) = −
∫

dt′
∫

d3r′ Dret(r, t; r′, t′)�̂P(r′, t′), (2.293)

where

Dret(r, t; r′, t′) =
i

πε0c2 Θ(t−t′)
∫

dω ω2 sin[ω(t−t′)]G(r, r′, ω) (2.294)

is commonly called the retarded Green tensor.

To make contact with Eq. (2.274), we rewrite Ê(+)
s (r, t) as

Ê(+)
s (r, t) =

∫
dt′

∫
d3r′ Θ(t − t′)K(+)

(E) (r, t; r′, t′)�̂P(r′, t′) (2.295)
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and find that

K(+)
(E) (r, t; r′, t′) =

i
πε0c2

∫ ∞

0
dω ω2e−iω(t−t′)Im G(r, r′, ω). (2.296)

Since in the absence of media, Ê(r) simply reduces to Ê⊥(r), and the relation

K(+)
(Π)(r, t; r′, t′) = −ε0 lim

ε→1
K(+)

(E) (r, t; r′, t′) (2.297)

holds, which means that in Eq. (2.296) the Green tensor G(r, r′, ω) can be re-
placed by the well-known free-space Green tensor

G0(r, r′, ω) =
c2

4πω2

[
∇ ⊗ ∇ + I

ω2

c2

]
eiω|r−r′|/c

|r − r′| . (2.298)

Clearly, Eqs (2.285)–(2.287) can also be used to find the source-quantity repre-
sentation of quantities other than the electric field.

Source-quantity representations such as those given above may be regarded
as basic equations describing the propagation of light through passive optical
systems modeled by (more or less structured) dielectric bodies. The informa-
tion about their action on the light propagation is contained in the space-time
structure of the respective tensor-valued propagation function used in classi-
cal optics as well. In quantum optics these functions additionally determine
the time-dependent field commutation relations and, in this way, the quantum
statistical properties of the fields under consideration.

2.7
Time-dependent commutation relations

It should be stressed that, in classical optics, any light field may be attributed
to sources, and hence in classical optics free-field terms such as the second
term on the right-hand side of Eq. (2.276) may be omitted. In quantum optics
the situation may be changed drastically. The field operators cannot be related
to the source-field operators solely, but must also be related to the free-field
operators. The latter are required for a correct description of the effects of
quantum noise, at least of the vacuum. From a more general point of view, the
free-field operators, which in general do not commute with the source-field
operators, ensure the quantum-mechanical consistency of the theory.

Let us perform the calculations within the frame of microscopic electrody-
namics by employing mode expansion. The equal-time commutation rela-
tions for field operators F̂ and Ĝ of the type given in Eq. (2.271) can easily
be constructed using the basic commutation relations (2.75) and (2.76) for the
photonic operators âλ and â†

λ. The results are apparently the same as in the
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case of the corresponding free-field operators F̂free and Ĝfree.41 Moreover, the
commutators of free-field operators at different times may also be constructed
in this way, by including the time evolution [cf. Eq. (2.269)] in the calculation.
We obtain[

F̂(±)
k free(r, t), Ĝ(±)

k′ free(r′, t′)
]

= 0, (2.299)[
F̂(+)

k free(r, t), Ĝ(−)
k′ free(r′, t′)

]
= ∑

λ

Fkλ(r)G∗
k′λ(r′)e−iωλ(t−t′). (2.300)

In particular, we see that (Fλ, Gλ �→ Πλ =−iωλε0Aλ)

[
Π̂(+)

k free(r, t), Π̂(−)
k′ free(r′, t′)

]
= ih̄ε0K(+)

(Π)kk′(r, t; r′, t′), (2.301)

where we have used Eq. (2.277). Since ˙̂A(±)
free = Π̂

(±)
free/ε0, Eq. (2.301) also de-

termines the commutation relations for the electric free field associated with
− ˙̂A(±)

free. Let us, for example, consider the case of light propagating through
free space. Using Eq. (2.88), we derive after some algebra

ε−2
0

[
Π̂k free(r, t), Π̂k′ free(r′, t′)

]
=

[
Êk free(r, t), Êk′ free(r′, t′)

]
=

ch̄
4ε0πi

(
∂
(r)
k ∂

(r)
k′ −δkk′∆

(r)
) δ[|r−r′ |−c(t−t′)]−δ [|r−r′ |−c(t′−t)]

|r−r′ | ,

(2.302)

which reveals that the components of the electric free-field strength at differ-
ent space-time points do not commute if the latter are on the light cone.

In contrast to equal-time commutation relations or free-field commutation
relations, it is nontrivial to determine the commutators of field operators F̂(±)

and Ĝ(±) or combinations of them at different times, because knowledge of
the solution of the Heisenberg equations of motion of the coupled light–matter
system is needed. However, source-quantity representations as given in Sec-
tion 2.6 make it possible to express the commutation relations of radiation-
field operators at different times in terms of commutators of free-field and
source-quantity operators [Mollow (1973)]. Although the commutators of the
source-quantity operators are in general not explicitly known, the general
structure of the field commutators reveals important information on the ef-
fects of light propagation.

Let us consider the commutator of F̂(j)
k free(r, t) and a source-quantity operator

Q̂(t′), which can be an arbitrarily chosen function of the canonically conjugate
variables of the particles. Since the commutation rule

[âλ(t), Q̂(t)] = 0 (2.303)

41) For the derivation of equal-time commutation relations of the elec-
tromagnetic field in dispersing and absorbing media, see Appen-
dix B.



2.7 Time-dependent commutation relations 67

holds, from Eqs (2.268)–(2.270) it follows that

[âλ free(t), Q̂(t′)]

= −1
h̄

∫
dτ

∫
d3s Θ(t′−τ)e−iωλ(t−τ)ωλA∗

lλ(s)
[
P̂l(s, τ), Q̂(t′)

]
. (2.304)

We now multiply Eq. (2.304) by Fkλ(r) and sum over λ. Recalling the def-

initions of the free-field operators F̂(j)
free [Eq. (2.273)] and the kernel K(j)

(F)
[Eq. (2.275)], we arrive at the following representation of the desired com-
mutator:

[
F̂(j)

k free(r, t), Q̂(t′)
]

= −
∫

dτ
∫

d3s Θ(t′ − τ)K(j)
(F)kl(r, t; s, τ)

[
P̂l(s, τ), Q̂(t′)

]
. (2.305)

Equation (2.305) enables us to express commutators of free-field and source-
field operators in terms of source-quantity commutators. Combining
Eqs (2.305) and (2.274) yields

[
F̂(j)

k free(r, t), Ĝ(j′)
k′ s (r′, t′)

]
= −

∫
dτ

∫
d3s

∫
dτ′

∫
d3s′

{
Θ(t′−τ′)Θ(τ′−τ)

× K(j)
(F)kl(r, t; s, τ)K(j′)

(G)k′l ′(r′, t′; s′, τ′)
[
P̂l(s, τ), P̂l ′(s′, τ′)

]}
. (2.306)

Using the relation Θ(t−τ)+Θ(τ− t)=1, we may rewrite Eq. (2.306) as

[
F̂(j)

k free(r, t), Ĝ(j′)
k′ s (r′, t′)

]
= Ĉ(jj′)

(FG)kk′(r, t; r′, t′) + D̂(jj′)
(FG)kk′(r, t; r′, t′), (2.307)

where Ĉ(jj′)
(FG)kk′ and D̂(jj′)

(FG)kk′ are respectively obtained from the integral on
the right-hand side in Eq. (2.306) by introduction into it of Θ(t − τ) and
Θ(τ − t). From an inspection of the three unit step functions in the expres-

sion for D̂(jj′)
(FG)kk′ we readily verify that

D̂(jj′)
(FG)kk′(r, t; r′, t′) = 0 if t > t′. (2.308)

We now turn to the problem of expressing radiation-field commutators in
terms of free-field and source-quantity commutators. For this purpose, we

decompose, according to Eq. (2.276), the operator product F̂(j)
k (r, t)Ĝ(j′)

k′ (r′, t′)
as

F̂(j)
k (r, t)Ĝ(j′)

k′ (r′, t′) = F̂(j)
k free(r, t)Ĝ(j′)

k′ free(r′, t′) + F̂(j)
k s (r, t)Ĝ(j′)

k′ free(r′, t′)

+ Ĝ(j′)
k′ s (r′, t′)F̂(j)

k free(r, t) + F̂(j)
k s (r, t)Ĝ(j′)

k′ s (r′, t′)

+
[
F̂(j)

k free(r, t), Ĝ(j′)
k′ s (r′, t′)

]
. (2.309)
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Using Eq. (2.274) and Eqs (2.306), (2.307), we may prove that combining the
last two terms on the right-hand side in Eq. (2.309) yields

F̂(j)
k s (r, t)Ĝ(j′)

k′ s (r′, t′) +
[
F̂(j)

k free(r, t), Ĝ(j′)
k′ s (r′, t′)

]
= D̂(j,j′)

(F,G)kk′(r, t; r′, t′)

+
∫

dτ
∫

d3s
∫

dτ′
∫

d3s′
[
Θ(t − τ)Θ(t′ − τ′)

× K(j)
(F)kl(r, t; s, τ)K(j′)

(G)k′l ′(r′, t′; s′, τ′)T+P̂l(s, τ)P̂l ′(s′, τ′)
]
. (2.310)

The time-ordering symbols T± are defined as follows. The symbol T+ time-
orders the operators Âi(ti) in an operator product Â1(t1)Â2(t2) · · · Ân(tn)
with the latest time to the far left,

T+ Â1(t1)Â2(t2) · · · Ân(tn)

= Âi1(ti1)Âi2(ti2) · · · Âin(tin), ti1 > ti2 > · · ·> tin , (2.311)

while the symbol T− time-orders the operators Âi(ti) with the latest time to
the far right,

T− Â1(t1)Â2(t2) · · · Ân(tn)

= Âi1(ti1)Âi2(ti2) · · · Âin(tin), ti1 < ti2 < · · ·< tin . (2.312)

From Eqs (2.309) and (2.310) we easily arrive at the commutation relation

[
F̂(j)

k (r, t), Ĝ(j′)
k′ (r′, t′)

]
=

[
F̂(j)

k free(r, t), Ĝ(j′)
k′ free(r′, t′)

]
+ D̂(j,j′)

(F,G)kk′(r, t; r′, t′) − D̂(j′,j)
(G,F)k′k(r′, t′; r, t).

(2.313)

Equation (2.313) reveals that the (time-dependent) commutators of fields
that are attributed to sources, differ from the corresponding free-field com-

mutators in the so called time-delayed contributions D̂(j,j′)
(F,G)kk′(r, t; r′, t′) [and

D̂(j′,j)
(G,F)k′k(r′, t′; r, t)] [Cresser (1984); Knöll, Vogel and Welsch (1987)]. It is

worth noting that the terms which may contribute to the integral defining

D̂(j,j′)
(F,G)kk′(r, t; r′, t′) are time-ordered in such a way that t < τ < τ′ < t′. This is

just the time-ordering necessary for the propagation of light from the space
point r (at time t) to the space point r′ (at time t′) via the space points of the
sources, s (at times τ) and s′ (at times τ′). Assuming that the experimental

setup allows such a propagation, D̂(j,j′)
(F,G)kk′(r, t; r′, t′) may be expected to be

nonzero. Clearly, the farther away from the space points r and r′ the atomic
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sources are situated, the larger the time interval |t′−t| becomes, for which the
commutator is simply given by the free-field commutator. In this sense, far
away from the sources the radiation field may be considered as being a free
field. Recall that for equal times the free-field commutator is observed.

2.8
Correlation functions of field operators

In this section we turn to the problem of expressing correlation functions
of field operators in terms of correlation functions of source-quantity oper-
ators and free-field operators. Since from the theory of photoelectric detection
of light (Chapter 6) it is known that correlation functions of field operators
subjected to normal and time orderings are observable, we demonstrate the
method for the class of correlation functions given by42

G(m,n)
{kikj}({ri, ti, rj, tj}) =

〈
◦◦

m

∏
i=1

m+n

∏
j=m+1

F̂(−)
ki

(ri, ti) F̂(+)
kj

(rj, tj) ◦◦

〉
, (2.314)

where 〈. . .〉=Tr(�̂ . . .), �̂ being the density operator of the overall system con-
sisting of radiation and matter, and ◦◦ ◦◦ indicates the following operator or-
derings:

(i) normal ordering of the operators F̂(−)
k and F̂(+)

k , with the operators F̂(−)
k

to the left of the operators F̂(+)
k ;

(ii) T+ time ordering of the operators F̂(+)
k and T− time ordering of the op-

erators F̂(−)
k .

We substitute into Eq. (2.314) for the field operators F̂(±)
k the result of

Eq. (2.272), so that the field operators F̂(±)
k are decomposed into source-field

operators F̂(±)
k s and free-field operators F̂(±)

k free. Applying the commutation re-
lation (2.307), we rearrange the mixed operator products in such a way that

the operators F̂(+)
k free are to the right of the operators F̂(+)

k s , and correspondingly

the operators F̂(−)
k free are to the left of the operators F̂(−)

k s . To illustrate this pro-

cedure, let us consider the operator product F̂(+)
k1

(r1, t1)F̂(+)
k2

(r2, t2). Applying

42) Here the abbreviated notation G(m,n)
{kikj}

({ri, ti, rj, tj})=

G(m,n)
k1...km+n

(r1, t1, . . . , rm+n, tm+n) is used.
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Eqs (2.309) and (2.310) and recalling, Eq. (2.308), we readily derive

T+ F̂(+)
k1

(r1, t1) F̂(+)
k2

(r2, t2) = F̂(+)
k1 free(r1, t1) F̂(+)

k2 free(r2, t2)

+ F̂(+)
k1 s (r1, t1) F̂(+)

k2 free(r2, t2) + F̂(+)
k2 s (r2, t2) F̂(+)

k1 free(r1, t1)

+
∫

dt′1

∫
d3r′1

∫
dt′2

∫
d3r′2

[
Θ(t1−t′1) Θ(t2−t′2) K(+)

(F)k1k′1
(r1, t1; r′1, t′1)

× K(+)
(F)k2k′2

(r2, t2; r′2, t′2) T+ P̂k′1
(r′1, t′1) P̂k′2

(r′2, t′2)
]
. (2.315)

Note that in the first term on the right-hand side of Eq. (2.315) the time-

ordering symbol T+ may be left, because the free-field operators F̂(+)
k free com-

mute.
The T+ time ordering of the operator product F̂(+)

k1
(r1, t1)F̂(+)

k2
(r2, t2)

obviously rules out any time-delayed effect. Recalling Eq. (2.313) to-
gether with Eq. (2.299), the T+ time ordering may therefore be said to

pick out the commuting parts of F̂(+)
k1

(r1, t1) and F̂(+)
k2

(r2, t2) in the prod-

uct F̂(+)
k1

(r1, t1)F̂(+)
k2

(r2, t2). Applying Eqs (2.272) and (2.274), we may write
Eq. (2.315) and its Hermitian conjugate in the compact form

T± F̂(±)
k1

(r1, t1)F̂(±)
k2

(r2, t2) = O± F̂(±)
k1

(r1, t1)F̂(±)
k2

(r2, t2), (2.316)

where O+ (respectively O−) introduces the following operator ordering in

products of operators F̂(+)
k s and F̂(+)

k free (respectively F̂(−)
k s and F̂(−)

k free), after de-

composition of F̂(+)
k (respectively F̂(−)

k ) into source- and free-field parts:

(i) ordering of the operators F̂(+)
k s and F̂(+)

k free (respectively F̂(−)
k s and F̂(−)

k free)

with the operators F̂(+)
k free (respectively F̂(−)

k free) to the right (respectively

left) of the operators F̂(+)
k s (respectively F̂(−)

k s );

(ii) substituting for the operators F̂(+)
k s (F̂(−)

k s ) the result of Eq. (2.274) and
performing T+ (T−) time ordering of the source-quantity operators P̂k′ in
the resulting source-quantity operator products before integrating with
respect to the times t′.

Equation (2.316) may be extended to the case of higher-order operator prod-
ucts. It can be shown that [Knöll, Vogel and Welsch (1987)]

T±
n

∏
i=1

F̂(±)
ki

(ri, ti) = O±
n

∏
i=1

F̂(±)
ki

(ri, ti), (2.317)

so combining Eqs (2.314) and (2.317) yields

G(m,n)
{kikj}({ri, ti, rj, tj}) =

〈
••

m

∏
i=1

m+n

∏
j=m+1

F̂(−)
ki

(ri, ti)F̂(+)
kj

(rj, tj) ••

〉
, (2.318)
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where •• •• indicates

(i) that the field operators are to be written in normal order (with the F̂(−)
k

to the left of the F̂(+)
k );

(ii) O+ (respectively O−) ordering of the operators F̂(+)
k (respectively F̂(−)

k ).

In practice, it is often desired to observe the properties of the light attributed
to certain kinds of sources. This requires an observational scheme guarantee-
ing that at the observation points only this light is detected. In particular,
when radiating sources are optically pumped and the light generated by them
is studied, the range of observation must be outside the pump beam. Since,
apart from the vacuum field, any real light field may be thought of as arising
from sources, the remaining free field may be regarded as being the vacuum
field. Hence the following conditions may be assumed to be satisfied:〈

· · · F̂(+)
k free

〉
= 0 =

〈
F̂(−)

k free · · ·
〉
. (2.319)

Recalling the definitions of the ordering symbols O± in the •• •• notation, we
may omit the free-field operators in Eq. (2.318), and thus

G(m,n)
{kikj}({ri, ti, rj, tj}) =

〈
••

m

∏
i=1

m+n

∏
j=m+1

F̂(−)
ki s (ri, ti)F̂(+)

kj s (rj, tj) ••

〉
. (2.320)

Equation (2.320) establishes that when the condition (2.319) is fulfilled, in the
calculations of field correlation functions of the type defined by Eq. (2.314), the

total field operators F̂(±)
k may formally be replaced by the source-field oper-

ators F̂(±)
k s , the T+ and T− time orderings originally concerning the operators

F̂(+)
k and F̂(−)

k , respectively, being transferred to the corresponding source-
quantity operators P̂k.

As already mentioned, the effect of optical instruments is included in the

actual structure of the propagation functions K(±)
(F) (r, t; r′, t′) known from clas-

sical optics. However, there is an essential difference between classical and
quantum optics; namely owing to the •• •• ordering the (multi-time) convo-
lution integrals arising from the source-field operators in Eq. (2.320) cannot
generally be performed independently of each other, as is possible in classical
optics. Hence in the case of quantum light fields the result of the integrations
in Eq. (2.320) is in general expected to be different from that predicted from
classical optics.

In many typical light-scattering problems, when the properties of the scat-
tered light are sought and the dynamics of the sources is known, Eq. (2.320)
directly applies to the study of the properties of scattered light (see also Chap-
ter 11). For more complicated light–matter interaction processes, it is usually
better to consider appropriately chosen field variables (the dynamics of which
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can often be treated on the basis of the concept of effective interaction Hamil-
tonians, see Section 2.5.3) rather than the atomic source quantities. Moreover,
if there are additional optical instruments through which the light passes, the
relevant light field may often be regarded as being known before it meets the
optical instruments. The question then arises of how to relate the properties
of the field observed behind the instruments (properties of the output field) to
the properties of the field in front of the instruments (properties of the input
field). In all these cases it is helpful to use Eq. (2.318) instead of Eq. (2.320)
and to combine source-field parts and certain free-field parts to give new field
variables (e. g., input/output fields; see also Chapter 9), which allow one to
express correlation functions of the type given in Eq. (2.314) in terms of cor-
relation functions of these field variables. This problem is nontrivial, since
these field variables cannot be regarded as being a priori free-field variables
with commuting positive- (and negative-) frequency parts. Clearly, the type
of decomposition suitable depends on the physical situation.
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3
Quantum states of bosonic systems

The radiation field is an example of an immaterial bosonic system. Exam-
ples of material bosonic systems which play an important role in quantum
optics are the vibrations of trapped atoms and the internuclear vibrations of
molecules inasmuch as they can be approximated by harmonic oscillators.
Among the wide variety of possible quantum states of bosonic systems, there
are some fundamental types that are of particular interest. First, such states
may serve as a quantum-mechanical basis for representing the various observ-
ables of interest. Second, they may be regarded as typical examples for certain
limiting cases of quantum noise, with special emphasis on nonclassical fea-
tures. Although the definition of nonclassicality (Chapter 8) is a nontrivial
task, we will use the term nonclassical in this chapter in a more generous way.

We will begin with the introduction of the number states (Section 3.1). Al-
though they are well known, from standard quantum-mechanics textbooks, as
energy eigenstates of harmonic oscillators, they will be seen to reveal the quite
counter-intuitive feature of not showing the oscillatory behavior expected of
classical harmonic oscillators. The classically expected oscillatory behavior
is then shown to be realized by the coherent states (Section 3.2). The coher-
ent states are Gaussian states to which the squeezed coherent states (often
called quadrature-squeezed states) also belong (Section 3.3). Their quantum-
noise properties are of great practical relevance for applications in measure-
ment techniques below the standard quantum limit. Finally, the eigenstates
of phase-rotated quadratures (Section 3.4) and phase states (Section 3.5) are
introduced. Quadrature eigenstates play an important role in the context of
homodyne detection (see Sections 6.5 and 7.1).

3.1
Number states

Let us consider a system of uncoupled harmonic oscillators whose Hamilton-
ian reads

Ĥ = ∑
λ

Ĥλ , (3.1)
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where

Ĥλ = h̄ωλ

(
n̂λ + 1

2

)
(3.2)

is the single-oscillator Hamiltonian expressed in terms of the number operator

n̂λ = â†
λ âλ (3.3)

of the λth oscillator, with âλ and â†
λ, respectively, being the annihilation and

creation operators attributed to the oscillator which obey the bosonic commu-
tation relations

[âλ, â†
λ′ ] = δλλ′ (3.4)

[âλ, âλ′ ] = 0 = [â†
λ, â†

λ′ ]. (3.5)

From Chapter 2 we know that mode expansion of the free radiation field just
leads to Eqs (3.1)–(3.5) [cf. Eqs (2.75)–(2.78)]. Therefore, what we derive in the
following in a very general context can be thought of as being the radiation
field or other specific realizations of harmonic oscillators – also referred to as
modes in the following – such as the (harmonic) motion of trapped atoms or
(harmonic) molecular vibrations.

To proceed we will restrict ourselves first to a single oscillator, thereby omit-
ting the index λ (Ĥλ �→ Ĥ), and we will then later consider the case of multi-
mode systems. The eigenstates of the Hamiltonian (3.2) are of particular in-
terest, since they naturally provide a complete and orthonormal set of basis
states. To solve the eigenvalue problem for Ĥ, it is sufficient to solve the
eigenvalue problem for the number operator n̂, since both operators commute,
[Ĥ, n̂]=0. The main steps for solving this standard problem of quantum me-
chanics may be summarized as follows. The eigenvalue equation reads

n̂|φn〉 = n|φn〉, (3.6)

with n being the eigenvalue and |φn〉 the corresponding eigenvector. Since n̂
is Hermitian, the eigenvalues n are real-valued and eigenvectors correspond-
ing to different eigenvalues are orthogonal. Inserting n̂ as given according to
Eq. (3.3) in

〈φn|n̂|φn〉 = n〈φn|φn〉, (3.7)

we obtain

〈φn|â† â|φn〉 = n〈φn|φn〉. (3.8)

Since |φn〉 and â|φn〉 are Hilbert-space vectors, whose norms are non-negative,
we immediately observe from Eq. (3.8) that the eigenvalue n must also be non-
negative. Using the relation [âl , n̂]= lâl , derived with the help of the bosonic
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commutator (3.4), we obtain

n̂âl |φn〉 = (âl n̂ + [n̂, âl ])|φn〉 = (n − l)âl |φn〉. (3.9)

From this relation it is seen that, as long as n − l ≥ 0, the state âl |φn〉 is an
eigenstate of n̂ with eigenvalue n−l, which may be denoted by |φn−l〉= âl |φn〉.
For a negative eigenvalue n− l<0 it is required that âl |φn〉=0 in order to fulfill
Eq. (3.9) under the constraint of non-negative eigenvalues. For n=0 and l =1
this requirement provides us with the relation

â|φ0〉 = 0, (3.10)

which defines |φ0〉 as the ground state, having zero number of quanta, from
which it follows that no further quantum can be annihilated. Analogously to
Eq. (3.9), we may prove that

n̂â†l|φn〉 = (n + l)â†l|φn〉, (3.11)

which states that â†l |φn〉 is an eigenstate of n̂ with eigenvalue n+ l, which we
denote by |φn+l〉= â†l|φn〉.

From Eqs (3.9) and (3.11) it is clear that â and â† decrease and increase the
number of energy quanta by single quanta, respectively. Therefore, the op-
erators â and â† are called annihilation and creation operators, respectively.
Starting from the ground state |φ0〉 via Eq. (3.11) a ladder of eigenstates of the
free Hamiltonian (3.2) is created by multiple application of the creation op-
erator â†. Since these states exhibit defined numbers of energy quanta they
are usually called number states. Depending on the physical system under
study they may correspond to eigenstates with a precise number of photons,
phonons, or other elementary bosonic excitations.

Normalizing the states |φn〉, we obtain the number states |n〉= |φn〉/〈φn|φn〉
as an orthonormal set of basis states. For this purpose we create the states |n〉
via Eq. (3.11) from the ground state |0〉 – also called the vacuum state – which
we take to be normalized, 〈0|0〉=1,

|n〉 = Nnâ†n|0〉. (3.12)

The value of Nn is determined by the normalization condition

〈n|n〉 = 1, (3.13)

which by insertion of Eq. (3.12) into Eq. (3.13) reads

|Nn|2 〈0|ânâ†n|0〉 = 1. (3.14)

The simplest way of calculating the vacuum expectation value in Eq. (3.14) is
to bring the operator product ân â†n into normal order. Applying Eq. (C.34)
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yields

ân â†n = :
(

â +
∂

∂â†

)n

â†n : =
n

∑
l=0

(
n
l

)
: ân−l

(
∂

∂â†

)l

â†n :

=
n

∑
l=0

(
n
l

)
n!

(n − l)!
â†n−l ân−l , (3.15)

so that we may rewrite Eq. (3.14) as

|Nn|2
n

∑
l=0

(
n
l

)
n!

(n − l)!
〈0|â†n−l ân−l |0〉 = 1. (3.16)

Since quanta cannot be annihilated from the vacuum state, cf. Eq. (3.10), we
conclude that only the term with n− l =0 contributes to the sum of Eq. (3.16),
so that

Nn =
1√
n!

, (3.17)

where we have chosen Nn to be real-valued. Inserting Eq. (3.17) into Eq. (3.12),
we obtain a rule for creating from the vacuum state all the number states |n〉,
which are the eigenstates of the Hamiltonian (3.2),

|n〉 =
1√
n!

â†n|0〉. (3.18)

This implies also the following relations for the (normalized) number states:

â†|n〉 =
1√
n!

â†n+1|0〉 =
√

n + 1 |n + 1〉, (3.19)

â |n〉 =
1√
n!

â â†n|0〉 =
1√
n!

[â, â†n]|0〉

=
n√
n!

â†n−1|0〉 =
√

n |n − 1〉, (3.20)

where the relations (C.16) and (3.10) have been used for the derivation of
Eq. (3.20).

As already mentioned, the number states |n〉 and |m〉 with n �=m are orthog-
onal, since they are eigenstates of the Hermitian number operator n̂,

〈m|n〉 = δmn. (3.21)

This orthogonality may also be shown directly, by representing |n〉 and |m〉 in
the form (3.18) and normally ordering the operators â and â†. Moreover, the
number states form a complete set of orthonormal vectors in the Hilbert space
of the single-mode system,

∞

∑
n=0

|n〉〈n| = Î, (3.22)
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where Î is the unity operator in this Hilbert space. It is now evident that, due
to their orthonormality (3.21) and completeness (3.22), the number states are
of potential use for many quantum-mechanical calculations.

3.1.1
Statistics of the number states

Let us consider the main properties of number states, focusing on the free ra-
diation field expanded in terms of monochromatic modes. In this case the
number states attributed to a mode of frequency ω may be called photon-
number states since – for a mode of frequency ω – they are states with a pre-
cise number n of energy quanta h̄ω which are commonly denoted as photons.
The average energy of the mode in a number state is obtained by taking the
expectation value 〈n|Ĥ|n〉 with Ĥ according to Eq. (3.2). Since 〈n|n̂|n〉=n, we
readily obtain

〈n|Ĥ|n〉 = h̄ω
(
n + 1

2

)
, (3.23)

which shows that an energy h̄ω is indeed associated with each photon. How-
ever, in the absence of photons, n=0, i. e., for the ground state, there is still the
zero-point energy of the associated harmonic oscillator left: 〈0|Ĥ|0〉= h̄ω/2.
This is due to the fact that quantities such as the coordinate and the momen-
tum of the oscillator still reveal fluctuations in the ground state.

A rough measure of the fluctuation of a quantity Ô is the variance 〈(∆Ô)2〉,
where ∆Ô=Ô−〈Ô〉. Since the number of quanta is well defined in a number
state, the number variance for such a state of course vanishes,

〈n|(∆n̂)2|n〉 = 〈n|n̂2|n〉 − 〈n|n̂|n〉2 = 0, (3.24)

as also does the energy variance.
Let us now consider the expectation value and the variance of a coordinate-

like quantity such as the electric field of a single-mode radiation field,

Ê(r) = iω[â A(r)− â†A∗(r)] (3.25)

[cf. Eq. (2.70)], where A(r) is the corresponding mode function. Using
Eqs (3.19)–(3.21), we readily prove that when the mode is prepared in a
photon-number state, then the mean value of the electric-field strength van-
ishes,

〈n|Ê(r)|n〉 = 0. (3.26)

That is, a photon-number state is far from representing a (nonfluctuating) clas-
sical wave which would naturally reveal a nonvanishing electric field. In view
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of particle–wave dualism, this type of state is closely related to the particle na-
ture of the radiation rather than to its wave nature. It will be seen later (Chap-
ter 8) that it is a nontrivial problem to experimentally prepare radiation field
modes in photon-number states. The expectation value of the intensity

Î(r) = Ê(−)(r)Ê(+)(r) (3.27)

in a photon-number state is proportional to the number of photons in the field:

〈n| Î(r)|n〉 = ω2|A(r)|2〈n|â† â|n〉 = ω2|A(r)|2n. (3.28)

Accordingly, the variance of the kth component of the electric-field strength is
found to be

〈n|[∆Êk(r)]2|n〉 = ω2|Ak(r)|2(2n + 1), (3.29)

from which the fluctuation of the electric field is seen to increase with the
photon number n. The minimum noise is obtained for n=0, that is, in the case
of the vacuum field we have

〈0|[∆Êk(r)]2|0〉 = ω2|Ak(r)|2. (3.30)

This clearly shows that even in the vacuum case, when no photons are present,
there are quantum fluctuations of the field.

3.1.2
Multi-mode number states

We now turn to the more general case of a multi-mode system and remem-
ber that the Hamiltonian is additively composed of independent single-mode
Hamiltonians [Eq. (3.1) together with Eq. (3.2)]. The additivity of the Hamil-
tonian leads to the fact that its eigenstates are simply products of the single-
mode eigenstates, that is, Ĥ|{nλ}〉= E{nλ}|{nλ}〉, where the eigenstates and
energies are given by

|{nλ}〉 = ∏
λ

|nλ〉, (3.31)

E{nλ} = ∑
λ

h̄ωλ

(
nλ + 1

2

)
. (3.32)

In the case of a radiation field, for example, one may consider an experiment
where the total number of photons is measured regardless of their frequency
or polarization, i. e., regardless of which mode they are in. The measured
operator would then be the total-number operator, defined by

N̂ = ∑
λ

n̂λ. (3.33)
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We can easily see that the total-number operator N̂ commutes with the Hamil-
tonian (3.1) [together with Eq. (3.2)] and therefore has the same eigenvectors
|{nλ}〉,

N̂|{nλ}〉 = N|{nλ}〉, (3.34)

with the total number of photons in the state |{nλ}〉 being

N = ∑
λ

nλ. (3.35)

However, since different combinations of numbers nλ can lead to the same
total number N, there is a degeneracy with respect to the operator N̂. Taking
into account Λ different modes, it can be readily seen that there are ΛN pos-
sibilities of occupying the different single modes to obtain the total number
N.

The noise properties of a multi-mode system in a number state are quite
similar to those of a single-mode system. In particular, the variance of the
total-photon number of a multi-mode radiation field vanishes, as does the
mean value of the electric field:

〈{nλ}|(∆N̂)2|{nλ}〉 = 0, (3.36)

〈{nλ}|Ê(r)|{nλ}〉 = 0, (3.37)

where Ê(r) is now meant to be the multi-mode electric-field strength accord-
ing to Eq. (2.70).

3.2
Coherent states

The quantum states that come closest to the classical ideal are the coher-
ent states. As their name suggests, they indeed show a coherent amplitude,
i. e., they reveal the classically expected oscillatory behavior of the harmonic-
oscillator coordinates. In order to derive the coherent states and to provide
the tools for the squeezed states (Section 3.3), we follow an approach based on
unitary transformations. For the sake of clarity we again start from a single-
mode system. Performing a unitary transformation Û (Û†=Û−1), the operator
â transforms to â′ as

â′ = ÛâÛ†, (3.38)

whereas the transformed number states |n〉′ read

|n〉′ = Û|n〉. (3.39)
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Clearly, the transformed operators â′ and â′† again obey the bosonic com-
mutator relations (3.4) and (3.5). Defining the transformed number operator
n̂′ = â′† â′ and taking into account Eqs (3.6), (3.19) and (3.20) we readily find
the eigenvalue equation for the transformed number operator,

n̂′|n〉′ = n|n〉′, (3.40)

and the actions of the transformed creation and annihilation operators,

â′†|n〉′ =
√

n + 1 |n + 1〉′, (3.41)

â′|n〉′ =
√

n |n − 1〉′. (3.42)

The transformed operators and states thus reveal the same algebraic relations
as the original ones and therefore can also be used as a complete set of states
to span the Hilbert space. In particular, from Eq. (3.42) we see that

â′|0〉′ = 0, (3.43)

which defines a new ground state with respect to the transformed operators.
Clearly, although their algebraic relations do not change, the physical prop-
erties of the transformed number states |n〉′ may drastically differ from the
original number states |n〉. This, however, depends solely on the actual form
of the applied unitary transformation Û.

The transformation leading to the coherent states is implemented by the
displacement operator D̂(α),

Û ≡ D̂(α) = exp(αâ† − α∗ â), (3.44)

with α being a complex c-number variable. Using Eq. (C.27), we may factorize
the displacement operator to obtain its normally and anti-normally ordered
forms, respectively,

D̂(α) = eαâ†
e−α∗ âe−|α|2/2, (3.45)

D̂(α) = e−α∗ âeαâ†
e|α|2/2. (3.46)

We may therefore write the transformed annihilation operator â′ as

â′ = D̂(α)âD̂†(α) = eαâ†
e−α∗ â â eα∗ âe−αâ†

= eαâ†
â e−αâ†

, (3.47)

from which, together with the relation (C.9), it follows that

â′ = â − α. (3.48)

This result now enables us to rewrite the definition of the transformed ground
state (3.43) as

(â − α)D̂(α)|0〉 = 0. (3.49)
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Denoting by |α〉= |0〉′ the transformed ground state which depends paramet-
rically on α,

|α〉 = D̂(α)|0〉, (3.50)

we see from Eq. (3.49) that for each complex number α the state |α〉 is a right-
hand eigenstate of the non-Hermitian annihilation operator â with eigen-
value α,

â|α〉 = α|α〉. (3.51)

From Eq. (3.51) we further see that correspondingly 〈α| is a left-hand eigen-
state of â†,

〈α|â† = 〈α|α∗. (3.52)

The states |α〉, being normalized to unity (〈α|α〉 = 1), are called coher-
ent states or Glauber states [Schrödinger (1926); Klauder (1960); Glauber
(1963a,b,c)]. The amplitude α determines a point in a complex phase space
which corresponds to a coherent amplitude of the corresponding harmonic
oscillation, i. e., 〈α|â|α〉=α. This phase-space amplitude or coherent excitation
can be changed by use of the displacement operator, which can be seen by
first considering the action of two subsequent displacements,

D̂(α)D̂(β) = D̂(α + β) exp[iIm(αβ∗)] . (3.53)

From this equation together with Eq. (3.50) we see that, apart from a phase fac-
tor, the action of a displacement operator D̂(β) on a coherent state |α〉 creates
a new coherent state with amplitude α+β,

D̂(β)|α〉 = e−i Im(αβ∗)|α + β〉, (3.54)

i. e., the operator D̂(β) displaces the phase-space amplitude of the coherent
state by the amount β. In particular, this also shows that the ground state |0〉
can be regarded as being the coherent state of amplitude α = 0, from which,
by application of the displacement operator (3.44), all possible coherent states
can be obtained, in agreement with Eq. (3.50).

The action of â† on |α〉 and â on 〈α|, respectively, can be derived as follows.
Applying â† to |α〉= D̂(α)|0〉 and using the normally ordered form of the dis-
placement operator (3.45) yields

â†|α〉 = â† exp
[(

â† − 1
2 α∗

)
α
]

exp(−α∗ â) |0〉 = â† exp
[(

â† − 1
2 α∗

)
α
]|0〉

=
(

∂

∂α
+

α∗

2

)
exp

[(
â† − 1

2 α∗
)
α
]|0〉, (3.55)
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and hence

â†|α〉 =
(

∂

∂α
+

α∗

2

)
|α〉. (3.56)

Accordingly, applying â to 〈α| and using the anti-normally ordered form (3.46)
yields

〈α|â = 〈α|
(

∂

∂α←−∗ +
α

2

)
, (3.57)

where the derivative is supposed to act to the left side.
Clearly, the coherent states |α〉 can be expanded in terms of the number

states |n〉 by use of their completeness relation (3.22),

|α〉 =
∞

∑
n=0

|n〉〈n|α〉. (3.58)

The expansion coefficients 〈n|α〉 can be calculated by means of Eqs (3.18) and
(3.50), resulting in

〈n|α〉 =
αn
√

n!
e−|α|2/2. (3.59)

From Eqs (3.58) and (3.59) we immediately find that the number distribution
of a coherent state is a Poissonian:

|〈n|α〉|2 =
(|α|2)n

n!
e−|α|2 , (3.60)

with mean value and variance both being given by |α|2,

〈α|n̂|α〉 = 〈α|(∆n̂)2|α〉 = |α|2. (3.61)

Hence the number of quanta is a fluctuating quantity for a coherent state |α〉.
We recall that the coherent states are eigenstates of a non-Hermitian opera-

tor. In comparison with the eigenstates of Hermitian operators, they therefore
exhibit some unusual features. They are over-complete and nonorthogonal.
Let us consider two coherent states |α〉 and |β〉 (with α �=β) and calculate their
overlap 〈β|α〉. From Eqs (3.51) and (3.57) we obtain the relation

〈β|â|α〉 = α〈β|α〉 =
(

∂

∂β∗ +
β

2

)
〈β|α〉, (3.62)

which represents a differential equation for 〈β|α〉:
∂

∂β∗ 〈β|α〉 =
(

α − β

2

)
〈β|α〉. (3.63)
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Taking into account the boundary condition 〈α|α〉=1, the solution is obtained
as

〈β|α〉 = exp
[− 1

2 |α − β|2 + 1
2 (α β∗ − α∗β)

]
, (3.64)

and hence the squared modulus reads

|〈β|α〉|2 = exp(−|α − β|2). (3.65)

Equation (3.65) clearly shows that for α �= β the states |α〉 and |β〉 are indeed
not orthogonal to each other. However, if the values of α and β are sufficiently
separated, so that |α−β|�1, they may be regarded as being approximately
orthogonal.

To show that the coherent states resolve the identity, we recall the complete-
ness relation for the number states, which enables us to write∫

d2α |α〉〈α| =
∞

∑
n,m=0

∫
d2α |n〉〈n|α〉〈α|m〉〈m|, (3.66)

where the integration is performed over the real and imaginary parts, α′≡Re α

and α′′≡Im α, respectively, of α=α′+ iα′′,

d2α = dα′dα′′. (3.67)

We now use Eq. (3.59) and rewrite Eq. (3.66) as∫
d2α |α〉〈α| =

∞

∑
n,m=0

|m〉〈n|√
m! n!

∫
d2α αmα∗ne−|α|2 . (3.68)

The integral in Eq. (3.68) can be evaluated to be∫
d2α αmα∗ne−|α|2 = πn!δmn, (3.69)

and we arrive at∫
d2α |α〉〈α| = π

∞

∑
n=0

|n〉〈n| = π Î, (3.70)

from which we see that the identity can be resolved as

1
π

∫
d2α |α〉〈α| = Î. (3.71)

That is to say, any state |ψ〉 can be expanded in terms of the coherent states as
follows:

|ψ〉 =
1
π

∫
d2α |α〉〈α|ψ〉. (3.72)
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From Eq. (3.72) together with Eq. (3.65) we see that there is a nontriv-
ial expansion of a coherent state in terms of coherent states, which indi-
cates the over-completeness of the coherent states. To demonstrate the over-
completeness more explicitly, let us consider a subset of coherent states whose
modulus r of the complex amplitude, α = reiϕ, is chosen to be constant. This
represents the set of coherent states on a circle in phase space. Using Eq. (3.59)
the number representation of these states is given as

|reiϕ〉 = e−r2/2
∞

∑
n=0

rn
√

n!
einϕ|n〉. (3.73)

Fourier transforming this equation with respect to the phase ϕ, we readily
derive a representation of the number states |n〉 (n = 0, 1, . . . ) in terms of the
coherent states on a circle,

|n〉 =
√

n!
2π rn er2/2

∫ 2π

0
dϕ e−inϕ|reiϕ〉. (3.74)

This result reveals that the complete number-state basis can be expressed in
terms of the coherent states on any chosen circle in phase space. Equivalently,
complete sets of coherent states can also be chosen on other contours, for ex-
ample on a straight line [Adam, Földesi, and Janszky (1994)].

3.2.1
Statistics of the coherent states

To illustrate the main difference between coherent states and number states,
let us focus on a radiation-field mode. We have already seen that in the case
of the mode being in a coherent state |α〉 the probability of finding n photons
obeys a Poissonian distribution [Eq. (3.60)]. Hence both the mean number
of photons and its variance are given by the squared modulus of the com-
plex amplitude, |α|2. Next let us again consider a quantity of the type of the
electric-field strength. From Eq. (3.25) together with Eqs (3.51) and (3.52) we
derive for the mean value of the kth component of the electric-field strength

〈α|Êk(r)|α〉 = iω[Ak(r)α − A∗
k (r)α∗]. (3.75)

That is, when the mode is prepared in a coherent state, then the mean electric-
field strength looks like the electric-field strength of a coherent, classical mode
with (complex) amplitude α. Notwithstanding this resemblance, there is a
fundamental difference between a classical and a quantum mode in a coherent
state, because of the vacuum noise inherent in the quantum system. Calculat-
ing the variance of the kth component of the electric-field strength, we easily
derive

〈α|[∆Êk(r)]2|α〉 = ω2|Ak(r)|2. (3.76)
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Comparing this with Eq. (3.30), we see that the noise of the electric field is
indeed determined by the vacuum level, independent of the field amplitude.
Rewriting Eq. (3.75) as

〈α|Êk(r)|α〉 = 2ω|Ak(r)||α| sin ϕEk
, (3.77)

where ϕEk
is the phase of the (kth component of the) mean value of the electric-

field strength, and using Eq. (3.76), we can easily calculate the relative noise
of the electric field, obtaining{ 〈α|[∆Êk(r)]2|α〉

[〈α|Êk(r)|α〉]2
} 1

2

=
1

2|α|| sin ϕEk
| . (3.78)

Equation (3.78) reveals that (for sin ϕEk
�= 0) the relative noise decreases with

increasing absolute value of α or, according to Eq. (3.61), with the square root
of the mean photon number. The coherent states |α〉 may therefore be re-
garded as being those quantum states that correspond most closely to clas-
sical, coherent waves. Without going into the detail of quantum coherence
theory [see, e. g., Peřina (1985); Mandel and Wolf (1995)], we note that with a
radiation field being prepared in a coherent state, normally ordered correla-
tion functions factorize perfectly, that is, the coherence condition is satisfied
up to any order:

〈α|(Ê(−)
k

)m(
Ê(+)

k

)n|α〉 =
(〈α|Ê(−)

k |α〉)m(〈α|Ê(+)
k |α〉)n. (3.79)

3.2.2
Multi-mode coherent states

The extension of the concept of coherent states to multi-mode systems is
straightforward. Similar to the case of number states, the multi-mode coherent
states |{αλ}〉 are simply obtained by taking the (direct) product of single-mode
coherent states, that is,

|{αλ}〉 = ∏
λ

|αλ〉, (3.80)

and the identity operator in the multi-mode Hilbert space then reads

∏
λ

(
1
π

∫
d2αλ |αλ〉〈αλ|

)
= Î. (3.81)

In view of a multi-mode radiation field, the mean value of the total number
of photons in all modes, N̂ = ∑λ n̂λ, and the corresponding photon-number
variance are given by

〈{αλ}|N̂|{αλ}〉 = ∑
λ

|αλ|2, (3.82)

〈{αλ}|(∆N̂)2|{αλ}〉 = 〈{αλ}|N̂|{αλ}〉, (3.83)
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and the mean value and the variance of the kth component of the electric-field
strength are, respectively,

〈{αλ}|Êk(r)|{αλ}〉 = ∑
λ

iωλ

[
Aλ,k(r)αλ − A∗

λ,k(r)α∗λ
]
, (3.84)

〈{αλ}|[∆Êk(r)]2|{αλ}〉 = ∑
λ

ω2
λ|Aλ,k(r)|2. (3.85)

To illustrate how a classical light pulse emerges from a radiation field in a
coherent state |{αλ}〉, let us consider a multi-mode radiation field propagating
in the positive x direction in free space. To take into account the temporal
evolution of the (free) radiation field, we recall that in the Heisenberg picture
the photon annihilation evolves as

âλ(t) = âλe−iωλt, (3.86)

where âλ = âλ(0) is the annihilation operator at some initial time t = 0. As-
suming that the (nonevolving) initial state vector is a multi-mode coherent
state as given in Eq. (3.80), and using the traveling-wave mode functions of
frequency ωl, polarization el,σ and quantization volume AL,

Aλ(r) �→ Alσ(x) =
(

h̄
2ε0ωlAL

) 1
2

el,σeiωl x/c, (3.87)

we derive from Eqs (3.86) and (3.87) the kth component of the electric-field
operator as

Êk(x, t) = i ∑
l,σ

√
h̄ωl

2ε0AL (el,σ)k âl,σe−iωl(t−x/c) + H.c. (3.88)

[cf. Eqs (2.87) and (2.88)]. We now perform the limit of infinite propagation
length, L→∞, while the diameter or beam waist A is held constant. With in-
creasing L the modes become more and more dense in the frequency domain,
because ωl =2πcl/L. Defining the operators

âσ(ω) = lim
L→∞

âl,σ√
∆ω

(3.89)

with ∆ω = 2πc/L [cf. Eqs (2.89) and (2.90)], we see that in the limit L→ ∞
the l sum in Eq. (3.88) can be written as an integral and the positive-frequency
part of the electric-field operator becomes

Ê(+)
k (x, t) = i ∑

σ

∫ ∞

0
dω

√
h̄ω

4πε0cA [eσ(ω)]ke−iω(t−x/c)âσ(ω). (3.90)
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Correspondingly, the mean electric field in a coherent state reads

〈Êk(x, t)〉coh = i ∑
σ

∫ ∞

0
dω

√
h̄ω

4πε0cA [eσ(ω)]kασ(ω)e−iω(t−x/c) + c.c..

(3.91)

Equation (3.91) is capable of describing (the kth component of the electric-field
strength of) a coherent light pulse. To give an example, let us consider the case
where the polarization unit vectors eσ(ω) are independent of frequency and
suppose that the mode amplitudes are polarization independent,

ασ(ω) ≡ α(ω) = |α(ω)|eiϕ, (3.92)

with the photon spectrum being of Gaussian form with center frequency ω

and spectral width ∆ω
ω,

|α(ω)|2 =
〈N̂〉coh√
2π ∆ω

exp
[
−1

2

(
ω − ω

∆ω

)2]
, (3.93)

where 〈N̂〉coh is the total number of photons of the light pulse:

〈N̂〉coh =
∫ ∞

0
dω |α(ω)|2. (3.94)

Combining Eqs (3.91)–(3.93) and taking into account that the spectral width
of the electric-field strength is small compared with the center frequency
(∆ω
ω), we obtain for the mean electric field

〈Êk(x, t)〉coh = 2

√
∆ω h̄ω〈N̂〉coh

ε0cA√
2π

exp
{
−

[
∆ω

(
t− x

c

)]2
}

sin
[

ω
(

t− x
c

)
−ϕ

]
,

(3.95)

which represents an unpolarized, coherent Gaussian light pulse traveling in
positive x direction.

3.2.3
Displaced number states

At this point it should be noted that the coherent states are a special class of
states with respect to the transformation given in Eqs (3.39) and (3.44), since
they are defined by the action of the displacement operator on the ground state
|0〉. A broader class of states is obtained by considering the transformed states
that emerge from the application of the displacement operator on arbitrary
number states |n〉. Such states are denoted as displaced number states and
they are defined via Eqs (3.39) and (3.44) as

|n, α〉 = D̂(α)|n〉. (3.96)
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From the general transformed eigenvalue equation (3.40) we can see that the
displaced number states are eigenstates of the displaced number operator, i. e.,
n̂(α)|n, α〉=n|n, α〉, with

n̂(α) = D̂(α)n̂D̂†(α) = (â† − α∗)(â − α), (3.97)

where we have made use of Eq. (3.48).
Clearly, for a fixed displacement α these states are orthonormal, just as the

number states are:

〈n, α|m, α〉 = 〈n|D̂†(α)D̂(α)|m〉 = δnm, (3.98)

and for arbitrary α the identity operator can be resolved as
∞

∑
n=0

|n, α〉〈n, α| = Î. (3.99)

Moreover, for arbitrary n the identity can also be resolved by an integral over
the displacement amplitude, in analogy with Eq. (3.71),

1
π

∫
d2α |n, α〉〈n, α| = Î. (3.100)

Finally, their scalar product with number states can be shown to be expressible

in terms of the Laguerre polynomials L(k)
n (x) as

〈n|m, α〉 = (−α∗)m−n

√
n!
m!

L(m−n)
n

(|α|2) e−|α|2/2 (m ≥ n), (3.101)

and 〈n|m, α〉=(〈m|n,−α〉)∗ for the coefficients with m<n.

3.3
Squeezed states

Another important class of quantum states are the squeezed states or more
precisely the quadrature-squeezed states. For the purpose of deriving these
states we return to the unitary transformation, Eqs (3.38) and (3.39), which
was employed to derive the coherent states, and assume that the unitary op-
erator Û is now the squeeze operator,

Û ≡ Ŝ(ξ) = exp
[ 1

2 (ξ∗ â2 − ξ â†2)
]
, (3.102)

with ξ – the squeezing parameter – being a complex number. To obtain the
relation between the transformed annihilation and creation operators â′, â′†
and the original ones, it is convenient to define the operators

Ĝ(z) = Ŝz(ξ), (3.103)

â(z) = Ĝ(z)âĜ†(z), (3.104)
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where z is a real number (the parameter ξ has been omitted for notational
convenience). Comparing Eqs (3.38) and (3.104) we see that the original and
the transformed annihilation operators are recovered from â(z) for z =0 and
z=1, respectively,

â(z)|z=0 = â, (3.105)

â(z)|z=1 = â′. (3.106)

Using Eqs (3.102) and (3.103) the derivative of the operator (3.104) with respect
to z can be obtained as

dâ(z)
dz

=
dĜ(z)

dz
âĜ†(z) + Ĝ(z)â

dĜ†(z)
dz

=
[
â(z), 1

2{ξ â†2(z)− ξ∗ â2(z)}] = 1
2 ξ

[
â(z), â†2(z)

]
. (3.107)

Since Eq. (3.104) describes a unitary transformation, the operators â(z) and
â†(z) again obey the bosonic commutator relation (3.4) and we obtain from
Eq. (3.107)

dâ(z)
dz

= ξ â†(z),
dâ†(z)

dz
= ξ∗ â(z). (3.108)

The solution to the differential equations (3.108) reads

â(z) = ĉ1e|ξ|z + ĉ2e−|ξ|z, (3.109)

where the operators ĉ1 and ĉ2 are determined, according to Eqs (3.105) and
(3.108), by the initial conditions

â(z)|z=0 = ĉ1 + ĉ2 = â, (3.110)

dâ(z)
dz

∣∣∣
z=0

= |ξ|(ĉ1 − ĉ2) = ξ â†. (3.111)

Combining Eqs (3.109)–(3.111), after some algebra we finally arrive at (ϕξ =
arg(ξ))

â(z) = â cosh(|ξ|z) + â†eiϕξ sinh(|ξ|z), (3.112)

from which we obtain, according to Eq. (3.106), the transformed operators â′
and â′† in terms of the original ones:1

â′ = µâ + νâ†, (3.113)

â′† = µâ† + ν∗ â, (3.114)

1) Note that this is a SU(1,1) group transformation.
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where the parameters µ and ν are defined by

µ = cosh |ξ|, (3.115)

ν = eiϕξ sinh |ξ|. (3.116)

As mentioned before, since the operators â′ and â′† are obtained from the op-
erators â and â† by a unitary transformation, the (equal-time) commutator
relation is preserved,

[â′, â′†] = 1. (3.117)

Inserting Eqs (3.113) and (3.114) into Eq. (3.117), it follows that the parameters
µ and ν obey the following constraint:

µ2 − |ν|2 = 1, (3.118)

which apparently is provided by their definitions (3.115) and (3.116).
As a unitary transformation Û that can be used to define the squeezed co-

herent states, in a similar way to the coherent states (cf. Section 3.2), let us
consider now the unitary transformation

Û(ξ, β) = Ŝ(ξ)D̂(β). (3.119)

It first coherently displaces by an amplitude β and then squeezes with
squeezing parameter ξ. Analogously to the definition of the coherent states
[Eq. (3.50)], we may now define the states |ξ, β〉 by applying the transforma-
tion (3.119) onto the ground state |0〉,

|ξ, β〉 = Û(ξ, β)|0〉 = Ŝ(ξ)D̂(β)|0〉 = Ŝ(ξ)|β〉. (3.120)

The states |ξ, β〉 (sometimes denoted by |µ, ν; β〉) are called squeezed coherent
states [Stoler (1970, 1971); Yuen (1976); for reviews see Walls (1983); Loudon
and Knight (1987)].

From the relations (3.120) we see that applying the displacement operator
D̂(β) to the vacuum state |0〉 and then applying the squeeze operator Ŝ(ξ) to
the resulting coherent state |β〉 yields the squeezed coherent state |ξ, β〉. How-
ever, we may arrive at the same result if we first apply the squeeze operator
Ŝ(ξ) to the vacuum state |0〉 in order to generate the squeezed ground (or
vacuum) state,

|ξ, 0〉 = Ŝ(ξ)|0〉 (3.121)

and then apply the transformed displacement operator D̂′(β) to this state:

|ξ, β〉 = D̂′(β)|ξ, 0〉 = D̂′(β)Ŝ(ξ)|0〉, (3.122)
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where the transformed displacement operator, which has been used here,
reads

D̂′(β) = Ŝ(ξ)D̂(β)Ŝ†(ξ) = exp(βâ′† − β∗ â′). (3.123)

By means of Eqs (3.113) and (3.114) it can be written in terms of the operators
â and â† as

D̂′(β) = D̂(β′) = exp(β′ â† − β′∗ â), (3.124)

where the transformed amplitude β′ is given by

β′ = µβ − νβ∗. (3.125)

Hence the squeezed coherent states can also be obtained by first squeezing the
ground state and then displacing it by a modified amplitude β′:

|ξ, β〉 = D̂(β′)Ŝ(ξ)|0〉 = D̂(β′)|ξ, 0〉. (3.126)

Taking into consideration that 0 = Û(ξ, β)â|0〉 = Û(ξ, β)âÛ†(ξ, β)|ξ, β〉 =
D̂′(β)â′D̂′†(β)|ξ, β〉 = (â′ − β)|ξ, β〉 [cf. Eqs (3.47)–(3.49)], we see that the
squeezed coherent states are the right-hand eigenstates of the transformed
annihilation operator,

â′|ξ, β〉 = β|ξ, β〉, (3.127)

which, in combination with Eq. (3.113), can be regarded as an alternative def-
inition of these states [Yuen (1976)].2

Analogously to the coherent states, the squeezed coherent states are over-
complete and nonorthogonal. To prove that they resolve the identity with
respect to the coherent amplitude, we use Eq. (3.120) and recall Eq. (3.71):

1
π

∫
d2β |ξ, β〉〈ξ, β| = Ŝ(ξ)

(
1
π

∫
d2β |β〉〈β|

)
Ŝ†(ξ)

= Ŝ(ξ) ÎŜ†(ξ) = Î. (3.128)

It is also easily seen that the nonorthogonality with respect to different coher-
ent amplitudes but equal squeezing parameters is the same as for the coherent
states:

〈ξ, α|ξ, β〉 = 〈α|Ŝ†(ξ)Ŝ(ξ)|β〉 = 〈α|β〉. (3.129)

2) In Yuen’s approach to squeezed coherent states (also called two-
photon coherent states) the parameter µ is chosen to be complex, µ
and ν obeying the condition |µ|2−|ν|2 =1. Since here only the phase
difference arg(ν)−arg(µ) is relevant, without loss of generality,
arg(µ) may be chosen to be zero.
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Without going into the details of calculation, we note that the squeeze op-
erator Ŝ(ξ), Eq. (3.102), can be rewritten, on applying exponential-operator
disentangling, as3

Ŝ(ξ) = exp
(
− ν

2µ
â†2

) (
1
µ

)n̂+ 1
2

exp
(

ν∗

2µ
â2

)
, (3.130)

with µ and ν from Eqs (3.115) and (3.116). Hence, the squeezed ground state
|ξ, 0〉, Eq. (3.121), can be given in the form of

|ξ, 0〉 =
1√
µ

exp
(
− ν

2µ
â†2

)
|0〉, (3.131)

and coherent displacement [according to Eqs (3.122) and (3.124)] then yields
the squeezed coherent states in the form of

|ξ, β〉 =
1√
µ

exp
[
− ν

2µ
(â† − β′∗)2

]
|β′〉

=
1√
µ

exp
[
−1

2
|β′|2 + β′ â† − ν

2µ
(â† − β′∗)2

]
|0〉, (3.132)

where β′ is related to β according to Eq. (3.125). With the help of Eq. (3.132) it
is not difficult to prove that the scalar products of the squeezed coherent states
|ξ, β〉 with the coherent states |α〉 and the number states |n〉, respectively, read4

〈α|ξ, β〉 =
1√
µ

exp
(
−|α|2 + |β|2

2
+

2α∗β − να∗2 + ν∗β2

2µ

)
, (3.133)

〈n|ξ, β〉 =
[ν/(2µ)]

n
2√

µ n!
exp

[
−1

2

(
|β|2 − ν∗

µ
β2

)]
Hn

(
β√
2µν

)
, (3.134)

with Hn(x) being the Hermite polynomial.

3.3.1
Statistics of the squeezed states

To obtain the mean number of quanta, or in the case of a radiation-field mode,
the mean photon number,

〈ξ, β|n̂|ξ, β〉 = 〈ξ, β|â† â|ξ, β〉 = 〈β|Ŝ†(ξ)â† âŜ(ξ)|β〉
= 〈β|Ŝ†(ξ)â†Ŝ(ξ)Ŝ†(ξ)âŜ(ξ)|β〉, (3.135)

3) Equation (3.130) can be proved correct, applying the differential-
equation technique described previously in this section and showing
that it leads exactly to Eqs (3.113) and (3.114).

4) Note that the relation ∑∞
n=0

1
n! Hn(x)tn =exp

(−t2 + 2tx
)

has been
used to derive Eq. (3.134).
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we first note that Ŝ†(ξ) = Ŝ(−ξ) and that µ(−ξ) = µ(ξ) and ν(−ξ) =− ν(ξ)
[cf. Eqs (3.115) and (3.116)]. From these relations it follows that, on recalling
Eq. (3.113),

Ŝ†(ξ)âŜ(ξ) = Ŝ(−ξ)âŜ†(−ξ) = µâ − νâ†, (3.136)

and we obtain for Eq. (3.135)

〈ξ, β|n̂|ξ, β〉 = 〈β|(µâ† − ν∗ â)(µâ − ν â†)|β〉
= 〈β|(µ2 â† â + |ν|2 ââ† − µνâ†2 − µν∗ â2)|β〉
= |β′|2 + |ν|2, (3.137)

where β′=µβ−νβ∗ [Eq. (3.125)]. Analogously, we find for the mean coherent
amplitude

〈ξ, β|â|ξ, β〉 = 〈β|Ŝ†(ξ)âŜ(ξ)|β〉 = 〈β|(µ â − ν â†)|β〉 = β′, (3.138)

which means that, in the case of a single-mode radiation field, for example,
the mean value of the electric-field strength takes the same form as when the
mode is in the coherent state |β′〉 [cf. Eq.(3.75)], that is,

〈ξ, β|Êk(r)|ξ, β〉 = iω[Ak(r)β′ − A∗
k(r)β′∗]. (3.139)

For β = 0 (and hence β′ = 0) we see from the last line in Eq. (3.137) that |ν|2
is the contribution to the mean number of quanta coming from the squeezed
ground state |ξ, 0〉,

〈ξ, 0|n̂|ξ, 0〉 = |ν|2. (3.140)

The first term in the last line in Eq. (3.137) obviously constitutes the mean
number of quanta coming from the coherent amplitude β′ implemented when
the squeezed ground state |ξ, 0〉 [Eq. (3.121)] in phase space is displaced by
β′ to generate the squeezed coherent state |ξ, β〉 [Eq. (3.122)], which is quite
similar to the generation of the coherent state |β′〉 from the ordinary ground
state |0〉. Hence |β′|2 just corresponds to the mean number of quanta associ-
ated with the coherent part of the excitation of the system,

〈β′|n̂|β′〉 = |β′|2 = |〈ξ, β|â|ξ, β〉|2. (3.141)

Using Eqs (3.140) and (3.141), we may rewrite Eq. (3.137) as a sum of the mean
number of quanta associated with the coherent part and the incoherent part
of the excitation, respectively,

〈ξ, β|n̂|ξ, β〉 = 〈β′|n̂|β′〉 + 〈ξ, 0|n̂|ξ, 0〉. (3.142)
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For the case of a radiation-field mode, the squeezed ground state |ξ, 0〉 (ξ �=0)
is often called the squeezed vacuum, in contrast to the ordinary vacuum |0〉,
which is the state with zero photons. It should be pointed out that this does
not hold for the squeezed vacuum |ξ, 0〉: the mean number of photons in this
state does not vanish (|ν|2 �=0).

To gain deeper insight into the statistics of squeezed coherent states, it may
be useful to introduce the phase-rotated quadrature

x̂(ϕ) = â eiϕ + â†e−iϕ, (3.143)

which parametrically depends on ϕ. It can be readily proved that

[x̂(ϕ), x̂(ϕ′)] = 2i sin(ϕ − ϕ′). (3.144)

Hence, two quadratures of orthogonal phases, i. e., ϕ′ = ϕ ± π/2, in a similar
way to position and momentum, are canonically conjugate to each other, in
the sense that

[x̂(ϕ), x̂
(

ϕ ± 1
2 π

)
] = ∓2i. (3.145)

The phase-rotated quadrature can be used to represent various physical ob-
servables by supplementing a real-valued scaling factor and appropriate
choice of the phase ϕ. For example, identifying x̂(ϕ) with a Cartesian com-
ponent of the electric-field strength of a single-mode (free) radiation field, we
would have

Êk(r) = iω[Ak(r)â − A∗
k (r)â†] = ω|Ak(r)|x̂(ϕ), (3.146)

where the phase is given by

ϕ = arg[Ak(r)] + 1
2 π. (3.147)

From Eq. (3.138) we immediately obtain the expectation value of the quadra-
ture as

〈ξ, β|x̂(ϕ)|ξ, β〉 = β′eiϕ + β′∗e−iϕ, (3.148)

which of course corresponds to Eq. (3.139).
Let us now consider the quadrature fluctuation by calculating the variance

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 = 〈ξ, β|x̂2(ϕ)|ξ, β〉 − [〈ξ, β|x̂(ϕ)|ξ, β〉]2.

=
[〈ξ, β|(â†â + ââ†)|ξ, β〉 − 2|〈ξ, β|â|ξ, β〉|2]
+ 2Re

[〈ξ, β|(∆â)2|ξ, β〉 e2iϕ]
. (3.149)



3.3 Squeezed states 95

Applying Eqs (3.136) and (3.138), we first calculate

〈ξ, β|(∆â)2|ξ, β〉 = 〈β|Ŝ†(ξ)â2Ŝ(ξ)|β〉 − β′2 = 〈β|(µâ − νâ†)2|β〉 − β′2

= 〈β|[µ2 â2 + ν2â†2 − µν(â† â + ââ†)]|β〉 − β′2

= −µν, (3.150)

so that, by insertion of Eq. (3.150) into (3.149), we obtain for the sought vari-
ance

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 =
∣∣µeiϕ − ν∗e−iϕ∣∣2. (3.151)

Introducing the modulus |ν| and phase ϕν (= ϕξ) of ν, we may rewrite
Eq. (3.151) as

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 =
∣∣µ − |ν| exp[i(2ϕ + ϕν)]

∣∣2

=
{

1 + 2|ν|2
[

1 −
√

1 + |ν|2
|ν|2 cos(2ϕ + ϕν)

]}
,

(3.152)

where, in order to express the variance solely in terms of ν, we have used the
relation (3.118).

Equation (3.152) reveals that for a fixed value of ν (i. e., fixed ξ) the vari-
ance 〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 sensitively depends on the phase 2ϕ + ϕν. Clearly,
in the limiting case as ν goes to zero (or equivalently ξ → 0), that is, when
the squeezed coherent state |ξ, β〉 tends to the ordinary coherent state |β〉, this
phase dependence vanishes and we obtain the ground-state quadrature fluc-
tuation:

lim
ν→0

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 = 〈β|[∆x̂(ϕ)]2|β〉 = 〈0|[∆x̂(ϕ)]2|0〉 = 1. (3.153)

For nonvanishing squeezing parameter (ν �= 0), however, the fluctuation de-
pends, for chosen ϕν, crucially on ϕ, so that at certain values of ϕ the fluctu-
ation may be larger or even smaller than the ground-state limit (3.153). From
Eq. (3.152) it can be seen that the fluctuation is smaller than the ground-state
limit, i. e., 〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉<1, for

cos(2ϕ + ϕν) >

√
|ν|2

1 + |ν|2 , (3.154)

and it is minimal for cos(2ϕ + ϕν) = 1. That is, for the specific values of the
phase ϕ given by

ϕmin = kπ − 1
2 ϕν (3.155)
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Fig. 3.1 The variance of the quadrature 〈[∆x̂(ϕ)]2〉 is shown for a
squeezed state with ϕν =− π/2 and for |ν|2 =0.3 (curve 1), 1 (2), 3 (3)
and 10 (4); the ground-state noise level (|ν|2 =0) is indicated by the dot-
ted line. It can be seen that the noise is π-periodic with respect to the
phase ϕ of the quadrature.

(k, integer), the quadrature fluctuation is reduced below the ground-state limit
by the factor

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉∣∣
ϕ=ϕmin

= e−2|ξ|. (3.156)

On the other hand, the fluctuation becomes larger than the ground-state
limit, i. e., 〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉>1, for

cos(2ϕ + ϕν) <

√
|ν|2

1 + |ν|2 . (3.157)

Here the maximum fluctuation is observed at phases where cos(2ϕ+ ϕν)=−1,
that is for values of ϕ given by

ϕmax = 1
2 (2k + 1)π − 1

2 ϕν, (3.158)

where the fluctuation is enhanced with respect to the ground state by the fac-
tor

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉∣∣
ϕ=ϕmax

= e2|ξ|. (3.159)

We see that for certain phase values the quadrature noise can be “squeezed”
below the ground-state (vacuum) level at the expense of increased noise for
certain other phase values. From inspection of Eq. (3.152), this squeezing ef-
fect is seen to increase with |ν| (= cosh |ξ|). The typical fluctuation behavior
of a system in a squeezed coherent state is illustrated in Fig. 3.1. It clearly
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shows that, with decreasing noise for a given phase ϕmin, the noise for the
phase ϕmax = ϕmin +π/2 can drastically increase. Moreover, the more strongly
the noise is reduced below the ground-state (vacuum) level, the narrower the
phase region around ϕmin, in which noise reduction is observed, becomes.

The behavior is closely related to Heisenberg’s uncertainty principle for two
observables Â and B̂,

〈(∆Â)2〉〈(∆B̂)2〉 ≥ 1
4 |〈[Â, B̂]〉|2, (3.160)

which, because of the commutator relation (3.144) for Â= x̂(ϕ) and B̂= x̂(ϕ′),
reads

〈[∆x̂(ϕ)]2〉〈[∆x̂(ϕ′)]2〉 ≥ sin2(ϕ − ϕ′) (3.161)

and holds for arbitrary quantum states. In the case when the two phases are ϕ

=ϕmin [Eq. (3.155)] and ϕ′=ϕmax [Eq. (3.158)] – two phases that correspond to
two orthogonal directions in phase space, so that the quadratures x̂(ϕmin) and
x̂(ϕmax) are canonically conjugate to each other – then, in agreement with the
commutator relation (3.145), the uncertainty relation (3.161) takes the form

〈[∆x̂(ϕmin)]2〉〈[∆x̂(ϕmax)]2〉 ≥ 1. (3.162)

For squeezed coherent states, from Eqs (3.156) and (3.159) it follows that

〈ξ, β|[∆x̂(ϕmin)]2|ξ, β〉〈ξ, β|[∆x̂(ϕmax)]2|ξ, β〉 = 1, (3.163)

which shows that squeezed coherent states (as also coherent states) are
minimum-uncertainty states. It should be pointed out that, in the more
general case, where the squeezing phase ϕν is not necessarily adjusted to the
quadrature phases ϕ and ϕ+π/2, according to Eqs (3.155) and (3.158), from
Eq. (3.151) the uncertainty product

〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉〈ξ, β|[∆x̂
(

ϕ + 1
2 π

)]2|ξ, β〉 = [1 + 4µ2|ν|2 sin2(2ϕ + ϕν)]
(3.164)

follows. Comparing this equation with Eq. (3.163), we find that the squeezed
coherent states minimize the uncertainty product for x̂(ϕ) and x̂(ϕ + π/2)
only when the phase of squeezing is related to ϕ by

2ϕ + ϕν = kπ, (3.165)

where k is an integer number [Schubert and Vogel (1978a)]. In this case
〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 and 〈ξ, β|[∆x̂(ϕ + π/2)]2|ξ, β〉 are just the extremal val-
ues [Eqs (3.156) and (3.159)]. The coherent states |α〉, however, are minimum-
uncertainty states, independent of the choice of the phase ϕ:

〈α|[∆x̂(ϕ)]2|α〉〈α|[∆x̂
(

ϕ + 1
2 π

)]2|α〉 = 1. (3.166)
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Fig. 3.2 The uncertainty product ∆x(ϕ)∆x(ϕ + π/2) ≡
{〈[∆x̂(ϕ)]2〉〈[∆x̂(ϕ+π/2)]2〉} 1

2 as a function of ϕ for a squeezed state
with ϕν =−π/2 and for |ν|2 = 0.3 (curve 1), 1 (2), 3 (3) and 10 (4). The
case with |ν|2 = 0 (dotted line) corresponds to a coherent state that
minimizes the uncertainty product for all values of ϕ.

The dependence on the phase ϕ of the uncertainty product of two canonically
conjugated quadratures in the case of squeezed coherent states is illustrated
in Fig. 3.2.

Recalling the definition of normally ordered operator products, we can eas-
ily prove the relation

〈: [∆x̂(ϕ)]2 :〉 = 〈[∆x̂(ϕ)]2〉 − 〈0|[∆x̂(ϕ)]2|0〉, (3.167)

which is valid for an arbitrary quantum state in which the system is prepared.
Since in the case when the system is prepared in a squeezed coherent state
|ξ, β〉 the quadrature variance 〈ξ, β|[∆x̂(ϕ)]2|ξ, β〉 becomes, for appropriately
chosen values of ϕ, smaller than the vacuum limit 〈0|[∆x̂(ϕ)]2|0〉, so that the
normally ordered variance 〈ξ, β| : [∆x̂(ϕ)]2 : |ξ, β〉 becomes negative. At
this point it should be emphasized that the squeezed coherent states may be
viewed as a typical but special class of states giving rise to squeezing. Quite
general, a quantum state may be said to reveal squeezing if for certain values
of the phase the normally ordered quadrature variance becomes negative:

〈: [∆x̂(ϕ)]2 :〉 < 0. (3.168)

3.3.2
Multi-mode squeezed states

The criterion for squeezing as given by Eq. (3.168) can also be used to study
(complicated) multi-mode systems. Let

X̂ = ∑
λ

cλ x̂λ(ϕλ) (3.169)
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be the multi-mode quadrature operator. According to Eq. (3.168), squeezing
is observed if

〈: (∆X̂)2 :〉 < 0. (3.170)

In particular, a multi-mode radiation-field strength

F̂ = ∑
λ

Fλ âλ + F∗
λ â†

λ (3.171)

[cf. Eq. (2.271)] can be regarded as a multi-mode quadrature, setting cλ = |Fλ|
and ϕλ =arg Fλ, and the squeezing criterion reads 〈: (∆F̂)2 :〉<0, i.e, the nor-
mally ordered field variance must be negative.

A generalization of the single-mode squeeze operator defined by Eq. (3.102)
to a squeeze operator acting on multi-mode systems is

Ŝ = exp
[
∑
λ,λ′

(
ξ∗λλ′ âλ âλ′ − ξλλ′ â†

λ â†
λ′

)]
. (3.172)

If the matrix ξλλ′ has only diagonal elements, ξλλ′ = δλ,λ′ξλ/2, the multi-
mode squeeze operator (3.172) reduces to a product of single-mode squeeze
operators of the type (3.102), and its application to the ground state of the
multi-mode system generates multi-mode squeezed vacuum states that are
simply the (direct) products of single-mode squeezed states. Additional ap-
plication of the multi-mode displacement operator then generates multi-mode
squeezed coherent states, which are of course also direct-product states.

A system is said to genuinely feature multi-mode squeezing, if there are
nonvanishing off-diagonal ξλλ′ that give rise to nonclassical correlations be-
tween the modes. To give a simple but illustrative example, let us consider
the case of two modes (λ=1, 2) being prepared in a two-mode squeezed vac-
uum state as a typical example of an entangled state (Section 8.5):

|ξ, 0, 0〉 = Ŝ(ξ)|0, 0〉, (3.173)

where |0, 0〉≡|01〉|02〉 is the ordinary two-mode vacuum state and the two-
mode squeeze operator Ŝ(ξ) is a special case of the general operator (3.172)
with ξ12 =ξ, ξ21 =ξ∗ and ξ11 =ξ22 =0,

Ŝ(ξ) = exp(ξ∗ â1 â2 − ξ â†
1 â†

2). (3.174)

The explicit action of the two-mode squeeze operator on â1 and â2 can be
found in a similar way to that described for the single-mode case. The result
is

Ŝ†(ξ)â1Ŝ(ξ) = µâ1 − νâ†
2, (3.175)

Ŝ†(ξ)â2Ŝ(ξ) = µâ2 − νâ†
1, (3.176)
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where µ and ν are related to ξ by Eqs (3.115) and (3.116), respectively, and in
close analogy to Eq. (3.130), the two-mode squeeze operator can be disentan-
gled to obtain

Ŝ = exp
(
− ν

µ
â†

1 â†
2

) (
1
µ

)n̂1+n̂2+1

exp
(

ν∗

µ
â1 â2

)
. (3.177)

Combining Eqs (3.173) and (3.177), we can easily see that the two-mode
squeezed vacuum state can be represented as

|ξ, 0, 0〉 =
1
µ

exp
(
− ν

µ
â†

1 â†
2

)
|0, 0〉 =

1
µ

∞

∑
n=0

(
− ν

µ

)n

|n, n〉. (3.178)

The generalization to two-mode squeezed coherent states with nonvanishing
coherent amplitudes can be obtained in a straightforward way by additionally
applying coherent displacement operators for both modes.

Let us consider a two-mode radiation-field strength

F̂ = F1 â1 + F∗
1 â†

1 + F2 â2 + F∗
2 â†

2 (3.179)

[Fλ = |Fλ| exp(iϕλ)]. Taking the two-mode field to be in the squeezed vac-
uum state |ξ, 0, 0〉 as given in Eq. (3.173) and using Eqs (3.175) and (3.176), we
calculate the normally ordered variance of F̂ to be

〈ξ, 0, 0| : (∆F̂)2 : |ξ, 0, 0〉 = 2
(|F1|2 + |F2|2

)|ν|2
×

[
1 − 2|F1F2|

|F1|2 + |F2|2
√

1 + |ν|2
|ν|2 cos(ϕ1 + ϕ2 + ϕν)

]
. (3.180)

We see that the radiation may indeed be squeezed, because for appropriately
chosen phases the value of 〈: (∆F̂)2 :〉 may become negative.

We identify â1 and â2 with the annihilation operators for modes of fre-
quencies ω1 = ω0 + ∆ω/2 and ω2 =ω0−∆ω/2, respectively, and apply the
model to the calculation of the normally ordered variance of the electric field
Ê(x, t)= Ê(+)(x, t)+ Ê(−)(x, t),

Ê(+)(x, t) = i
∫ ∞

0
dω

√
h̄ω

4πε0cA e−iω(t−x/c)â(ω), (3.181)

of a linearly polarized wave packet propagating in the positive x direction [see
Eq. (3.90)]. The quantum state considered here is a squeezed vacuum of the
form

|ψ〉sv = Ŝ|ψ〉v, (3.182)
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where |ψ〉v denotes the ordinary vacuum state and the squeeze operator is
given as

Ŝ = exp
{∫ ∞

0
dω [ξ∗(ω)â(ω0 + ω)â(ω0 − ω)

− ξ(ω)â†(ω0 + ω)â†(ω0 − ω)]
}

. (3.183)

Such a squeeze operator correlates pairs of modes around the mid-frequency
ω0, quite similar to the previous example given in Eq. (3.174), however, inte-
grated over all difference frequencies. Nevertheless, it can be easily seen that
the following transformation holds in close analogy to Eqs (3.175) and (3.176)

Ŝ† â(ω)Ŝ = µ(|ω − ω0|)â(ω)− ν(|ω − ω0|)â†(2ω0 − ω), (3.184)

where µ(ω) and ν(ω) are defined via ξ(ω) as described in Eqs (3.115) and
(3.116), respectively.

From this transformation can immediately be seen that

〈Ê(+)(x, t)〉sv = 0. (3.185)

Further, by assuming a finite spectral width of squeezing in the sense that
ν(ω) �= 0 only for 0≤ω≤∆ω, where the spectral width is small compared
with the mid-frequency, ∆ω 
 ω0, it can be shown that the field correlation
functions read (to good approximation) as

〈Ê(−)(x, t)Ê(+)(x′, t′)〉sv

=
h̄ω0

2πε0cA eiω0(τ−τ′)
∫ ∆ω

0
dω |ν(ω)|2 cos[ω(τ − τ′)], (3.186)

〈Ê(+)(x, t)Ê(+)(x′, t′)〉sv

=
h̄ω0

2πε0cA e−iω0(τ+τ′)
∫ ∆ω

0
dω µ(ω)ν(ω) cos[ω(τ − τ′)], (3.187)

where the notation τ= t−x/c has been used. Suppose that the times to be re-
solved are large compared with the inverse bandwidth of the squeezing spec-
trum, ∆τ� (∆ω)−1, and that the squeezing spectrum is sufficiently flat, i. e.,
ν(ω) � ν̄ and µ(ω) � µ̄. In this case the frequency integrals in Eqs (3.186) and
(3.187) can be approximated as delta functions and we obtain:

〈Ê(−)(x, t)Ê(+)(x′, t′)〉sv =
h̄ω0

2ε0cA |ν̄|2 exp[iω0(τ − τ′)]δ(τ − τ′), (3.188)

〈Ê(+)(x, t)Ê(+)(x′, t′)〉sv =
h̄ω0

2ε0cA µ̄ν̄ exp[−iω0(τ + τ′)]δ(τ − τ′). (3.189)
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A radiation field with mean value and correlation functions according to
Eqs (3.185), (3.188) and (3.189) is usually called squeezed white noise [Gar-
diner (1991)]. Note that for an ordinary white-noise field, the relations
〈Ê(+)Ê(+)〉=〈Ê(−)Ê(−)〉=0 hold.

3.4
Quadrature eigenstates

So far we have studied the eigenstates of various kinds of operators, such as
Hermitian number operators n̂ = â† â (number states), non-Hermitian photon
destruction operators â (coherent states), and linear combinations of photon
destruction and creation operators µâ+νâ† (squeezed coherent states). In this
context, the question arises as to what are the eigenstates of the Hermitian
phase-rotated quadrature operator x̂(ϕ) defined by Eq. (3.143).

Before going into detail and answering the question we first mention the
limiting properties of the squeezed coherent states. For this purpose let us
consider the commutator of the annihilation operator â′ = µâ + νâ† and the
quadrature operator,

[x̂(ϕ), â′] = [âeiϕ + â†e−iϕ, µâ + νâ†]

= |ν|e−iϕ

[
ei(2ϕ+ϕν) −

√
1 + |ν|2
|ν|2

]
. (3.190)

Choosing the phases as 2ϕ+ ϕν =2πk where k is an integer number, the com-
mutator vanishes in the limit of infinite squeezing:

lim
|ν|→∞

[x̂(ϕ), â′] = 0 (2ϕ + ϕν = 2πk). (3.191)

That is, in the considered limit the operators x̂(ϕ) and â′ obviously have the
same eigenstates. In the limit as |ν|→∞ the eigenstates of â′ represent ideally
squeezed coherent states, so that (for appropriately chosen phase ϕ) the eigen-
states of the quadrature operator can be viewed as ideally squeezed coherent
states in that limit.

We now turn to the problem of deriving the explicit form of the (single-
mode) quadrature eigenstates in terms of number states.5 For this purpose
let us first consider the case ϕ = 0, for which the form of x̂(ϕ) corresponds
to the well known position operator. The corresponding eigenvalue equation
expanded in terms of number states reads

√
n + 1 〈n + 1|x〉 +

√
n 〈n − 1|x〉 = x〈n|x〉. (3.192)

5) Alternative derivations of the phase-rotated quadrature eigenstates
in both number-state and coherent-state representations were given
by Schubert and Vogel (1978b).



3.4 Quadrature eigenstates 103

The normalized solution of Eq. (3.192) can be written in terms of the Hermite
polynomials as

〈n|x〉 = ψn(x) =
(
2nn!

√
2π

)− 1
2 Hn

(
x/

√
2
)
e−

1
4 x2

. (3.193)

For an arbitrary phase ϕ we employ the phase-rotation operator given by

Û(ϕ) = exp(−iϕâ† â), (3.194)

with the help of which it may be easily proved that

x̂(0) = Û†(ϕ)x̂(ϕ)Û(ϕ). (3.195)

The general eigenvalue problem can then be written as

x̂(0)|x〉 = Û†(ϕ)x̂(ϕ)Û(ϕ)|x〉 = x|x〉, (3.196)

or, multiplying from the left-hand side by Û(ϕ),

x̂(ϕ)Û(ϕ)|x〉 = xÛ(ϕ)|x〉. (3.197)

This shows that the eigenstates of x̂(ϕ) are simply given by

|x, ϕ〉 = Û(ϕ)|x〉, (3.198)

which in the number basis reads as, on recalling Eq. (3.193),

〈n|x, ϕ〉 = ψn(x)e−inϕ. (3.199)

Clearly, the quadrature eigenstates |x, ϕ〉 can also be expressed in terms
other than number states. In particular, in the case of a coherent-state rep-
resentation we have

|x, ϕ〉 =
1
π

∫
d2α |α〉〈α|x, ϕ〉. (3.200)

The scalar product 〈α|x, ϕ〉 can be obtained in different ways, one of which is
by use of the number states and direct evaluation of the occurring sums (cf.
footnote 4, p. 92). The result is

〈α|x, ϕ〉 = (2π)−
1
4 exp

[− 1
4 x2 + x|α|e−i(ϕ+ϕα)

]
× exp

{−|α|2 cos2(ϕ + ϕα) + 1
2 i|α|2 sin[2(ϕ + ϕα)]

}
, (3.201)

where ϕα = arg(α). Equation (3.201) reveals that the probability distribution
for observing a value of the quadrature x when the system is prepared in a
coherent state |α〉 is a Gaussian,

|〈α|x, ϕ〉|2 =
1√
2π

exp
{− 1

2 [x − 〈x̂(ϕ)〉]2}, (3.202)
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where the mean value reads

〈x̂(ϕ)〉 = 〈α|x̂(ϕ)|α〉 = 2|α| cos(ϕ + ϕα). (3.203)

We finally note that, for given ϕ, the quadrature eigenstates are of course
orthogonal and complete in the sense that

〈x, ϕ|x′, ϕ〉 = δ(x − x′), (3.204)

and ∫
dx |x, ϕ〉〈x, ϕ| = Î, (3.205)

which can be proved by using the explicit form of the quadrature eigenstates
in the number-state or coherent-state representation as given above.

3.5
Phase states

As we know, the annihilation and creation operators â and â† correspond to
the classical complex amplitudes α and α∗, respectively, according to the rela-
tions

â �→ α = |α|eiϕ, (3.206)

â† �→ α∗ = |α|e−iϕ. (3.207)

Thus in classical physics it is straightforward to express the quantities of the
system in terms of the amplitude and phase variables |α| and ϕ, respectively.
Amplitude and phase seem to appear in this context as observable quantities
and one may therefore ask for the quantum-mechanical operators which, in a
sense, correspond to them. Attempts to introduce amplitude and phase vari-
ables in quantum mechanics are nearly as old as quantum mechanics itself.
Since Dirac’s introduction of amplitude and phase operators in 1927, a series
of concepts have been developed. Here we concentrate on only a few of them
and emphasize more the resulting phase states that are eigenstates of appro-
priately chosen phase operators.

In close analogy with the classical approach to the problem of defining am-
plitude and phase variables, Dirac introduced a phase operator φ̂ by factoring
the annihilation and creation operators as follows:

â = V̂
√

n̂ , â† =
√

n̂ V̂†, (3.208)

where the operator V̂ is regarded as being a unitary operator of the form

V̂ = eiφ̂ (3.209)
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[Dirac (1927)], with φ̂ being assumed to be the Hermitian phase operator,

φ̂† = φ̂. (3.210)

However, difficulties arise here which are closely related to the fact that the op-
erator V̂ is actually not unitary [London (1926, 1927)] and therefore Eqs (3.208)
and (3.209) do not define a Hermitian phase operator φ̂. It can be proved [Car-
ruthers and Nieto (1968)] that 〈0|V̂†V̂|0〉=0, which contradicts the assump-
tion of unitarity, V̂†V̂ = Î. This result can be shown as follows. Applying
Eq. (3.208) to a photon-number state |n〉 yields

V̂|n〉 = |n − 1〉, n = 1, 2, . . . . (3.211)

In the case n=0, due to the completeness of the number states, one may write

V̂|0〉 =
∞

∑
n=0

dn|n〉. (3.212)

From these equations one finds that

V̂†|n〉 = ∑
m
|m〉〈m|V̂†|n〉 = d∗n|0〉 + |n + 1〉, (3.213)

and hence for n>0

V̂†V̂|n〉 = V̂†|n − 1〉 = d∗n−1|0〉+ |n〉. (3.214)

Therefore, if V̂†V̂ = Î it follows that dn =0 for all n. This means that V̂|0〉= 0
and therefore 〈0|V̂†V̂|0〉=0. Note that in contrast to V̂†V̂, V̂V̂† is the identity
operator: V̂V̂† = Î.

3.5.1
The eigenvalue problem of V̂

Susskind and Glogower (1964) considered, according to Eq. (3.208), the expo-
nential phase operator V̂ but without assuming its unitarity:

V̂ = êiφ, V̂† =
(
êiφ

)† (3.215)

[see also Carruthers and Nieto (1968)]. To represent the operators V̂ and V̂† in
the number basis, we use the number representations of

√
n̂, â and â†, namely

√
n̂ =

∞

∑
n=0

√
n |n〉〈n| =

∞

∑
n=0

√
n + 1 |n + 1〉〈n + 1|, (3.216)

â =
∞

∑
n=0

√
n + 1 |n〉〈n + 1|, (3.217)

â† =
∞

∑
n=0

√
n + 1 |n + 1〉〈n| (3.218)
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[cf. Eqs (3.19) and (3.20)]. Combining Eqs (3.217) and (3.216) and taking into
account the completeness of the number states, we derive

â =
∞

∑
n=0

∞

∑
m=0

√
n + 1 |n〉〈n + 1|m〉〈m|

=
∞

∑
n=0

∞

∑
m=1

√
m |n〉〈n + 1|m〉〈m| =

∞

∑
n=0

|n〉〈n + 1|√n̂ , (3.219)

from which, together with Eq. (3.208), we may choose V̂ as

V̂ =
∞

∑
n=0

|n〉〈n + 1|, (3.220)

and the relation

V̂
√

n̂ =
√

n̂ + 1 V̂ (3.221)

holds.6 Accordingly, we have

V̂† =
∞

∑
n=0

|n + 1〉〈n|. (3.222)

Applying V̂ to a number state |n〉 gives, on using Eq. (3.220),

V̂|n〉 = |n − 1〉. (3.223)

In particular, the application of V̂ to the ground state gives

V̂|0〉 = 0. (3.224)

Combining Eqs (3.220) and (3.222), we derive

V̂V̂† = Î, (3.225)

V̂†V̂ = Î − |0〉〈0|. (3.226)

Equations (3.225) and (3.226) imply that

[V̂, V̂†] = |0〉〈0|. (3.227)

It should be noted that the nonunitarity and the noncommuting nature are
only relevant for states |Ψ〉 having a significant overlap with the ground state
(vacuum):

〈Ψ|[V̂, V̂†]|Ψ〉 = |〈0|Ψ〉|2. (3.228)

6) Note that there is an ambiguity because of the undetermined term
with m=0 in the second line of Eq. (3.219). From the first line of
Eq. (3.219) an ambiguous definition of V̂ can be given by supposing
that â=(n̂+1)1/2V̂, which implies that V̂n̂1/2 =(n̂+1)1/2V̂.
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Let us now consider the eigenvalue problem for V̂. Postulating

V̂|φ〉 = eiφ|φ〉 (3.229)

and expanding |φ〉 in the number basis,

|φ〉 =
∞

∑
n=0

bn|n〉, (3.230)

we readily arrive, on using Eq. (3.220), at the recurrence relation

bn+1 = eiφbn, (3.231)

which may be satisfied by choosing

bn = b0einφ. (3.232)

The eigenstates of the operator V̂ have therefore the form

|φ〉 = b0

∞

∑
n=0

einφ|n〉. (3.233)

As expected, application of Û(ϕ), Eq. (3.194), onto |φ〉 shifts φ to φ−ϕ,

Û(ϕ)|φ〉 = |φ − ϕ〉. (3.234)

Furthermore, the states |φ〉 obviously satisfy the periodicity condition

|φ + 2π〉 = |φ〉, (3.235)

and the identity can be resolved by these states:

∣∣b0
√

2π
∣∣−2

∫ 2π

0
dφ |φ〉〈φ| =

∞

∑
n,m=0

|n〉〈m| 1
2π

∫ 2π

0
dφ exp[i(n − m)φ]

=
∞

∑
n,m=0

|n〉〈m| δnm = Î, (3.236)

from which we may choose b0 =1/
√

2π.
Having in mind a classical picture of phase, the states

|φ〉 =
1√
2π

∞

∑
n=0

einφ|n〉, (3.237)

may be regarded as quantum-mechanical phase states [cf. London (1926,
1927)]. The thus introduced phase is also called the canonical phase or Lon-
don phase. In particular, Eq. (3.234) implies that a freely evolving phase state
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(ϕ �→ ωt) would remain a phase state for all time. However, the states |φ〉
are not orthogonal and, unfortunately, they cannot be normalized in a proper
way. Indeed, we deduce from Eq. (3.237) that7

〈φ|φ′〉 =
1

2π

∞

∑
n=0

exp[−in(φ − φ′)]

=
{

1
4π

+
1
2

δ(φ − φ′) − i
4π

cot
[ 1

2 (φ − φ′)
]}

(3.238)

(0≤|φ−φ′|<2π). Clearly, the states |φ〉 are not eigenstates of the operator V̂†,
which is significant for an analysis of states which substantially overlap with
the ground state. Combining Eqs (3.222) and (3.237) we find that

V̂†|φ〉 = e−iφ
(
|φ〉 − 1√

2π
|0〉

)
. (3.239)

Nevertheless, the states |φ〉 may be useful because they resolve the identity,
Eq. (3.236). Hence any state |Ψ〉 can be expressed in terms of them:

|Ψ〉 =
∫ 2π

0
dφ |φ〉〈φ|Ψ〉. (3.240)

The nonorthogonality of the states |φ〉 might be removed by using a finite-
dimensional Hilbert space spanned by r+1 number states {|n〉}. In this trun-
cated Hilbert space, a set of r+1 phase states |φ(r)〉 can be introduced as

|φ(r)
m 〉 =

1√
r + 1

r

∑
n=0

einφ
(r)
m |n〉, (3.241)

where

φ
(r)
m = φ

(r)
0 +

2mπ

r + 1
(m = 0, 1, . . . , r). (3.242)

[cf. Eq. (3.237)]. Here the phase φ
(r)
0 is a reference phase whose value deter-

mines the choice of the 2π periodicity interval of the phase. For each finite r

the states |φ(r)
m 〉 are orthonormal and complete in the sense that

〈φ(r)
m |φ(r)

m′ 〉 = δmm′ , (3.243)

r

∑
m=0

|φ(r)
m 〉〈φ(r)

m | = Î. (3.244)

7) Note that the relations 2 ∑∞
n=1 sin(nφ)=cot(φ/2) and ∑∞

n=1 cos(nφ)
−1/2=π ∑∞

n=−∞ δ(φ−2nπ) are valid, the latter results from the
identity ∑∞

n=−∞ exp(inφ)=2π ∑∞
n=−∞ δ(φ−2nπ).
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Hence in the truncated Hilbert space a Hermitian phase operator can be de-
fined as follows:

φ̂(r) =
r

∑
m=0

φ
(r)
m |φ(r)

m 〉〈φ(r)
m |. (3.245)

The limiting procedure r → ∞ can then be performed at the end of all
(c-number) calculations [Loudon (1973); Pegg and Barnett (1988, 1989); Bar-
nett and Pegg (1992)].

3.5.2
Cosine and sine phase states

It is worth noting that the operators V̂ and V̂† may be used to define Hermitian
operator analogues of cos φ and sin φ as follows:

Ĉ = 1
2 (V̂ + V̂†), (3.246)

Ŝ = 1
2 i(V̂ − V̂†). (3.247)

Using Eqs (3.220) and (3.222), we see that

[V̂, n̂] = V̂, [V̂†, n̂] = −V̂†. (3.248)

These commutation rules imply, on using Eqs (3.246) and (3.247), the follow-
ing commutation rules for Ĉ, Ŝ and n̂:

[Ĉ, n̂] = iŜ, [Ŝ, n̂] = −iĈ, [Ĉ, Ŝ] = 1
2 iP̂0 , (3.249)

where P̂0 = |0〉〈0|. Hence according to Heisenberg’s uncertainty principle
(3.160), the following uncertainty relations can be deduced:

∆n∆C ≥ 1
2 〈Ŝ〉, ∆n∆S ≥ 1

2 〈Ĉ〉, ∆S∆C ≥ 1
4 〈P̂0〉. (3.250)

In particular, the third of these reveals that C and S can be accurately measured
simultaneously only when the state, say |Ψ〉, has sufficiently small overlap
with the ground state: |〈0|Ψ〉|2
1. In other words, if the overlap cannot
be disregarded, Ĉ and Ŝ are expected to give rise to two (Hermitian) phase
operators φ̂C and φ̂S instead of the desired one-phase operator. Since Ĉ and Ŝ
are well-defined Hermitian operators, their eigenvalues give possible results
of measurements of C and S.

In order to solve the eigenvalue problem for Ĉ,

Ĉ| cos φ〉 = C| cos φ〉, (3.251)

we expand | cos φ〉 in the number basis,

| cos φ〉 =
∞

∑
n=0

bn|n〉. (3.252)
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Recalling Eqs (3.220) and (3.222), after some algebra we obtain the recurrence
relations

2b0C = b1 , 2bn+1C = bn + bn+2 . (3.253)

The second of these is solved by

bn = αVn + βV−n, C = 1
2 (V + V−1) (3.254)

for arbitrary values of α and β. To avoid divergence difficulties |V| must be
unity so that

V = eiφ, C = cos φ. (3.255)

To specify α and β, we note that b0 can be chosen to be real so that α = β∗
in Eq. (3.254). Making the substitution b0 �→ b0 sin φ (b0 real), it is seen from
Eqs (3.254) and (3.255) that

bn = b0 sin[(n + 1)φ]. (3.256)

Hence Eqs (3.251) and (3.252) become

Ĉ| cos φ〉 = cos φ| cos φ〉, (3.257)

| cos φ〉 = b0

∞

∑
n=0

sin[(n + 1)φ]|n〉. (3.258)

Note that all independent solutions are contained in the interval 0≤φ<π. By
straightforward calculation, on recalling the formulae in footnote 7, p. 108, it
can be shown that the | cos φ〉 form an orthonormal and complete set of basis
vectors in the Hilbert space (b0 =

√
2/π):

〈cos φ| cos φ′〉 = δ(φ − φ′), (3.259)∫ π

0
dφ | cos φ〉〈cos φ| = Î. (3.260)

The solution of the eigenvalue problem for the sine operator Ŝ may be found
in a very similar way [for details see Carruthers and Nieto (1968)]. The result
may be written as

Ŝ| sin φ〉 = sin φ| sin φ〉, (3.261)

| sin φ〉 =
1√
2π

∞

∑
n=0

{exp[i(n + 1)φ]− exp[−i(n + 1)(φ − π)]}|n〉, (3.262)

〈sin φ| sin φ′〉 = δ(φ − φ′), (3.263)∫ π/2

−π/2
dφ | sin φ〉〈sin φ| = Î. (3.264)
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By power-series expansion, for each operator Ĉ and Ŝ, Hermitian phase op-
erators φ̂C (= φ̂†

C) and φ̂S (= φ̂†
S), respectively, can be defined as

φ̂C ≡ cos−1 Ĉ = 1
2 π −

∞

∑
k=0

(−1)k

2k + 1

(− 1
2

k

)
Ĉ2k+1, (3.265)

φ̂S ≡ sin−1 Ŝ =
∞

∑
k=0

(−1)k

2k + 1

(− 1
2

k

)
Ŝ2k+1. (3.266)

Note that φ̂C and φ̂S do not commute ([φ̂C, φ̂S] �=0). Hence two unitary opera-
tors V̂C and V̂S can be defined:

V̂C = eiφ̂C (V̂†
CV̂C = V̂CV̂†

C = Î), (3.267)

V̂S = eiφ̂S (V̂†
S V̂S = V̂SV̂†

S = Î), (3.268)

so that, combining Eqs (3.246) and (3.247) with the inverse of Eqs (3.265) and
(3.266),

V̂ = 1
2

(
eiφ̂C + eiφ̂S + e−iφ̂C − e−iφ̂S

)
. (3.269)

This result together with Eq. (3.208) is the correct version of Dirac’s postulate
given in Eq. (3.209).

The cosine and sine operators of the phases of two modes can be used to
define cosine and sine operators of the phase difference, by applying the ad-
dition theorems as follows:

Ĉ12 = Ĉ1Ĉ2 + Ŝ1Ŝ2 , (3.270)

Ŝ12 = Ŝ1Ĉ2 − Ŝ2Ĉ1 . (3.271)

From the commutation relations (3.249) it is easily shown that Ĉ12 and Ŝ12
commute with the total-number operator:

[Ĉ12, n̂1 + n̂2] = 0, [Ŝ12, n̂1 + n̂2] = 0 (3.272)

(note that operators of different modes commute).
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4
Bosonic systems in phase space

In classical physics the state of a physical object and its dynamics can gen-
erally be illustrated by a time dependent probability density in phase space.
The phase space is thereby spanned by the canonically conjugate variables as,
for example, the position q and momentum p of a particle. The phase-space
density P(q, p, t) relates then to the probability dw at time t of observing the
particle in the intervals dq and dp, centered around the values q and p, via the
typical expression dw=P(q, p, t)dqdp.

Whereas this is perfectly appropriate in classical physics one encounters
problems of interpretation in the quantum domain. Here Heisenberg’s un-
certainty relation ∆q∆p≥ h̄/2 prohibits one to consider the knowledge (i. e.,
observation) of both canonical variables at the same time with arbitrary preci-
sion. Proper probability densities in phase space, which are based on orthogo-
nal projectors, may therefore be considered nonexistent. However, a complete
description of the quantum mechanical state can still be obtained in phase
space if one introduces phase-space functions in a wider sense. To do this, we
may first generalize our description of a quantum mechanical system in order
to include (classical) statistical uncertainties. This is readily obtained in terms
of the statistical density operator, which includes both quantum and classi-
cal uncertainties in the inference of the properties of the considered physical
object.

4.1
The statistical density operator

After the measurement of an observable with the observed outcome being O
we encode our inferred knowledge of the physical state of the measured object
in the form of the quantum state, which is chosen to be the eigenstate of the
associated Hermitian operator Ô with eigenvalue O. Clearly this represents
an idealized picture in that we assume a perfect detection of the observable.
However, in general we may release these constraints to also allow statistical
uncertainties in the measurement process itself. These uncertainties, being
of classical nature, restrict the knowledge or information that can be gained
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in a measurement, since now a range of values of O may correspond to the
measurement outcome.

To deal with such situations we have to incorporate classical statistics into
our quantum mechanical description of the inferred state of a quantum me-
chanical object. Most naturally this is performed by turning to the statistical
density operator which is a weighted sum of state projectors, with the weights
having the properties of a probability distribution,

�̂ = ∑
ψ

Pψ|ψ〉〈ψ|. (4.1)

Here Pψ may be viewed as the probability of finding the system in the quan-
tum state |ψ〉 and the sum goes over all possible or considered states. Clearly,
the Pψ being defined as probabilities have to satisfy the conditions

Pψ ≥ 0, ∑
ψ

Pψ = 1. (4.2)

In particular, a pure state |φ〉 can be easily represented by a density operator
by choosing the weights as Pψ =δψφ. The density operator reduces then to the
projector �̂= |φ〉〈φ|.

The expectation value of a physical observable represented by the corre-
sponding Hermitian operator Ô for the quantum state being described by a
density operator reads as

〈Ô〉 = ∑
ψ

Pψ〈ψ|Ô|ψ〉 = Tr(�̂Ô). (4.3)

From Eq. (4.3) we can see that when the system is prepared in a statistical mix-
ture of quantum states (4.1), obtaining the expectation value of an observable
is in general a two-fold procedure. Firstly the quantum-mechanical expec-
tation values of the observable Ô must be calculated for the states |ψ〉 and
secondly these expectation values must be averaged according to the proba-
bilities Pψ in the usual (classical) way.

Using the density operator itself as the observable, Ô = �̂, we obtain from
Eq. (4.3) the special result

〈�̂〉 = ∑
ψ,ψ′

PψPψ′ |〈ψ′|ψ〉|2, (4.4)

where by using the relation |〈ψ|ψ′〉|≤1 we may derive from (4.4) the inequal-
ity

〈�̂〉 = Tr �̂2 ≤ 1. (4.5)

This inequality is in general regarded as a criterion for the statistical mixed-
ness of a quantum state. When Tr �̂2 = 1 we have a pure state, whereas with



4.1 The statistical density operator 115

decreasing value of this trace the state becomes more and more statistically
mixed. To show this in more detail, let us consider an orthogonal and com-
plete set of states |j〉, i. e.,

〈j|j′〉 = δjj′ , ∑
j
|j〉〈j| = Î. (4.6)

By the use of this representation, the density operator may be written in the
form

�̂ = ∑
j,j′

�jj′ |j〉〈j′|, (4.7)

where �jj′ =〈j|�̂|j′〉 are the matrix elements of the density operator in the cho-
sen representation, or in short, the density matrix. We can easily prove that
Eq. (4.3) may be rewritten as

〈Ô〉 = ∑
j,j′

�jj′ 〈j′|Ô|j〉. (4.8)

When the density operator �̂ corresponds to a pure quantum state without
any statistical mixedness, �̂= |φ〉〈φ|, the corresponding density matrix in the
representation of states |j〉 reads

�jj′ = 〈j|φ〉〈φ|j′〉. (4.9)

From Eq. (4.8) (Ô �→ �̂) in this case we obtain for the statistical mixedness

Tr �̂2 = ∑
j,j′

|〈j|φ〉|2|〈j′|φ〉|2 = 1, (4.10)

due to the fact that the probability of finding the value j for the given state
|φ〉 is normalized to unity. In general one may observe that the moduli of the
off-diagonal elements are smaller for a statistical mixture than those for a pure

state, i. e., |ρjj′ |<
√
|ρjj||ρj′ j′ | for j �= j′, which leads then to Tr �̂2 <1.

As is well known, in the Schrödinger picture the state vector |ψ(t)〉 obeys
the Schrödinger equation

ih̄
d|ψ〉

dt
= Ĥ|ψ〉, (4.11)

where Ĥ is the Hamiltonian of the system under consideration. By consider-
ing the pure-state case �̂ = |ψ〉〈ψ| it is obvious that the density operator then
obeys the following equation of motion:

ih̄
d�̂

dt
= [Ĥ, �̂]. (4.12)
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The use of density operators is typically useful when dealing with a system
composed of interacting subsystems, where only one of the subsystems is of
interest. Let us consider, for example, two interacting systems, such as a radi-
ation field coupled to an atomic system, with Hamiltonian Ĥ= Ĥ1+ Ĥ2+ Ĥint.
The Hilbert space of the total system is then the direct product of the Hilbert
spaces of the two subsystems, that is, when |j1〉 and |j2〉 are forming complete
sets of states of system 1 and 2, respectively, a complete set of states for the
combined system is given by

|j1, j2〉 = |j1〉|j2〉. (4.13)

The expectation values of an observable Ôk (k=1, 2) associated with only one
of the subsystems, say subsystem 1, is obtained using Eq. (4.8) as

〈Ô1〉 = Tr (�̂1Ô1), (4.14)

where the reduced density operator �̂1, which describes subsystem 1 alone, is
given by the trace with respect to subsystem 2,

�̂1 = Tr2 �̂ = ∑
j2

〈j2|�̂|j2〉. (4.15)

Note that, even when the overall system is in a pure quantum state, the sub-
systems, as represented by their reduced density operators, in general are not.
If the overall system is closed, i. e., isolated from its environment, the corre-
sponding density operator of the system will obey an equation of motion of
the type (4.12). However, the dynamics of a system which is interacting with
its environment, cannot in general be described by such a unitary time evolu-
tion.

4.2
Phase-space functions

Let Ô be an operator that may be a function of â and â†, Ô = f̂ (â, â†), and let
us consider its expectation value when the system is described by the density
operator �̂,

〈Ô〉 = 〈 f̂ (â, â†)〉 = Tr[�̂ f̂ (â, â†)]. (4.16)

To perform the trace, a set of complete quantum states has to be chosen. To ar-
rive at a phase-space description it is convenient to choose the coherent states
|α〉 as basis states. From Eq. (3.71) we obtain the coherent-state representation
of the density operator as

�̂ =
1

π2

∫
d2α

∫
d2β �(α, β)|α〉〈β|, (4.17)
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where the density matrix in the coherent-state basis is given by

�(α, β) = 〈α|�̂|β〉. (4.18)

Inserting Eq. (4.17) into Eq. (4.16), we obtain the expectation value 〈 f̂ (â, â†)〉
in the form of

〈 f̂ (â, â†)〉 =
1

π2

∫
d2α

∫
d2β �(α, β)〈β| f̂ (â, â†)|α〉. (4.19)

By substituting â, â† �→ α, α∗ we may arrive at classical statistics, where the
operator function which corresponds to the operator Ô will turn out to be a
function in the phase-space spanned by the complex number α,

Ô = f̂ (â, â†) �→ O = f (α, α∗) ≡ f (α). (4.20)

In this case the expectation value of the quantity O is obtained by the usual
statistical averaging as

〈O〉cl =
∫

d2α Pcl(α) f (α), (4.21)

where the phase-space function Pcl(α) is the classical probability density of
observing the complex field amplitude α, which fully describes the (classical)
state of the system. The question arises as to whether or not the quantum-
mechanical expectation value (4.19) may be represented in a form similar to
that of classical theory, Eq. (4.21). As we shall see below, Eq. (4.19) can indeed
be rewritten in a form which formally looks like Eq. (4.21), provided that the
operator under study, Ô, is ordered in certain ways with respect to the oper-
ators â, â†. However, the phase-space functions found in this way cannot be
viewed, in general, as being probability distribution functions.

4.2.1
Normal ordering: The P function

To arrive at one of these phase-space functions, let us assume that, by means
of the commutation relation [â, â†] = 1, the operator Ô = f̂ (â, â†) is put into
normal order. Normal order means in this context that in the resulting expres-
sion all the creation operators are positioned left of the annihilation operators.
That is, if f̂ (N)(â, â†) is the resulting expression in normal order, we have the
equivalence

f̂ (â, â†) ≡ f̂ (N)(â, â†). (4.22)

Furthermore, we may now define the associated c-number function f (N)(α)≡
f (N)(α, α∗) by substituting in f̂ (N)(â, â†) for the operators â and â† the complex
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c numbers α and α∗, respectively. Obviously, f (N)(α) is simply the diagonal
matrix element of f̂ (â, â†) with the coherent state |α〉:

f (N)(α) = 〈α| f̂ (N)(â, â†)|α〉 = 〈α| f̂ (â, â†)|α〉. (4.23)

Having this c-number function at hand, we now intend to express the oper-
ator f̂ (â, â†) in terms of f (N)(α) and other suitably chosen normally ordered
operator functions. For this purpose, let us inspect the identity

f (N)(α) =
∫

d2β δ(α − β) f (N)(β), (4.24)

where δ(α) is the usual two-dimensional Dirac δ function for real and imagi-
nary parts of the argument, i. e., (α=α′+ iα′′),

δ(α) = δ(α′)δ(α′′) =
1

4π2

∫
dx

∫
dy exp[i(α′y + α′′x)], (4.25)

Substituting γ =±(iy − x)/2, we may rewrite the delta function (4.25) in a
more convenient form, as an integral over the complex variable γ,

δ(α) =
1

π2

∫
d2γ exp(α∗γ − αγ∗) =

1
π2

∫
d2γ exp(αγ∗ − α∗γ). (4.26)

Inserting this expression for the delta function in Eq. (4.24), we obtain

f (N)(α) =
1

π2

∫
d2β

∫
d2γ f (N)(β) exp[(α − β)∗γ − (α − β)γ]. (4.27)

Going from the associated c-number function f (N)(α) back to the operator
function f̂ (N)(â, â†), i. e., re-substituting α, α∗ �→ â, â†, we see from Eq. (4.27)
that the operator f̂ (N)(â, â†) may be represented as

f̂ (N)(â, â†) =
1

π2

∫
d2β

∫
d2γ f (N)(β) exp

[
(â†−β∗)γ

]
exp [−(â−β)γ∗] .

(4.28)

This substitution is allowed since, before replacing the c numbers by opera-
tors, we have factored the exponential function in order to obtain a normally
ordered representation where the â† are located left of the â.

Next, we introduce an operator-valued version of the Dirac δ function in
straightforward generalization of Eq. (4.26),

δ̂(â − α) =
1

π2

∫
d2β exp[(â† − α∗)β − (â − α)β∗], (4.29)

which may be also written as a Fourier transform of the displacement operator
(3.44),

δ̂(â − α) =
1

π2

∫
d2β D̂(β) exp(αβ∗ − α∗β). (4.30)
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Applying the normal-ordering prescription N onto the displacement operator
we obtain1

N D̂(α) ≡ : D̂(α) : = eâ†αe−âα∗ . (4.31)

Using the relations (4.30) and (4.31), we may then rewrite Eq. (4.28) as

f̂ (â, â†) ≡ f̂ (N)(â, â†) =
∫

d2α f (N)(α)N δ̂(â − α). (4.32)

We now take the quantum-mechanical expectation value of both sides of
Eq. (4.32) and obtain, on assuming that this operation and the integration can
be interchanged, the sought result:

〈 f̂ (â, â†)〉 = 〈 f̂ (N)(â, â†)〉 =
∫

d2α P(N)(α) f (N)(α), (4.33)

where the phase-space function P(N)(α) is the expectation value of the opera-
tor delta function in normal order,

P(N)(α) = 〈: δ̂(â − α) :〉. (4.34)

Although Eqs (4.21) and (4.33) bear a great resemblance, there are essential
differences between the two equations. Firstly, the c-number function f (N)(α)
in Eq. (4.33) is associated with the operator f̂ (â, â†) being transformed into its
equivalent normally ordered form. That is, the complex numbers α and α∗
are substituted for the operators in the operator function f̂ (N)(â, â†) and not
in the original form of the operator function f̂ (â, â†). Secondly, in general,
the function P(N)(α) cannot be regarded as a proper probability distribution
function: P(N)(α) can attain negative values that are not interpretable as prob-
ability densities and furthermore P(N)(α) need not be a well-behaved function
[for reviews, see Klauder and Sudarshan (1968); Peřina (1991)]. Notwithstand-
ing these facts, in any case the function P(N)(α) is normalized,

∫
d2α P(N)(α) = 1, (4.35)

which may readily be proved from Eq. (4.33) by choosing f̂ (â, â†) = Î. The
quantum-state representation based on the phase-space function P(N)(α)
is called the Glauber–Sudarshan representation [Glauber (1963); Sudarshan
(1963)], P(N)(α) being also called the P function, where a frequently used ab-
breviated notation is

P(α) ≡ P(N)(α). (4.36)

1) The process of normal ordering as described by N is not to be con-
fused with a normally ordered, equivalent representation of an op-
erator, such as represented by the relation f̂ (N)(â, â†)= f̂ (â, â†). N is
not an equivalence operation, i. e., N f̂ (â, â†) �= f̂ (â, â†).
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The Glauber–Sudarshan representation is of special importance in the context
of photodetection where the appearing expectation values contain normally
ordered moments and correlations. Moreover, although the P function may be
an ill-behaving function, this distribution proves to be very useful for formal
derivations in connection with operator expectation values.

4.2.2
Anti-normal and symmetric ordering: The Q and the W function

The applicability of the concept of phase-space functions as outlined above,
is of course not restricted to the case of normal order. For example, if the
operator Ô can be put in anti-normal order by use of the commutator relation
[â, â†]=1, Ô= f̂ (A)(â, â†), we may introduce the associated c-number function
f (A)(α) by substituting in f̂ (A)(â, â†) for the operators â and â† the c numbers
α and α∗, respectively. Performing manipulations analogous to those leading
to Eq. (4.28) now yields the corresponding expression in anti-normal order,

f̂ (â, â†) =
1

π2

∫
d2β

∫
d2γ f (A)(β) exp[−(â− β)γ∗] exp[(â† − β∗)γ]. (4.37)

Hence, instead of the normally ordered delta operator we now use the anti-
normally ordered version,

Aδ̂(â − α) ≡ ‡δ̂(â − α)‡ =
1

π2

∫
d2β ‡D̂(β)‡ exp(αβ∗ − α∗β), (4.38)

so that the anti-normally ordered displacement operator reads

‡D̂(α)‡ = e−âα∗ eâ†α. (4.39)

We then obtain in analogy with Eq. (4.32)

f̂ (â, â†) =
∫

d2α f (A)(α)Aδ̂(â − α), (4.40)

from which the relation for the expectation value is derived as

〈 f̂ (â, â†)〉 = 〈 f̂ (A)(â, â†)〉 =
∫

d2α P(A)(α) f (A)(α). (4.41)

The phase-space function P(A)(α), which is called the Husimi Q function, is
the expectation value of the operator delta function in anti-normal order,

Q(α) ≡ P(A)(α) = 〈‡δ̂(α − â)‡〉. (4.42)

On the other hand, taking the expectation value of the original operator
delta function as defined by Eq. (4.29) obviously yields the phase space func-
tion suitable for averaging symmetrically ordered quantities,

〈 f̂ (â, â†)〉 = 〈 f̂ (S)(â, â†)〉 =
∫

d2α P(S)(α) f (S)(α), (4.43)
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where

W(α) ≡ P(S)(α) = 〈δ̂(α − â)〉 (4.44)

is called the Wigner function, and f (S)(α) is the c-number function associated
with the operator f̂ (â, â†) in symmetrical order. We will not give more details
here, but instead, in the following we consider the more general case of so-
called s ordering.

4.2.3
Parameterized phase-space functions

The phase-space functions considered above may be regarded as certain spe-
cial cases of an operator Ô being put in a chosen order [Cahill and Glauber
(1969); for a review, see also Peřina (1991)]. To generalize the concept of op-
erator ordering, we may start with the displacement operator and define its
s-ordered representation by

D̂(α; s) = D̂(α)e|α|2s/2, (4.45)

which implies that

D̂(α; s) = exp
[

1
2 (s − s′)|α|2

]
D̂(α; s′). (4.46)

The case s=0 is then considered as symmetrical ordering, since we obtain the
original displacement operator,

D̂(α; 0) = D̂(α). (4.47)

Moreover, comparing the expression (4.45) for the values s=±1 with Eqs (4.31)
and (4.39), we arrive at the following relations:

D̂(α; 1) = eαâ†
e−α∗ â = : D̂(α) : , (4.48)

D̂(α;−1) = e−α∗ âeαâ†
= ‡D̂(α) ‡ . (4.49)

From Eqs (3.44)–(3.46) we see that choosing s=0, s=1 and s=−1 corresponds
to putting the displacement operator in symmetrical, normal and anti-normal
order, respectively. It should be pointed out that more general ordering pro-
cedures can be introduced, which unify s-ordering with other orderings such
as standard and anti-standard ordering [Agarwal and Wolf (1968)].2

Let us now assume that the operator Ô= f̂ (â, â†) can be represented in any
s-order −1≤s≤1 as3

f̂ (â, â†) =
∫

d2α f (α; s)δ̂(â − α; s), (4.50)

2) For a detailed treatment of these unified ordering methods, see
Agarwal and Wolf (1970).

3) Note that the value of s is not necessarily restricted to the interval
−1, . . . , 1.
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where we have defined via Eq. (4.45) the general s-ordered operator delta
function

δ̂(â − α; s) =
1

π2

∫
d2β D̂(β; s) exp(αβ∗ − α∗β) (4.51)

[for details about the existence of the representation (4.50), see Cahill and
Glauber (1969)]. Obviously, the c-number function f (α; s) associated with
the operator f̂ (â, â†) in the chosen order, reduces in the special cases
s=0,±1 to the familiar expressions f (α; 0) ≡ f (S)(α), f (α; 1) ≡ f (N)(α) and
f (α;−1)≡ f (A)(α). With the help of Eq. (4.50) the expectation value of an ar-
bitrary operator Ô= f̂ (â, â†) may now be written as

〈Ô〉 = 〈 f̂ (â, â†)〉 =
∫

d2α P(α; s) f (α; s), (4.52)

where the s-parameterized phase-space function P(α; s) is defined as4

P(α; s) = 〈δ̂(â − α; s)〉. (4.53)

It is often useful to represent the s-ordered operator delta function in a
somewhat different form. Expressing D̂(α; s) in terms of D̂(α; s′) in Eq. (4.51)
according to Eq. (4.46) and applying, with respect to D̂(α; s′), the inverse of
Eq. (4.51), we may write

δ̂(â − α; s) =
1

π2

∫
d2β exp

[
αβ∗ − α∗β + 1

2 (s − s′)|β|2
]

D̂(β; s′)

=
1

π2

∫
d2β exp

[
αβ∗ − α∗β + 1

2 (s − s′)|β|2
]

×
∫

d2γ exp(βγ∗ − β∗γ)δ̂(â − γ; s′). (4.54)

For s≤s′ the integration over β can be performed5 to obtain

δ̂(â − α; s) =
2

π(s′ − s)

∫
d2γ exp

(
−2|α − γ|2

s′ − s

)
δ̂(â − γ; s′). (4.55)

For s′ = 1 the operator δ̂(â− γ; 1) is the normally ordered form of the delta-
function operator, and therefore the γ integration yields

δ̂(â − α; s) =
2

π(1 − s)
: exp

[
−2(â† − α∗)(â − α)

1 − s

]
: , (4.56)

which with the help of Eqs (3.47) and (3.48) may be rewritten in the form

δ̂(â − α; s) =
2

π(1 − s)
: exp

[
−2n̂(α)

1 − s

]
: , (4.57)

4) Recall that W(α)≡P(S)(α)≡P(α;0), P(α)≡P(N)(α)≡P(α;1) and
Q(α)≡P(A)(α)≡P(α;−1).

5) Note that the more general condition is Re (s− s′)≤0.
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with the displaced number operator being defined as

n̂(α) = D̂(α)n̂D̂†(α). (4.58)

Equation (4.57) can be further evaluated to obtain

δ̂(â − α; s) =
2

π(1 − s)
: exp

[
s + 1
s − 1

n̂(α)
]

exp[−n̂(α)] :

=
2

π(1 − s)

∞

∑
n=0

(
s + 1
s − 1

)n

:
[n̂(α)]n

n!
exp[−n̂(α)] :

=
2

π(1 − s)

∞

∑
n=0

(
s + 1
s − 1

)n

D̂(α) :
n̂n

n!
e−n̂ : D̂†(α). (4.59)

Since |〈n|α〉|2 as given by Eq. (3.60) is the c-number function associated with
|n〉〈n| in normal order, we find that

:
n̂n

n!
e−n̂ : = |n〉〈n|, (4.60)

and Eq. (4.59) can be rewritten as

δ̂(â − α; s) =
2

π(1 − s)

∞

∑
n=0

(
s + 1
s − 1

)n

D̂(α)|n〉〈n|D̂†(α), (4.61)

equivalently

δ̂(â − α; s) =
2

π(1 − s)
D̂(α)

(
s + 1
s − 1

)n̂

D̂†(α). (4.62)

For s=0 the s-ordered operator delta function δ̂(â−α; 0) reduces to the ordi-
nary (i. e., symmetrically ordered) operator delta function δ̂(â−α) defined by
Eq. (4.29), and from Eq. (4.62) it then follows that

δ̂(â − α) = 2π−1D̂(α)(−1)n̂D̂†(α) = 2π−1(−1)n̂(α). (4.63)

That is, the operator delta function is given (apart from the factor 2/π) by the
displaced parity operator and the Wigner function is simply the expectation
value of that operator:

W(α) ≡ P(α; 0) = 2π−1〈D̂(α)(−1)n̂D̂†(α)
〉

= 2π−1〈(−1)n̂(α)〉. (4.64)

Equation (4.64) reveals that the Wigner function cannot be regarded as a prob-
ability distribution in general, because it may attain negative values,

−2π−1 ≤ W(α) ≤ 2π−1. (4.65)
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For s=−1 Eq. (4.61) reduces to6

δ̂(â − α;−1) = π−1|α〉〈α|. (4.66)

Hence, the Q function is given (apart from the factor π−1) by the c-number
function associated with the density operator in normal order,

Q(α) ≡ P(α;−1) = π−1〈α|�̂|α〉, (4.67)

from which it follows that

0 ≤ Q(α) ≤ π−1. (4.68)

It is worth noting that, although the Q function does not allow an interpreta-
tion as a probability distribution of the complex amplitude α in the sense of
classical theory, it has all the properties of a probability distribution. As can
be seen from Eq. (4.61), for s = 1 the corresponding operator delta function
δ̂(â− α; 1) is not bounded, and therefore the P function P(α)≡ P(α; 1) is not
necessarily a well-behaved phase-space function.

It should be noted that Eq. (4.54) can be used to express the function P(α; s),
Eq. (4.53), in terms of another function P(α; s′):

P(α; s) =
1

π2

∫
d2β exp

[
α β∗−α∗β+ 1

2 (s−s′)|β|2
]∫

d2γ exp(βγ∗−β∗γ)P(γ; s′).

(4.69)

For s ≤ s′ (or Re s ≤ Re s′) the integration over β can again be performed to
obtain

P(α; s) =
2

π(s′ − s)

∫
d2γ P(γ; s′) exp

(
−2|α − γ|2

s′ − s

)
. (4.70)

In the opposite case when s′<s (or Re s′<Re s), the integration over γ should
be done first in Eq. (4.69) in order to avoid having to deal with singular ex-
pressions.

4.3
Operator expansion in phase space

Equation (4.50) can be viewed as an expansion of an operator f̂ (â, â†) in terms
of the generalized projectors δ̂(â − α; s). Whereas for s = 0,±1 it is clear, in
principle, how to obtain the associated c-number functions f (α; s), for arbi-
trary values of s we still require a recipe.

6) Note that for s=−1, from comparison of Eq. (4.57) and (4.66), it
follows that |α〉〈α|= : exp[−n̂(α)] :.
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4.3.1
Orthogonalization relations

For the purpose of deriving such a prescription we may consider the following
relation obtained by taking the trace of Eq. (4.50) multiplied by δ̂(â−β;−s),

Tr[ f̂ (â, â†)δ̂(â − β;−s)] =
∫

d2α f (α; s) Tr[δ̂(â − α; s)δ̂(â − β;−s)]. (4.71)

To obtain the trace on the right-hand side of Eq. (4.71) we first calculate the
trace (via Fourier transformation) contained therein over the displacement op-
erators. Using Eqs (3.53) and (4.45) we may write

Tr[D̂(α; s)D̂(β;−s)] = exp
[

1
2 s(|α|2 − |β|2)

]
Tr[D̂(α)D̂(β)]

= exp
[

1
2 s(|α|2 − |β|2) + i Im(αβ∗)

]
Tr[D̂(α + β)].

(4.72)

We calculate the trace of the displacement operator using the coherent-state
basis and applying Eqs (3.54) and (4.26):

Tr[D̂(α)] =
1
π

∫
d2β 〈β|D̂(α)|β〉

= e−|α|2/2 1
π

∫
d2β exp(αβ∗ − α∗β) = πδ(α). (4.73)

Hence, Eq. (4.72) takes the form of

Tr[D̂(α; s)D̂(β;−s)] = πδ(α + β), (4.74)

and combining Eqs (4.51) and (4.74) yields

Tr[δ̂(â − α; s)δ̂(â − β;−s)] = π−1δ(α − β). (4.75)

Note that Eq. (4.73) implies that

Tr[δ̂(â − α; s)] = π−1. (4.76)

Inserting the orthogonalization relation (4.75) into Eq. (4.71), we see that
f (α; s) may be represented as

f (α; s) = π Tr[ f̂ (â, â†)δ̂(â − α;−s)]. (4.77)

Equation (4.77) may be viewed as the sought prescription for calculating the
c-number function f (α; s) associated with the operator f̂ (â, â†) in s order from
f̂ (â, â†) via the s-ordered delta operator. Substitution of the expression (4.77)
into Eq. (4.50) yields the operator expansion in the phase space

f̂ (â, â†) = π
∫

d2α Tr[ f̂ (â, â†)δ̂(â − α;−s)]δ̂(â − α; s). (4.78)
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Equivalently, we may expand f̂ (â, â†) in terms of the s-ordered displacement
operator D̂(α; s). Recalling Eq. (4.51), it is not difficult to see that Eq. (4.78) can
be rewritten as

f̂ (â, â†) =
1
π

∫
d2α Tr[ f̂ (â, â†)D̂(−α;−s)]D̂(α; s). (4.79)

4.3.2
The density operator in phase space

If we now identify in Eq. (4.78) [together with Eq. (4.77)] the operator f̂ (â, â†)
with the density operator �̂, we obtain the following representation of the den-
sity operator:

�̂ =
∫

d2α �(α; s)δ̂(â − α; s), (4.80)

where the c-number function associated with the density operator in s order
reads

�(α; s) = π Tr[�̂δ̂(â − α;−s)] = π〈δ̂(â − α;−s)〉. (4.81)

Comparing Eq. (4.81) with (4.53), we see that the phase-space function P(α; s)
is (apart from the factor π−1) identical to �(α;−s),

P(α; s) = π−1�(α;−s). (4.82)

Therefore, the density operator itself can be represented via Eq. (4.80) as
(s→−s)

�̂ = π
∫

d2α P(α; s)δ̂(â − α;−s). (4.83)

Note that from Eq. (4.83) the phase-space distribution P(α; s) may be seen ex-
plicitly to be normalized to unity,

∫
d2α P(α; s) = 1, (4.84)

because of Tr(�̂)=1 and Eq. (4.76).
In particular, from Eqs (4.52) and (4.82) we see that in calculating the expec-

tation value of an operator Ô= f̂ (â, â†) by “averaging” the c-number function
f (α; 1)≡ f (N)(α, α∗), which is associated with the operator f̂ (â, â†) put in nor-
mal order, the required phase-space function P(α; 1)≡P(α) is determined by
the c-number function �(α;−1) associated with the density operator �̂ put in
anti-normal order (Glauber–Sudarshan representation), and vice versa. Only
for symmetrical order (s = 0) are the c-number functions f (α; 0) and �(α; 0)
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associated with the operators f̂ (â, â†) and �̂, respectively, both put into sym-
metrical order (Wigner representation).

Since expectation values of normally ordered operators are of particular im-
portance in the context of quantities observable in optical photodetection ex-
periments (Chapter 6), the Glauber–Sudarshan representation

�̂ = π
∫

d2α P(α; 1)δ̂(â − α;−1) (4.85)

is often used in quantum optics. Substitution of the expression (4.66) into
Eq. (4.85) yields [P(α)≡P(α; 1)]

�̂ =
∫

d2α P(α)|α〉〈α|, (4.86)

which is conceptually different from the straightforward representation of the
density operator in terms of coherent states, as given in Eq. (4.17). The expec-
tation value of an operator Ô = f̂ (â, â†) may then be written with the help of
Eq. (4.86) as

〈 f̂ (â, â†)〉 =
∫

d2α P(α) Tr[|α〉〈α| f̂ (â, â†)]

=
∫

d2α P(α)〈α| f̂ (â, â†)|α〉, (4.87)

from which we also immediately recognize via Eq. (4.52) the result (4.23):

f (α; 1) = 〈α| f̂ (â, â†)|α〉. (4.88)

As already mentioned, P(α) can be highly singular. In particular, in the case
of nonclassical states (Chapter 8), such as for example squeezed states, the
calculation of P(α) may also lead to expressions that are not well behaved and
are hard to interpret. However, using the phase-space representation defined
by δ̂(â−α; 1),

�̂ = π
∫

d2α P(α;−1)δ̂(â − α; 1), (4.89)

leads, according to Eq. (4.67), to the well-behaved Q function, Q(α)≡P(α,−1)
= π−1〈α|�̂|α〉, which is suitable for the calculation of expectation values of
anti-normally ordered operators.

We therefore observe a trade-off for the representation of the density oper-
ator in terms of phase-space functions that correspond to normal and anti-
normal order. Either the phase-space function is well-behaved (Husimi Q
function) and the associated delta operator may be problematic, or the phase-
space function may be ill-behaved (Glauber–Sudarshan P function), whereas
the delta operator is a simple projector on a coherent state. We note, however,
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that the ill-behaved and possibly singular expression do not formally repre-
sent serious obstacles for most derivations. Only concrete evaluations may
turn out to be rather cumbersome.

The formal analogy between phase-space functions and classical statistics
encourages the introduction of a formalism similar to that used in the usual
probability theory. In particular, it is useful to introduce characteristic (gener-
ating) functions, by defining

Φ(α; s) = 〈D̂(α; s)〉. (4.90)

According to Eqs (4.46) and (4.90), Φ(α; s) and Φ(α; s′) are related to each other
by

Φ(α; s) = exp
[

1
2 (s − s′)|α|2

]
Φ(α; s′). (4.91)

Equations (4.51), (4.53) and (4.90) reveal that, as usual, the characteristic func-
tion is the Fourier transform of the phase-space function, that is,

Φ(α; s) =
∫

d2β P(β; s) exp(αβ∗ − α∗β), (4.92)

and vice versa,

P(α; s) =
1

π2

∫
d2β Φ(β; s) exp(αβ∗ − α∗β). (4.93)

From the operator expansion (4.79) it can be seen that the characteristic func-
tion Φ(α; s) also carries the full information about the quantum state. As in or-
dinary probability theory, Φ(α; s) allows one to generate the various s-ordered
moments 〈â†kâl〉s

〈â†kâl〉s =
∫

d2α α∗kαl P(α; s) =
∂k

∂βk
∂l

∂(−β∗)l Φ(β; s)
∣∣∣
β=0

. (4.94)

Here the s-ordered product {â†kâl}s is defined by

{â†kâl}s =
∂k

∂αk
∂l

∂(−α∗)l D̂(α; s)
∣∣∣
α=0

. (4.95)

In Eq. (4.95) expressing D̂(α; s) in terms of D̂(α; s′) according to Eq. (4.46) and
differentiating, we may relate the s-ordered operator product to an s′-ordered
operator product. After some algebra we derive

{â†mân}s =
min(m,n)

∑
k=0

k!
(

m
k

)(
n
k

) (
s′ − s

2

)k

{â†m−kân−k}s′ . (4.96)
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The generalization of the concept of phase-space representation to multi-
mode systems is straightforward. An extension of this concept to other than
â and â† as basic operators is outlined in Section 5.2.2, in which the problem
of formulating equations of motion (of Fokker–Planck type) for phase-space
functions is studied. Moreover, we note that problems arising from singular
behavior of the P function in the study of nonclassical states may be avoided
by using generalized P representations [Drummond and Gardiner (1980); Gar-
diner (1983, 1991)],

�̂ =
∫
D

dµ(α, β) Λ̂(α, β)P(α, β), (4.97)

where the operator Λ̂(α, β) is given by

Λ̂(α, β) =
|α〉〈β∗|
〈β∗|α〉 , (4.98)

and dµ(α, β) is the integration measure defining different classes of possible
representations, with D being the domain of integration. In particular, it can
be shown that the representation with measure

dµ(α, β) = d2α d2β (4.99)

and integration over the whole complex plane always exists for a physical
density operator and that P(α, β) can always be chosen positive, in which case
it is called the positive P representation:

P(α, β) =
1

4π2 exp
(− 1

4 |α − β∗|2)〈 1
2 (α + β∗)|�̂| 1

2 (α + β∗)
〉
. (4.100)

4.3.3
Some elementary examples

To illustrate the theory, let us consider the Glauber–Sudarshan representation
for some elementary quantum states, as introduced in Chapter 3. In the case
of a coherent state |α0〉 we may immediately formulate the density operator
as

�̂ = |α0〉〈α0| =
∫

d2α δ(α − α0) |α〉〈α|. (4.101)

Comparing this equation with Eq. (4.86), we can obviously see that the
Glauber–Sudarshan P function is

P(α) = δ(α − α0). (4.102)

From the point of view of classical statistics this function appears to have no
fluctuations. In quantum theory such an interpretation is of course wrong.
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From Sec. 3.2 we know that a system in a coherent state is indeed noisy, so
that the appearance of a delta function in Eq. (4.102) should not mislead one
to associate with it a deterministic behavior of the quantum system. In fact,
this is only an effect of the chosen operator order, since other distributions
with s <1 reveal a nonvanishing variance around the value α0. We may fur-
nish this, for example, by calculating the variance of the excitation number
n̂= â† â. To apply the Glauber–Sudarshan representation it is necessary to put
the operator (∆n̂)2 in normal order,

(∆n̂)2 = (â† â)2 − 〈â† â〉2 = â†2â2 + â† â − 〈â† â〉2, (4.103)

The evaluation of the expectation value of Eq. (4.103) is then performed as
follows:

〈(∆n̂)2〉 =
∫

d2α P(α)(|α|4+|α|2) −
[∫

d2α P(α)|α|2
]2

, (4.104)

which with P(α) = δ(α − α0) [Eq. (4.102)] just leads to the familiar result
〈(∆n̂)2〉=〈n̂〉= |α0|2. Clearly, the normally ordered variance 〈: (∆n̂)2 :〉, and
generally any normally ordered moment of a mean-value deviation, vanishes
in the case of the δ peaked distribution function.

Next, let us consider a thermal state. In the case of radiation a thermal
state serves as an example of so-called chaotic light. As is well known, if a
harmonic oscillator of frequency ω is in thermal equilibrium with a heat bath
of temperature T, the density operator �̂ may be written in the form

�̂ =
exp[−h̄ωn̂/(kBT)]

Tr{exp[−h̄ωn̂/(kBT)]} =
1

nth + 1

(
nth + 1

nth

)−n̂

, (4.105)

where the mean number of thermal photons, nth=〈n̂〉, is given by the familiar
formula

nth =
[

exp
(

h̄ω

kBT

)
− 1

]−1

. (4.106)

Note that for a thermal state the mean coherent amplitude vanishes: 〈â〉=0.
To calculate P(α), we recall that P(α) is determined by the c-number func-
tion �(α;−1) associated with the density operator �̂ put in anti-normal order
[Eq. (4.82) with s=1]:

P(α) = π−1�(α;−1). (4.107)

To put �̂ in anti-normal order, we note that, after a straightforward but some-
what lengthy calculation [using, e. g., Eq. (4.96)], the anti-normally ordered
form of an exponential operator exp(−zâ† â) may be written as

e−â† âz = ez
∞

∑
k=0

(1 − ez)k

k!
âk â†k. (4.108)
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From Eqs (4.105) and (4.108) the anti-normally ordered form of �̂ is then found
to be

�̂ =
1

nth

∞

∑
k=0

(−1)k

k!
âk â†k

nk
th

, (4.109)

so that we obtain for the associated c-number function

�(α;−1) =
1

nth

∞

∑
k=0

1
k!

(
−|α|2

nth

)k

=
1

nth
exp

(
−|α|2

nth

)
. (4.110)

Hence in this case the P function is a well-behaved Gaussian:

P(α) =
1

πnth
exp

(
−|α|2

nth

)
. (4.111)

In the case of radiation one may also think of the more general situation
where the thermal light of mean photon number nth is superimposed on co-
herent light of (complex) amplitude α0, so that 〈n̂〉=nth+|α0|2 and 〈â〉=α0 �=0.
The superposition of the thermal state by a coherent one may be represented
by a displacement of the distribution in phase space by the coherent ampli-
tude α0. The displaced P function is then obtained as

P(α) =
1

πnth
exp

(
−|α − α0|2

nth

)
, (4.112)

which obviously corresponds to the density operator

�̂ = D̂(α0)
1

nth + 1

(
nth + 1

nth

)−â† â

D̂†(α0)

=
1

nth + 1

(
nth + 1

nth

)−(â†−α∗0)(â−α0)
. (4.113)

Note that, for coherent light, nth = 0, Eq. (4.112) reduces to the P function in
Eq. (4.102), whereas for chaotic light, α0 = 0, it reduces to Eq. (4.111). The
superposition of chaotic light with coherent light may be viewed as a simple
model for characterizing the properties of single-mode laser light.

The above P functions exhibit all the properties of ordinary probability dis-
tribution functions. The only difference from classical statistics is that they
apply to the calculation of normally ordered expectation values only. Since
negative values of normally ordered variances, which are related to negative
values of P(α), indicate nonclassical states (Chapter 8), quantum states such
as coherent states or thermal states with a well-behaved P function may there-
fore be said to have a classical analog.
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Fig. 4.1 Phase-space functions for the number state |n=4〉. Part (a)
shows the Q function and part (b) the Wigner function, which reveals
additional oscillatory and partially negative contributions.

As an example of a typical quantum state having no classical analog let us
consider a number state

�̂ = |n〉〈n|. (4.114)

To calculate the P function, we apply Eq. (4.53) directly and use Eq. (4.51) to
obtain

P(α) =
1

π2

∫
d2β exp(αβ∗ − α∗β)〈n|D̂(β; 1)|n〉, (4.115)

where 〈n|D̂(β; 1)|n〉 can be calculated as

〈n|D̂(β; 1)|n〉 = 〈n|eβâ†
e−β∗ â|n〉 =

n

∑
k=0

(
n
k

)
(−1)k

k!
|β|2k. (4.116)

Inserting this result into Eq. (4.115), reproducing the factors |β|2k by deriva-
tives with respect to α and α∗ and performing the remaining integration, we
obtain the P function as

P(α) =
n

∑
k=0

(
n
k

)
1
k!

∂k

∂αk
∂k

∂α∗k δ(α). (4.117)

As expected, P(α) is highly singular and bears no resemblance to a proper
probability distribution function. Nevertheless, it may be used to calculate
normally ordered expectation values.

The Wigner function W(α) can be obtained from Eq. (4.115) by replacing
therein D̂(β; 1) with D̂(β) = D̂(β; 0) [cf. Eqs (4.51) and (4.53)]. Recalling
Eq. (4.45), we may therefore write

W(α) =
1

π2

∫
d2β exp

(
αβ∗ − α∗β − 1

2 |β|2
)〈n|D̂(β; 1)|n〉. (4.118)
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Fig. 4.2 Phase-space functions for a superposition of two coherent
states |ψ〉= N(|α〉+ |−α〉) with α=2. Compared with the Q function
(a) the Wigner function (b) shows negative values between the peaks of
the two coherent states, which are signatures of their mutual quantum
interference.
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Fig. 4.3 Wigner function for a squeezed ground state, i. e., |β, ξ〉 where
β=0, and the squeezing parameter is ξ =0.5.

Substituting the expansion as given by Eq. (4.116) for 〈n|D̂(β; 1)|n〉, we can
calculate the β-integral to obtain

W(α) = 2π−1(−1)ne−2|α|2Ln(4|α|2) (4.119)

(Ln(x) is the Laguerre polynomial). Since Ln(4|α|2) can take positive and
negative values, the Wigner function – although well behaved – takes pos-
itive and negative values as well. As already mentioned, the Q function,
Q(α)≡P(α;−1), is well behaved and positive in any case. In the above exam-
ple, with the system being in a number state, we easily find that

Q(α) =
1
π
|〈α|n〉|2 =

1
π

|α|2n

n!
e−|α|2 . (4.120)

Examples of the Q function for a number state and a superposition of two
coherent states are shown in Figs 4.1(a) and 4.2(a), respectively. Their Wigner
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function counterparts are shown in Fig. 4.1(b) for the number state and in
Fig. 4.2(b) for the coherent-state superposition. It is clearly observable that, in
general, the Wigner function reveals sharper structures as compared with the
Q function. Moreover, negative values occur in the Wigner function, being a
signature of quantum interference effects. The Wigner function of a squeezed
ground state is shown in Fig. 4.3.
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5
Quantum theory of damping

In the study of physical problems it is often convenient to subdivide the “uni-
verse” into two parts, namely the system of particular interest and the envi-
ronment, which is viewed as a large collection of systems with a very large
number of degrees of freedom giving rise to (quasi-)continua of states. In
many cases of practical relevance, when the (weak) interaction between the
chosen system and the environment is of the type where each member of the
collection of environmental systems is weakly (infinitesimally) disturbed, and
a finite disturbance of the system is the result of the large number of these
systems, the effect of the environment on the system can be described within
the framework of damping theory (also called relaxation theory). In this case
the system is also called a dynamic system, and the environment is called a
dissipative system, a (heat) bath or reservoir.

Let us consider, for example, an excited single-mode optical field in a leaky
cavity (Chapter 9). For sufficiently weak contact of the cavity mode (system)
with the continuum of modes (reservoir) outside the cavity, the cavity mode
(with photon annihilation operator â) undergoes an exponential decay:

〈â(t)〉 = 〈â(t′)〉 exp
[−(

iω + 1
2 Γ

) (
t − t′

)]
(t − t′ ≥ 0). (5.1)

This result is of course also valid in classical optics, where â reduces to the
complex mode amplitude. Clearly, Eq. (5.1) cannot be valid in the sense of an
operator equation. It is readily seen that if the operator â(t) had the damped
solution â(t)= â(t′) exp[−(iω+Γ/2)(t− t′)], the fundamental rules of quan-
tum mechanics would be violated, because with increasing time t− t′ the
commutator [â(t), â†(t)] ∼ exp[−Γ(t−t′)] would approach zero, and hence
Heisenberg’s uncertainty principle would be violated. The reason for this un-
satisfactory result lies of course in the fact that the fluctuations of the field
outside the cavity, which feed noise into the cavity field, are ignored. In-
deed, a quantum-mechanically consistent equation of motion is the quantum
Langevin equation1

˙̂a = −(
iω + 1

2 Γ
)

â + f̂ (t) (5.2)

1) Note that when thermal noise must be taken into account, then the
Langevin equation is already required in classical optics.
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[cf. Eq. (9.80)], where the operator-valued Langevin noise source f̂ (t) is just
the quantum noise generator needed in order to preserve the correct commu-
tation relation [â(t), â†(t)]=1, which can be proved by direct integration of
Eq. (5.2), which yields

â(t) = â(t′) exp
[−(

iω + 1
2 Γ

)
(t − t′)

]
+

∫ t

t′
dτ f̂ (τ) exp

[−(
iω + 1

2 Γ
)
(t − τ)

]
(t − t′ ≥ 0). (5.3)

Assuming that at some (initial) time t′ the commutation relation [â(t′), â†(t′)]=1
holds, we easily find from Eq. (5.3) that for any time t with t≥ t′ the commu-
tator [â(t), â†(t)] reads

[â(t), â†(t)] = exp[−Γ(t − t′)]

+ exp
[−(

iω+ 1
2 Γ

)
(t−t′)

] ∫ t

t′
dτ [â(t′), f̂ †(τ)] exp

[−(−iω+ 1
2 Γ

)
(t−τ)

]
+ exp

[−(−iω+ 1
2 Γ

)
(t−t′)

] ∫ t

t′
dτ [ f̂ (τ), â†(t′)] exp

[−(
iω+ 1

2 Γ
)
(t−τ)

]
+ e−Γt

∫ t

t′
dτ

∫ t

t′
dτ′ [ f̂ (τ), f̂ †(τ′)] exp

[
iω

(
τ−τ′)+ 1

2 Γ(τ+τ′)
]
. (5.4)

Let us further assume the time-dependent commutation relations

[ f̂ (t1), f̂ †(t2)] exp[iω(t1 − t2)] = Γδ(t1 − t2), (5.5)

[â(t1), f̂ †(t2)] = 0 (t2 > t1) (5.6)

[cf. Eqs (9.117) and (9.126)]. Combining Eqs (5.4)–(5.6) yields the correct com-
mutation relation at time t:

[â(t), â†(t)] = 1. (5.7)

It should be pointed out that in Eq. (5.2) the term f̂ (t) can reasonably be
interpreted as noise when its expectation value vanishes, 〈 f̂ (t)〉= 0. In the
case of a bosonic dissipative system and if f̂ (t) is linear in the mode opera-
tors, this is observed for the vacuum state or a thermal state. The case where
the dissipative system is in a coherent state is closely related to that where a
classical driving force is applied to the dynamic system. Clearly, there are var-
ious intermediate situations, in which we may be interested. It is worth noting
that the existence and form of the damping term in Eq. (5.2) has nothing to do
with the state of the reservoir. Thus damping will occur even when f̂ (t) is
in a coherent state. In this context we recall that the consistency of Eq. (5.2)
with the principles of quantum mechanics only requires the validity of the
commutation relations (5.5) and (5.6).

The results briefly discussed above correspond to the (appropriately speci-
fied) results of Markovian damping theory, which will be developed in this
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chapter [Weisskopf and Wigner (1932); Zwanzig (1960); Fajn and Chanin
(1969); Louisell (1973); Gardiner (1991)]. The concept of damping theory not
only applies to radiation-field quantities, but it is also used to describe the
damping behavior of atomic systems (e. g., due to spontaneous emission).
Within the framework of Markovian damping theory, we derive quantum
Langevin equations and expressions for mean values depending on a single
time argument (Section 5.1). Master equations and related equations, such as
Fokker–Planck equations, are considered in Section 5.2. The methods are ap-
plied to damped harmonic oscillators (Section 5.3) and to damped two-level
atoms (Section 5.4). Moreover, the quantum regression theorem is derived
(Section 5.5) in order to handle correlation functions, which usually depend
on more than one time argument.

5.1
Quantum Langevin equations and one-time averages

There are various, equivalent approaches to the Markovian damping theory.
For example, one can start from the Heisenberg equations of motions or the
Schrödinger equation for the composed system. Here we prefer to work in the
Heisenberg picture to derive quantum Langevin equations, by introducing the
Born and Markov approximations in the formal solution for the operators of
the dynamic system.

5.1.1
Hamiltonian

Let us consider some dynamic system – referred to as “the system” in the fol-
lowing – described by a Hamiltonian Ĥsys and assume that there is a reservoir
described by a Hamiltonian Ĥres, the coupling of the reservoir to the system
being defined by Ĥint. The total Hamiltonian Ĥ is then

Ĥ = Ĥsys + Ĥres + Ĥint . (5.8)

We further assume that Ĥint may be written as a sum of products,

Ĥint = h̄ ∑
i

Âi R̂i , (5.9)

where Âi and R̂i are operator functions of the system and reservoir operators,
respectively. If |ν〉 are an orthonormal and complete set of reservoir Hilbert-
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space vectors that are also eigenkets of Ĥres, we may write

Ĥres = h̄ ∑
ν

ωνr̂νν , (5.10)

R̂i = ∑
ν ,ν′

V(i)
νν′ r̂νν′ , (5.11)

where

r̂νν′ = |ν〉〈ν′|, (5.12)

and V(i)
νν′ are the corresponding coupling-matrix elements. Since the reser-

voir is thought of as having a very large number of degrees of freedom
giving rise to (quasi-)continua of energy eigenstates, the index ν contains
(quasi-)continuous parts, so that parts of the above ν sums are effectively in-
tegrals.

To exemplify the notation used, let us consider the case of a harmonic oscil-
lator (system) which is coupled to a reservoir, which consists of a large number
of other harmonic oscillators. If we make the identifications

Â1 = â†, Â2 = Â†
1 , (5.13)

R̂1 = ∑
α

∑
nα

Vnαnα+1 r̂nαnα+1 , R̂2 = R̂†
1 , (5.14)

where

Vnαnα+1 = κα

√
nα + 1 , (5.15)

with α labeling the oscillators, and introduce the boson annihilation and cre-
ation operators b̂α and b̂†

α, respectively, via

b̂α = ∑
nα

√
nα + 1 r̂nαnα+1 , (5.16)

then Eqs (5.9) and (5.10) take the more conventional forms (n̂α = b̂†
αb̂α)

Ĥint = h̄ ∑
α

κα â† b̂α + H.c., (5.17)

Ĥres = ∑
α

h̄ωαn̂α . (5.18)

Equation (5.17) can be viewed, for example, as a model of an interaction en-
ergy used to describe a possible (energy) damping mechanism for a radiation
mode in a cavity. This is because of the interaction of the radiation mode
with the absorbing cavity walls, which in the case of sufficiently low excita-
tion, might be described by a model of appropriately chosen ensembles of har-
monic oscillators. Light in the cavity mode could be scattered in the wall ex-
citations, and vice versa, thermal and vacuum fluctuations in the walls could
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be scattered into the cavity mode. The net effect of the first kind of process
may be regarded as being the annihilation of a photon at frequency ω and
the simultaneous creation of a wall boson at frequency ωα. Accordingly, the
second kind of process describes the annihilation of a wall boson at ωα and
the creation of a cavity photon at ω. Equation (5.17) can also be regarded as a
model of an interaction energy to describe the damping of a radiation mode
in a leaky cavity (Chapter 9). In this case one could visualize the net effect
of the scattering process from the cavity mode as the annihilation of a cavity
photon and the simultaneous creation of an output photon. Scattering into the
cavity mode then consists of the annihilation of an input photon and the cre-
ation of a cavity photon. Clearly, many other damping mechanisms that can
be described on the basis of Eq. (5.17) could be envisaged. In this equation,
the coupling coefficients κα characterize the strength of the system–reservoir
coupling, which of course depends on the actual interaction mechanism. Note
that interaction processes of the types b̂α â and â†b̂†

α are ignored (rotating-wave
approximation), because they usually give rise to only small off-resonant ef-
fects.

5.1.2
Heisenberg equations of motion

After this excursion, let us return to the more general model based on
Eqs (5.8)–(5.11), in which the system, the reservoir and the interactions of
both subsystems are not specified. If Ĉ is an arbitrary system operator, its
equation of motion in the Heisenberg picture is

˙̂C = − i
h̄

[Ĉ, Ĥsys]− i ∑
i

[Ĉ, Âi]R̂i . (5.19)

In the following it will be convenient to separate from the system operators the
slowly varying amplitude operators, by assuming that the system operators
Âi may be chosen in such a way that

Âi(t) = ˆ̃Ai(t)e−iωit, (5.20)

where positive, negative and zero values of the ωi are possible. Accordingly,
we write2

Ĉ(t) = ˆ̃C(t)e−iωCt. (5.21)

2) If the operator Ĉ consists of more than one rapidly oscillating com-
ponent, the following calculations should be thought of as being
performed for each component separately. At the end of the cal-
culations the result for the overall operator may then be found by
appropriate superposition.
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Using Eqs (5.20) and (5.21), we may rewrite Eq. (5.19) as

d ˆ̃C
dt

= iωC
ˆ̃C − i

h̄

[ ˆ̃C, Ĥsys
]− i ∑

i

[ ˆ̃C, ˆ̃Ai
]
e−iωit R̂i . (5.22)

The equations of motion for the reservoir operators r̂νν′ are

˙̂rνν′ = iωνν′ r̂νν′ − i ∑
j

e−iωjt ˆ̃Aj[r̂νν′ , R̂j], (5.23)

where ωνν′ =ων−ων′ .
We formally solve Eq. (5.23) to obtain

r̂νν′(t) = exp[iωνν′(t − t′)]r̂νν′(t′)

− i ∑
j

∫ t

t′
dτ e−iωjτ ˆ̃Aj(τ) exp[iωνν′(t − τ)][r̂νν′(τ), R̂j(τ)]. (5.24)

Combining Eqs (5.24) and (5.11) yields

R̂i(t) = F̂i(t)

− i ∑
j

∫ t

t′
dτ e−iωjτ ˆ̃Aj(τ) ∑

νν′
V(i)

νν′ exp[iωνν′(t − τ)][r̂νν′(τ), R̂j(τ)], (5.25)

where the operators

F̂i(t) = exp
[ i

h̄
Ĥres(t − t′)

]
R̂i(t′) exp

[
− i

h̄
Ĥres(t − t′)

]
= ∑

νν′
V(i)

νν′ exp
[
iωνν′(t − t′)

]
r̂νν′(t′) (5.26)

are free-reservoir operators, whose time dependence is governed by Ĥres. In
Eqs (5.24) and (5.25), t′ is an appropriately chosen initial time. We now insert
the result (5.25) into Eq. (5.22) to obtain3

d ˆ̃C
dt

= iωC
ˆ̃C − i

h̄

[ ˆ̃C, Ĥsys
]

−∑
i,j

[ ˆ̃C, ˆ̃Ai
]
e−iωit

∫ t

t′
dτ e−iωjτ ˆ̃Aj(τ) ∑

ν,ν′
V(i)

νν′ exp[iωνν′(t − τ)][r̂νν′(τ), R̂j(τ)]

− i ∑
i

[ ˆ̃C, ˆ̃Ai
]
e−iωit F̂i(t). (5.27)

Equation (5.27) is exact so far. In the particular case where the reservoir can
be approximated by a collection of harmonic oscillators and Eq. (5.17) is valid,

3) For notational convenience, we omit the time argument of system
operators when it is t.
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the ν, ν′ sum in the τ integral in Eq. (5.27) simply gives rise to a c number.
In this case, Eq. (5.27) is an equation of motion for system operators only,
because the time dependence of the free-reservoir operators F̂i(t) is known.
The definition of F̂i(t) in terms of the r̂νν′(t′) ensures that these operators may
be specified in the sense of initial conditions.

5.1.3
Born and Markov approximations

If under more general conditions the (ν, ν′)-sum term in the τ integral in the
second line in Eq. (5.27) gives rise to certain kinds of reservoir operators, this
integral can only be approximately decoupled from the reservoir operators.
Let us suppose that the (free) reservoir is in equilibrium, that is to say, reser-
voir correlation functions are stationary:

〈F̂i(t)F̂j(t − τ)〉 = 〈F̂i(τ)F̂j(0)〉. (5.28)

Under the assumption that the interaction between the system and the reser-
voir is weak, and because of the large number of degrees of freedom of the
reservoir, any “elementary” reservoir variable r̂νν′ can only be weakly per-
turbed by the system. Therefore, we only take into account effects up to
second order in the interaction energy between the system and the reser-
voir (Born approximation). In this approximation, we then replace, on re-
calling Eqs (5.25) and (5.26), the remaining (ν, ν′)-sum term by its stationary
expectation value, [F̂i(t), F̂j(t − τ)] �→ 〈[F̂i(τ), F̂j(0)]〉. Changing the variable
(t−τ �→ τ), we obtain

d ˆ̃C
dt

= iωC
ˆ̃C − i

h̄

[ ˆ̃C, Ĥsys
]

− ∑
i,j

[ ˆ̃C, ˆ̃Ai
]
e−i(ωi+ωj)t

∫ t−t′

0
dτ eiωjτ

〈
[F̂i(τ), F̂j(0)]

〉 ˆ̃Aj(t − τ)

− ∑
i

[ ˆ̃C, ˆ̃Ai
]
e−iωit F̂i(t). (5.29)

Note that when the reservoir is a sample of harmonic oscillators, Eq. (5.29) is
of course exact.

Since any physical correlation decays for a sufficiently large time delay, we
have

lim
τ→∞

〈F̂i(τ)F̂j(0)〉 = lim
τ→∞

〈F̂i(τ)〉〈F̂j(0)〉, (5.30)

hence

lim
τ→∞

〈[F̂i(τ), F̂j(0)]〉 = 0. (5.31)
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In fact 〈[F̂i(τ), F̂j(0)]〉 may be expected to be nonzero only during a finite
time interval of length τc – the correlation time. As long as we require
that t− t′�τc, we may therefore extend the upper limit of the τ integral in
Eq. (5.29) to infinity, with little error. Moreover, we require that τc be small
on a time scale in which the system is changed owing to the coupling to the
reservoir (and to intra-system couplings included in Ĥsys). Equivalently, the
bandwidth of the reservoir spectrum involved in the coupling to a system
quantity is required to be large compared with the bandwidth of the system-
quantity spectrum [Lax (1966)]. In this case, in the τ integral in Eq. (5.29) the
(slowly varying) system operators at time t−τ, ˆ̃Aj(t−τ), may be replaced by

the corresponding operators at time t, ˆ̃Aj(t). In this approximation, which is
usually called the Markov approximation, Eq. (5.29) simplifies to

d ˆ̃C
dt

= iωC
ˆ̃C − i

h̄

[ ˆ̃C, Ĥsys
]

− ∑
i,j

[ ˆ̃C, ˆ̃Ai
] ˆ̃Aj exp[−i(ωi + ωj)t]

∫ ∞

0
dτ eiωjτ

〈
[F̂i(τ), F̂j(0)]

〉
− i ∑

i

[ ˆ̃C, ˆ̃Ai
]
e−iωit F̂i(t). (5.32)

Note that, in the Markov approximation, the right-hand side of Eq. (5.32) no
longer contains time integrals with system variables for times earlier than the
present. Thus the temporal change of system quantities at an arbitrarily cho-
sen time is now determined by system quantities at the same time. In other
words, the fluctuations of the system are smoothed out on a time scale τd dur-
ing which the system is damped (decay time); so that the system will lose its
past memory on this time scale. Clearly, in this approximation the time deriv-
ative of any (slowly) varying system operator in an equation of motion of the
type (5.32) must be thought of as the (averaged) time rate of change on a time
scale ∆t, with

τc 	 ∆t 	 τd. (5.33)

In this sense, one also refers to the Markov approximation as a coarse-grained
averaging.

5.1.4
Quantum Langevin equations

Recall that the introduction of slowly varying system variables implies
some kind of rotating-wave approximation. Indeed, from inspection of
Eq. (5.32) we see that in the (i, j) sum only those terms are important for
which (ωi +ωj)τc	1, because in the Markov approximation the physically
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allowed resolving time must be reasonably large compared with the reservoir
correlation time. To pick out these terms, we introduce a function ∆(ω) as

∆(ω) =
{

1 if ωτc 	 1,
0 otherwise,

(5.34)

so that Eq. (5.32) effectively becomes

d ˆ̃C
dt

= iωC
ˆ̃C − i

h̄

[ ˆ̃C, Ĥsys
]

− ∑
i,j

Γij
[ ˆ̃C, ˆ̃Ai

] ˆ̃Aj∆(ωi + ωj)− i ∑
i

[ ˆ̃C, ˆ̃Ai
]
e−iωit F̂i(t), (5.35)

where4

Γij =
∫ ∞

0
dτ e−iωiτ〈[F̂i(τ), F̂j(0)]〉. (5.36)

Note that the e−iωit F̂i(t) are effectively slowly varying reservoir operators. Go-
ing back to the complete Heisenberg operators Ĉ, Âi and Âj [cf. Eqs (5.20) and
(5.21)], we obtain

dĈ
dt

= − i
h̄
[Ĉ, Ĥsys]− ∑

i,j
Γij[Ĉ, Âi]Âj∆(ωi + ωj) − i ∑

i
[Ĉ, Âi]F̂i(t). (5.37)

It should be pointed out that Eq. (5.37) is written in a form where both the
F̂i(t) and Âj are on the right of the commutators [Ĉ, Âi]. From the derivation
of Eq. (5.37) it is clear that there is no need for such an order. The only essential
point is that for a given i the order of [Ĉ, Âi] and F̂i(t) must coincide with the
order of [Ĉ, Âi] and Âj.

The equation of motion (5.37) [or (5.35)] may be viewed as a quantum
Langevin equation [Lax (1966)]. The terms proportional to Re Γij are respon-
sible for damping, with Re Γij being the damping rates, whereas the terms
proportional to Im Γij typically shift the unperturbed system frequencies. The
terms depending on the F̂i(t) may be interpreted as noise sources, provided
that the F̂i(t) are proper noise generators, 〈F̂i(t)〉=0.

It is worth noting that, if the reservoir commutator terms appearing in the
derivation of the quantum Langevin equation are c numbers, the damping
terms arise (in the Markov approximation) without any particular specifica-
tion of the state of the reservoir and without the factorization assumption
in Eq. (5.37). Clearly, the interpretation of the F̂i(t) as proper noise genera-
tors requires that the reservoir is in a state that is incoherent in the sense that
〈F̂i(t)〉=0 and that expectation values of products of system operators and the

4) In our approximation we may let eiωjτ 
 e−iωiτ .
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F̂i(t) are factorized at some appropriately chosen initial time t= t′. When the
reservoir is in a coherent state – a right-hand eigenstate of F̂i(t) – we have a
situation that closely corresponds to classical driving fields being applied to
the system.

In general, quantum Langevin equations of the form (5.37) are hard to han-
dle. Apart from more or less complicated (nonlinear) intra-system couplings
(included in Ĥsys), there are mixed operator products [Ĉ, Âi]F̂i(t). The com-
mutators [Ĉ, Âi] do not reduce, in general, to c numbers but may represent
more or less complicated system operators. Provided that the F̂i(t) are proper
noise generators, equations of motion of the type (5.37) may be interpreted as
quantum Langevin equations with multiplicative noise.5 Clearly, the expec-
tation values of [Ĉ, Âi]F̂i(t) cannot be taken, in general, to be zero. In order
to derive more tractable equations of motion from Eq. (5.37), the averaging of
which directly leads to averaged system quantities, we have to try to express
the expectation values of [Ĉ, Âi]F̂i(t) solely in terms of expectation values of
system operators. In the general case of more or less unspecified system and
reservoir variables it is reasonable to perform the calculations under the same
assumptions and approximations leading, in general, to Eq. (5.37).

For this purpose, in Eq. (5.35) we represent the (slowly varying) commuta-
tor [ ˆ̃C, ˆ̃Ai] in the form

[ ˆ̃C(t), ˆ̃Ai(t)
]

=
[ ˆ̃C(t−), ˆ̃Ai(t−)

]
+

∫ t

t−
dτ

d
dτ

[ ˆ̃C(τ), ˆ̃Ai(τ)
]
, (5.38)

where t− t−>0, and we require that

τc 	 t − t− 	 τd . (5.39)

In Eq. (5.38) we substitute for d[ ˆ̃C(τ), ˆ̃Ai(τ)]/dτ the result (5.35) with [ ˆ̃C, ˆ̃Ai]
instead of ˆ̃C. Introducing the change of variable t−τ �→ τ and omitting terms
proportional to t− t−, we derive6

− i ∑
i

[ ˆ̃C, ˆ̃Ai
]
e−iωit F̂i(t)


 −∑
i,j

e−i(ωi+ωj)t
∫ t−t−

0
dτ

[[ ˆ̃C(t−τ), ˆ̃Ai(t−τ)
]
, ˆ̃Aj(t − τ)

]
eiωjτ F̂j(t−τ)F̂i(t)

− i ∑
i

[ ˆ̃C(t−), ˆ̃Ai(t−)
]
e−iωit F̂i(t). (5.40)

We evaluate the τ integral in Eq. (5.40) within the same approximation scheme
used to derive Eq. (5.35). Replacing the reservoir operator products by their

5) Products of system and noise operators appear.
6) On the time scale of the validity of Eq. (5.35) t− t− is negligibly

small.
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(equilibrium) averages 〈F̂j(0)F̂i(τ)〉, extending the upper limit of the τ integral
to infinity, replacing the (slowly varying) system operators at time t−τ by
their values at time t (Markov approximation), and recalling the definition
(5.34) of the function ∆(ω), we may write

− i ∑
i

[ ˆ̃C, ˆ̃Ai
]
e−iωit F̂i(t)


 −∑
i,j

[[ ˆ̃C, ˆ̃Ai
]
, ˆ̃Aj

]
∆(ωi + ωj)

∫ ∞

0
dτ e−iωiτ〈F̂j(0)F̂i(τ)〉

− i ∑
i

[ ˆ̃C(t−), ˆ̃Ai(t−)
]
e−iωit F̂i(t). (5.41)

We now combine Eqs (5.35), (5.36) and (5.41) to finally obtain

d ˆ̃C
dt

= iωC
ˆ̃C − i

h̄

[ ˆ̃C, Ĥsys
]

− ∑
i,j

∆(ωi + ωj)
{

Γ+
ij

[ ˆ̃C, ˆ̃Ai
] ˆ̃Aj − Γ−

ji
ˆ̃Aj

[ ˆ̃C, ˆ̃Ai
]}

− i ∑
i

[ ˆ̃C(t−), ˆ̃Ai(t−)
]
e−iωit F̂i(t), (5.42)

where

Γ+
ij =

∫ ∞

0
dτ e−iωiτ〈F̂i(τ)F̂j(0)〉, (5.43)

Γ−
ji =

∫ ∞

0
dτ e−iωiτ〈F̂j(0)F̂i(τ)〉. (5.44)

Note that Γij =Γ+
ij −Γ−

ji [see Eqs (5.36), (5.43) and (5.44)].
The equation of motion (5.42) may again be interpreted as a quantum

Langevin equation, which (within the approximation scheme used) is equiv-
alent to Eq. (5.35). The terms proportional to Re Γ+

ij and Re Γ−
ji are damping

terms. It should be noted that the operator Langevin force

ˆ̃FC(t) = −i ∑
i

[ ˆ̃C(t−), ˆ̃Ai(t−)
]
e−iωit F̂i(t) (5.45)

satisfies〈 ˆ̃FC(t)
〉

= 0, (5.46)

because of the assumption that 〈F̂i(t)〉=0. Clearly, Eq. (5.46) must hold in
the Markov approximation. If Eq. (5.35) is solved in terms of the past system
values and those of the noise generators F̂i(t), the system variables do not
depend on the values of the noise generators in the future. In Eq. (5.45) the
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system and noise variables are taken at the times t− and t respectively. Since
t− t−�τc, and the noise variables are only correlated over a time interval
τc, the system and noise variables cannot be correlated over the time interval
t− t−, and hence〈 ˆ̃FC(t)

〉
= −i ∑

i

〈[ ˆ̃C(t−), ˆ̃Ai(t−)
]
F̂i(t)

〉
e−iωit


 −i ∑
i

〈[ ˆ̃C(t−), ˆ̃Ai(t−)
]〉〈F̂i(t)〉e−iωit = 0. (5.47)

In this way, the noise effect of the reservoir on the expectation value of a sys-
tem operator Ĉ is, in contrast to Eq. (5.35), completely contained in the damp-
ing terms.

Going back to the complete Heisenberg operators, Eq. (5.42) may be written
as

dĈ
dt

= − i
h̄
[Ĉ, Ĥsys]

− ∑
i,j

∆(ωi + ωj)
{

Γ+
ij [ Ĉ, Âi]Âj − Γ−

ji Âj[Ĉ, Âi]
}

+ F̂C(t), (5.48)

where

F̂C(t) = ˆ̃FC(t)e−iωCt (5.49)

and 〈F̂C(t)〉=0. On the basis of the quantum Langevin equation in the form
(5.48) together with Eq. (5.46), we can easily derive the equations of motion
for (one-time) expectation values of system operators:

d〈Ĉ〉
dt

= − i
h̄
〈[Ĉ, Ĥsys]〉

−∑
i,j

∆(ωi + ωj)
{

Γ+
ij 〈[Ĉ, Âi]Âj〉 − Γ−

ji 〈Âj[Ĉ, Âi]〉
}

. (5.50)

It should be pointed out that the Langevin equation (5.37) or (5.48) effec-
tively represents a system of coupled equations. Clearly, the combinations of
system operators, such as Ĉ′ ≡ [Ĉ, Âi]Âj and Ĉ′′≡ Âj[Ĉ, Âi] [cf. Eq. (5.48)], also
satisfy Langevin equations of the type considered, so that, in general, a more
or less complicated hierarchy of operator equations of motion is created. Ac-
cordingly, the mean-value equation of motion (5.50) also represents a system
of coupled equations of motion.

5.2
Master equations and related equations

So far we have dealt with the Heisenberg picture. The equation of motion for
the expectation value of any system operator, Eq. (5.50), is of course indepen-
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dent of the picture chosen. This equation makes it possible also to formulate
the Markovian damping theory in the language of density operators in the
Schrödinger picture. The resulting equation of motion for the (reduced) sys-
tem density operator is usually called (in analogy with classical statistics) the
master equation. Moreover, by applying the methods of phase-space func-
tions, we may reformulate the theory of damping in terms of (quasi-)Fokker–
Planck equations.

5.2.1
Master equations

Without loss of generality we may assume that at some (initial) time t= t′ the
Heisenberg picture agrees with the Schrödinger picture. In the Heisenberg
picture the expectation value of any operator M̂ at time t is

〈M̂(t)〉 = Tr[�̂(t′)M̂(t)], (5.51)

where �̂(t′) is the (initial) density operator. Recalling that

M̂(t) = Û†(t, t′)M̂(t′)Û(t, t′), (5.52)

where Û(t, t′) is the time evolution operator, and using the cyclic properties
of the trace, we may rewrite Eq. (5.51) as

〈M̂(t)〉 = Tr[�̂(t)M̂(t′)], (5.53)

where

�̂(t) = Û(t, t′)�̂(t′)Û†(t, t′). (5.54)

Equation (5.53) is just the prescription for calculating expectation values in
the Schrödinger picture, in which the full time dependence is included in the
density operator �̂(t), whereas the operators, apart from an external, explicit
time dependence, are time independent [M̂(t)= M̂(t′)].

Let us identify the operator M̂ by a system operator Ĉ. In this case we may
first take the trace over the reservoir in Eq. (5.53) and then take the remaining
trace over the system:

〈Ĉ〉 = Trsys[σ̂(t)Ĉ(t′)], (5.55)

where

σ̂(t) = Trres �̂(t) (5.56)

is the (reduced) density operator for the system. Hence we may write

d〈Ĉ〉
dt

= Trsys

[
dσ̂(t)

dt
Ĉ(t′)

]
. (5.57)
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Substituting the result (5.50) into Eq. (5.57) for d〈Ĉ〉/dt, recalling Eq. (5.55),
and using the cyclic properties of the trace, we can easily derive

Trsys

[
dσ(t)

dt
Ĉ(t′)

]
= Trsys

{[
− i

h̄
[Ĥsys(t′), σ̂(t)]

− ∑
i,j

∆(ωi + ωj)
{

Γ+
ij [Âi(t′)Âj(t′)σ̂(t)− Âj(t′)σ̂(t)Âi(t′)]

− Γ−
ji [Âi(t′)σ̂(t)Âj(t′) − σ̂(t)Âj(t′)Âi(t′)]

}]
Ĉ(t′)

}
. (5.58)

Since Eq. (5.58) holds for any system operator Ĉ, we deduce that

dσ̂

dt
= − i

h̄
[Ĥsys, σ̂] −∑

i,j
∆(ωi + ωj)

{
Γ+

ij [Âi, Âjσ̂]− Γ−
ji

[
Âi, σ̂Âj]

}
. (5.59)

In Eq. (5.59) the notation Âi is used for the (now time-independent) system
operators Âi(t′) in the Schrödinger picture. The equation of motion (5.59) for
the system density operator is called the master equation.

In practical calculations it may be advantageous to use this equation in an
appropriately chosen representation in order to get c-number equations in-
stead of the operator equation given above. A standard way is to write down
Eq. (5.59) in the basis of the eigenkets of the system Hamiltonian, |n〉. The re-
sult is a set of coupled first-order differential equations for the density-matrix
elements σnm =〈n|σ̂|m〉.

5.2.2
Fokker–Planck equations

There is another way of formulating c-number equations on the basis of
Eq. (5.59), namely by using the concept of phase-space functions [Gordon
(1967); Lax (1968); Lax and Yuen (1968); Louisell and Marburger (1968)], in-
troduced in Chapter 4 for the case of a pair of boson basic operators, â and â†.
The extension to other basic operators is straightforward [see, e. g., Louisell
(1973)]. For this purpose, let us consider a basis set of noncommuting (sys-
tem) operators â1, â2, . . . , ân, so that any system operator Ĉ may be viewed
as an operator function of the âν: Ĉ = Ĉ(â1, . . . , ân) ≡ Ĉ(âν). Let us fur-
ther suppose that, by means of the commutation (or anti-commutation) re-
lations for the âν, the operator Ĉ is put, with regard to the âν, in a given order:
Ĉ= Ĉ(O)(â1, . . . , ân)≡ Ĉ(O)(âν). Substituting into Ĉ = Ĉ(O)(âν) for the opera-
tors âν the c numbers αν, we obtain the associated c-number function C(O)(αν).
The αν are real or complex, depending on whether or not the corresponding
âν are Hermitian operators. We now use the identity

C(O)(γν) =
∫

dα1 · · ·
∫

dαn δ(γν − αν)C(O)(αν), (5.60)
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with the n-dimensional δ function δ(αν) defined by

δ(αν) =
∫ dβ1

N1
· · ·

∫ dβn

Nn
exp(iβ1α1 + · · · + iβnαn), (5.61)

where dαν/Nν = dαν/2π if αν is real, and (dαν/Nν)(dαν′/Nν′) = d2αν/π2,
with d2αν = dReαν dImαν, and exp(iανβν + iαν′βν′) = exp(iανβν + iα∗νβ∗

ν) if
αν′ =α∗ν (ν′ 
= ν), that is, if âν′ = â†

ν. Going from C(O)(γν) back to Ĉ(O)(âν), we
may represent the operator Ĉ (in the chosen order) as

Ĉ =
∫

dα1 · · ·
∫

dαn C(O)(αν)Oδ̂(âν − αν), (5.62)

where the symbol O indicates the chosen order and

δ̂(âν − αν) =
∫ dβ1

N1
· · ·

∫ dβn

Nn
exp[i(â1 − α1)β1 + · · ·+ i(ân − αn)βn] (5.63)

is the n-dimensional operator δ function. Hence the expectation value of Ĉ
may be represented in the form

〈Ĉ〉 =
∫

dα1 · · ·
∫

dαn P(O)(αν)C(O)(αν), (5.64)

where the phase-space function P(O)(αν) is defined by

P(O)(αν) = 〈Oδ̂(âν − αν)〉 (5.65)

[cf. Eq. (4.53)]. Note that combining Eqs (5.63) and (5.65) equivalently yields
the following representation of P(O)(αν):

P(O)(αν) =
∫ dβ1

N1
· · ·

∫ dβn

Nn
exp(−iα1β1 − · · · − iαnβn)Φ(O)(βν), (5.66)

where

Φ(O)(βν) = 〈OD̂(βν)〉, (5.67)

with the operator D̂(βν) being defined as

D̂(βν) = exp(iβ1â1 + . . . + iβnân). (5.68)

Here Φ(O)(βν) may be viewed as a characteristic (generating function) [cf.
Eq. (4.90)]. In particular, the expectation values of products of operators âν

in the chosen order (that is, O-ordered moments) are simply obtained from
Φ(O)(βν) by differentiation, e. g.,



150 5 Quantum theory of damping

∂lν1+...+lνn

∂(iβν1)
lν1 · · · ∂(iβνn)lνn

Φ(O)(βνj)
∣∣∣∣
βνj=0

=
〈
O ∏

j
(âνj)

lνj
〉

(5.69)

[cf. Eq. (4.94)].
Now let us turn to the problem of deriving an equation of motion for the

phase-space function P(O)(αν, t), where the argument t explicitly indicates its
time dependence. From Eq. (5.65) we can easily see that, in the Schrödinger
picture, the time derivative of P(O)(αν, t) may be expressed in terms of the
time derivative of the (system) density operator σ̂(t) as

∂

∂t
P(O)(αν, t) = Trsys

[
dσ̂(t)

dt
Oδ̂(âν − αν)

]
. (5.70)

Substituting the result of Eq. (5.59) into Eq. (5.70) for dσ̂/dt and using the
cyclic properties of the trace, we derive

∂

∂t
P(O)(αν, t) = Trsys

[
σ̂(t)K̂

(
∂

∂αν

)
δ(αν)

]
, (5.71)

where

K̂
(

∂

∂αν

)
= − i

h̄

[
OD̂

(
i

∂

∂αν

)
, Ĥsys

]

−∑
i,j

∆(ωi+ωj)
{

Γ+
ij

[
OD̂

(
i

∂

∂αν

)
, Âi

]
Âj − Γ−

ji Âj

[
OD̂

(
i

∂

∂αν

)
, Âi

]}
,

(5.72)

with the operator D̂ from Eq. (5.68). In Eqs (5.71) and (5.72) the relation

δ̂(âν − αν) = exp
(
−â1

∂

∂α1
− · · · − ân

∂

∂αn

)
δ(αν) (5.73)

has been used, which may be proved correct by expanding the exponential
operator exp(iβ1â1 + . . .+ iβnân) in Eq. (5.63) in a power series and using the
relation (−iβν)l exp(−iβναν)=∂l exp(−iβναν)/∂(αν)l . Since in Eq. (5.72) the
operators Ĥsys, Âi and Âj are operator functions of the âν, the operator K̂
is also an operator function of the âν: K̂(∂/∂αν)≡ K̂(∂/∂αν, âν). Putting the
âν in K̂ into the chosen order, K̂(∂/∂αν, âν)= K̂(O)(∂/∂αν, âν), and recalling
Eq. (5.62), we may rewrite Eq. (5.71) as

∂

∂t
P(O) (αν, t)

= Trsys

[
σ̂(t)

∫
dα′1 · · ·

∫
dα′n K(O)

(
∂

∂αν
, α′ν

)
Oδ̂(âν − α′ν)δ(αν)

]
,

(5.74)
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where K(O)(∂/∂αν, α′ν) is the c-number function associated with K̂ in the cho-
sen order. Defining the function L(O)(∂/∂αν, α′ν) by

K(O)
(

∂

∂αν
, α′ν

)
= L(O)

(
∂

∂αν
, α′ν

)
exp

(
−α′1

∂

∂α1
− · · · − α′n

∂

∂αn

)
, (5.75)

recalling Eq. (5.73) (âν �→ αν′), and using Eq. (5.65), we finally obtain from
Eq. (5.74) the desired equation of motion for the function P(O)(αν, t):

∂

∂t
P(O)(αν, t) = L(O)

(
∂

∂αν
, αν

)
P(O)(αν, t) . (5.76)

From the given derivation it is clear that this partial differential equation,
which is equivalent to the infinite set of ordinary differential equations for the
density-matrix elements σnm(t), contains, in general, all orders of derivatives
with respect to the αν. In many cases of practical interest derivatives higher
than a certain order may be ignored. Frequently the designation Fokker–
Planck equation is used when only derivatives up to second order occur.

5.3
Damped harmonic oscillator

Let us apply the theory developed above to the important and illustrative case
of a harmonic oscillator undergoing energy relaxation. For this example we
shall formulate the Langevin, master and Fokker–Planck equations. More-
over, the effects of an additional dephasing process, not related to energy re-
laxation, will be studied.

5.3.1
Langevin equations

Assuming that the dominant energy relaxation mechanism arises from one-
quantum transitions in the harmonic oscillator (of frequency ω, described by
the annihilation and creation operators â and â† respectively), we have

Ĥint = h̄V̂â† + H.c., (5.77)

where

V̂ = ∑
ν,ν′

Vνν′ r̂νν′ . (5.78)

Comparing Eq. (5.77) with Eq. (5.9), we may make the identifications

Â1 = â†, Â2 = Â†
1 = â, (5.79)

R̂1 = V̂, R̂2 = R̂†
1 = V̂† (5.80)
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[cf. Eqs (5.13)–(5.16)]. Applying Eq. (5.37) [together with Eq. (5.36)] to an arbi-
trary system operator Ĉ= Ĉ(â, â†) yields7

˙̂C =− i
h̄

[Ĉ, Ĥsys]

− 1
2 (Γ12−Γ∗

12)
(
[Ĉ, â†]â + â†[Ĉ, â]

) − 1
2 (Γ12+Γ∗

12)
(
[Ĉ, â†]â − â†[Ĉ, â]

)
− i[Ĉ, â†]F̂(t)− iF̂†(t)[Ĉ, â], (5.81)

where

Γ12 =
∫ ∞

0
dτ eiωτ

〈
[F̂(τ), F̂†(0)]

〉
(5.82)

and [cf. Eq. (5.26)]

F̂(t) = exp
[

i
h̄

Ĥres(t − t′)
]

V̂(t′) exp
[
− i

h̄
Ĥres(t − t′)

]
= ∑

ν,ν′
Vνν′ r̂νν′(t′) exp[iωνν′(t − t′)]. (5.83)

Combining Eqs (5.82) and (5.83) yields

Γ12 = ∑
ν,ν′

|Vνν′ |2[(σres)νν − (σres)ν′ν′ ]ζ(ω − ων′ν), (5.84)

where the ζ function is defined by

ζ(x) =
∫ ∞

0
dy eixy = πδ(x) + i

P
x

. (5.85)

In Eq. (5.84) the relation [recall Eq. (5.12)]

〈r̂νν′(t′)〉 = Tr(σ̂res|ν〉〈ν′|) = (σres)νν′ = δνν′(σres)νν (5.86)

has been used, where σ̂res is the (diagonal) density operator of the reservoir in
equilibrium.

Defining

Γ = Γ12 + Γ∗
12 = w↓ − w↑, (5.87)

where

w↓ = 2π ∑
ν,ν′

|Vνν′ |2(σres)ννδ(ω − ων′ν), (5.88)

w↑ = 2π ∑
ν,ν′

|Vνν′ |2(σres)ν′ν′δ(ω − ων′ν), (5.89)

∆ =
1
2i

(Γ12 − Γ∗
12) = P ∑

ν,ν′
|Vνν′ |2[(σres)νν − (σres)ν′ν′ ](ω − ων′ν)

−1,

(5.90)

7) Note that in the term arising from Eq. (5.37) for i=2, j=1 the order
of both [Ĉ, Âi], F̂i and [Ĉ, Âi], Âj is changed; cf. the comment below
Eq. (5.37).
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we may rewrite Eq. (5.81) as

˙̂C =− i
h̄

[Ĉ, Ĥsys + h̄∆â† â]

− 1
2 Γ

(
[Ĉ, â†]â − â†[Ĉ, â]

) − i[Ĉ, â†]F̂(t)− iF̂†(t)[Ĉ, â]. (5.91)

In the particular case where Ĉ= â this result reduces to

˙̂a = − i
h̄

[â, Ĥsys + h̄∆â† â]− 1
2 Γâ − iF̂(t) (5.92)

[cf. Eq. (5.2)].
We can see that the real part of Γ12 gives rise to damping. As we shall see

later, nw↓ and nw↑ are just the familiar probabilities per unit time for the os-
cillator transitions |n〉→|n−1〉 and |n−1〉→|n〉, respectively. The imaginary
part of Γ12 is seen to lead to a shift in the frequency of the (unperturbed) oscil-
lator. Since Ĥsys contains the (unperturbed) oscillator energy h̄ω0â† â, we may
simply let h̄ω0â† â+ h̄∆â† â= h̄ωâ† â with ω=ω0 +∆. That is, the frequency
shift may be thought of as being included in the (renormalized) system Hamil-
tonian: Ĥsys + h̄∆â† â �→ Ĥsys.

When the reservoir may be viewed as a large collection of harmonic oscil-
lators and Eqs (5.15)–(5.16) apply, from Eqs (5.83) and (5.84) we arrive, after
some calculation,8 at

F̂(t) = ∑
α

κα b̂α(t′) exp[−iωα(t − t′)], (5.93)

Γ12 = ∑
α

|κα|2ζ(ω − ωα), (5.94)

and hence

Γ = Γ12 + Γ∗
12 = w↓ − w↑ = 2π ∑

α

|κα|2 δ (ω − ωα) , (5.95)

∆ =
1
2i

(Γ12 − Γ∗
12) = P ∑

α

|κα|2(ω − ωα)−1, (5.96)

where

w↓ = 2π ∑
α

|κα|2(n̄α + 1)δ(ω − ωα), (5.97)

w↑ = 2π ∑
α

|κα|2n̄αδ(ω − ωα), (5.98)

n̄α = 〈b̂†
α(t′)b̂α(t′)〉 = Tr(σ̂resb̂†

αb̂α). (5.99)

8) We apply the relations ∑νν′ |Vνν′ |2 (σres)νν =∑α ∑nα
|κα|2 (nα

+1) Tr(σ̂res|nα〉〈nα|)=∑α |κα|2 (n̄α +1) and, correspondingly,
∑νν′ |Vνν′ |2 (σres)ν′ν′ =∑α |κα|2n̄α.
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Equation (5.92) together with Eqs (5.93) and (5.95) and Ĥsys + h̄∆â† â �→ Ĥsys
just corresponds to the Langevin equation for a damped cavity mode:

˙̂a = − i
h̄

[â, Ĥsys]− 1
2 Γâ − iF̂(t) (5.100)

[cf. Eq. (9.80)]. This correspondence also includes the commutation relations.
Using Eq. (5.93) and recalling the commutation rules for boson operators at
equal times, we may write

[F̂(t1), F̂†(t2)] exp[iω(t1 − t2)] = ∑
α

|κα|2 exp[−i(ωα − ω)(t1 − t2)]. (5.101)

Since the reservoir is assumed to be a large collection of harmonic oscillators,
we may assume that their frequencies are closely spaced, so that the α sum
may be changed to an integral:

∑
α

. . . �→
∫ ∞

0
dω′ �(ω′) . . . , (5.102)

with �(ω′) dω′ being the number of oscillators between ω′ and ω′+dω′.
Hence Eq. (5.101) becomes (ω′−ω=Ω, dω′=dΩ)

[F̂(t1), F̂†(t2)]eiω(t1−t2) =
∫ ∞

−ω
dΩ �(ω + Ω)|κ(ω + Ω)|2e−iΩ(t1−t2). (5.103)

In the Markov approximation the bandwidth of f (Ω)≡�(ω+Ω)|κ(ω+Ω)|2
must be large compared with Γ, and exp[−iΩ(t1− t2)] is, in comparison
with f (Ω), a rapidly varying function of Ω. We may therefore remove
f (Ω)|Ω=0=�(ω)|κ(ω)|2 from the integral and extend the lower limit to
−∞. Equation (5.103) therefore becomes, on using Eq. (5.95) together with
Eq. (5.102),

[F̂(t1), F̂†(t2)]eiω(t1−t2) = Γδ(t1 − t2) , (5.104)

[cf. Eq. (5.5)]. The damping rate Γ is now

Γ = 2πρ(ω)|κ(ω)|2. (5.105)

Note that [F̂(t1), F̂(t2)]=[F̂†(t1), F̂†(t2)]=0. To find the time-dependent com-
mutation relations for system and reservoir variables, we note that if Eq. (5.92)
[or, more generally, Eq. (5.91)] is solved in order to express system operators
in terms of their past values and the reservoir operators in the past, it is clear
that system operators at time t1 do not depend on reservoir operators at time
t2 if t2 > t1. In other words, system variables may be regarded as independent
of reservoir variables in the future. Hence, representing commutators of the
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type [Ĉ(t1), F̂(t2)] or [Ĉ(t1), F̂†(t2)] in terms of commutators of reservoir vari-
ables as given in Eq. (5.104), we find that they vanish, provided that t2 > t1 and
t2− t1�τc (time scale Γ−1):

[Ĉ(t1), F̂(t2)] = [Ĉ(t1), F̂†(t2)] = 0 (t2 > t1) (5.106)

[cf. Eq. (9.126)]. We recall that Eqs (5.104) and (5.106) are based on a fluctuation
operator of the type (5.93). In cases where the more general expression (5.83)
must be used, Eqs (5.104) and (5.106) may be regarded as being valid in the
sense of (reservoir) averages.

Let us return to Eq. (5.91) and suppose that F̂(t) is a proper noise genera-
tor, 〈F̂〉=0. Under the assumptions made when deriving Eq. (5.48), we may
represent Eq. (5.91) in a form corresponding to Eq. (5.48). Straightforward
calculations yield (Ĥsys + h̄∆â† â �→ Ĥsys)

˙̂C =− i
h̄

[Ĉ, Ĥsys] + 1
2 w↓

(
â†[Ĉ, â]− [Ĉ, â†]â

)
+ 1

2 w↑
(
â[Ĉ, â†]− [Ĉ, â]â†) + F̂C(t)

=− i
h̄

[Ĉ, Ĥsys] + 1
2 w↓(2â†Ĉâ − Ĉâ† â − â† âĈ)

+ 1
2 w↑(2âĈâ† − Ĉââ† − ââ†Ĉ) + F̂C(t), (5.107)

where9

〈F̂C(t)〉 = 0; (5.108)

w↓ and w↑ are defined by Eqs (5.97) and (5.98), respectively.

5.3.2
Master equations

According to the procedure outlined for proceeding from Eq. (5.48) to
Eq. (5.59), from Eq. (5.107) the equation of motion for the reduced density
operator σ̂ may now be derived as

dσ̂

dt
=

i
h̄

[σ̂, Ĥsys] + 1
2 w↓([â, σ̂â†]− [â†, âσ̂])

+ 1
2 w↑([â†, σ̂â] − [â, â†σ̂])

=
i
h̄

[σ̂, Ĥsys] + 1
2 w↓(2âσ̂â† − â† âσ̂ − σ̂â† â)

+ 1
2 w↑(2â†σ̂â − ââ†σ̂ − σ̂ââ†). (5.109)

9) Here the noise operator F̂C(t) is understood as being constructed for
this specific case according to the prescription given in Section 5.1.4
in Eqs (5.45) and (5.49).



156 5 Quantum theory of damping

Writing Eq. (5.109) in the basis defined by the eigenkets |n〉 of the number
operator â† â, after some algebra, the following system of equations of motion
for the density-matrix elements σnm =〈n|σ̂|m〉 is obtained:

σ̇nn =
i
h̄
〈n|[σ̂, Ĥsys]|n〉 + w↓[(n + 1)σn+1 n+1 − n σnn]

+ w↑[nσn−1 n−1 − (n + 1)σnn], (5.110)

σ̇nm =
i
h̄
〈n|[σ̂, Ĥsys]|m〉 − γnmσnm

+ w↓[(n + 1)(m + 1)]1/2σn+1 m+1 + w↑(nm)1/2σn−1 m−1 (5.111)

(n 
=m), where

γnm = 1
2 [(n + m)w↓ + (n + m + 2)w↑]. (5.112)

When the system is an unperturbed harmonic oscillator, then the num-
ber states are the energy eigenstates, and representation of the master equa-
tion in the number basis allows an interpretation of the various relaxation
terms.10 Obviously, w↓(n+1) and w↑n are the (energy relaxation) rates for the
|n+1〉→|n〉 and |n−1〉→|n〉 transitions, respectively. The rate γnm (n 
=m)
describes the dephasing (decay of the off-diagonal element σnm), and the rates
w↓

√
(n+1)(m+1) and w↑

√
nm describe reservoir-induced couplings between

the off-diagonal elements, σn+1 m+1↔σnm and σn−1 m−1↔σnm, respectively.

5.3.3
Fokker–Planck equations

Let us consider the s-parameterized phase-space functions introduced in
Chapter 4, which apply to the calculation of averages of operator functions in
s order. Instead of following the general procedure outlined in Section 5.2.2,
we apply the formalism specific to s-parameterized phase-space functions.

Let us first consider the characteristic function Φ(α) ≡ Φ(α; s = 0) of the
Wigner function W(α). Recalling Eqs (4.47) and (4.90), we can write the time
derivative of Φ(α) (in the Schrödinger picture) as

∂Φ(α)
∂t

= Tr
[

D̂(α)
dσ̂

dt

]
. (5.113)

10) In that case the infinite system of balance equations
(5.110) can be solved by means of the generating function
G(x, t)=∑n(x+1)n+1σnn(t) [Montroll and Shuler (1957)], which
is easily seen to obey the simple equation

∂G
∂t

+ x
∂G
∂x

[
w↓ − (x + 1)w↑

]
=

(
w↓ − w↑

)
G.
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Substituting the expression (5.109) into Eq. (5.113) for dσ̂/dt and using the
cyclic properties of the trace, we see that expectation values of products of D̂
and â and â† are to be considered. With the help of Eqs (4.46) and (4.48) it is
not difficult to prove that [cf. Eqs (3.56) and (3.57)]

â†D̂(α) =
(

α∗

2
+

∂

∂α

)
D̂(α), D̂(α)â = [â†D̂(−α)]†. (5.114)

Similarly, from Eqs (4.46) and (4.49) it follows that

âD̂(α) =
(

α

2
− ∂

∂α∗

)
D̂(α), D̂(α)â† = [âD̂(−α)]†. (5.115)

Combining Eqs (5.113) and (5.109), on assuming that Ĥsys = h̄ωâ† â, and ap-
plying the rules given in Eqs (5.114) and (5.115), after some straightforward
calculation, we derive the following evolution equation for the characteristic
function of the Wigner function:

∂Φ(α)
∂t

=−
[( 1

2 Γ + iω
)
α∗ ∂

∂α∗ +
( 1

2 Γ − iω
)
α

∂

∂α

]
Φ(α)

− 1
2 Γ

(
1 +

2w↑
Γ

)
|α|2Φ(α). (5.116)

Note that here the relation Γ=w↓−w↑ has been used [cf. Eq. (5.87)].
Equation (5.116) can easily be extended to the case of arbitrary s order. For

this purpose we note that, according to Eq. (4.91), the relation

∂Φ(α; s)
∂t

=
∂

∂t

[
e

1
2 s|α|2Φ(α)

]
= e

1
2 s|α|2 ∂Φ(α)

∂t
(5.117)

holds. Hence, the evolution equation for Φ(α; s) can be obtained from
Eq. (5.116) by multiplying the expression on the right-hand side of that equa-
tion by e

1
2 s|α|2 . Taking into account that

e
1
2 s|α|2α

∂Φ(α)
∂α

= α
∂Φ(α; s)

∂α
− 1

2 s|α|2Φ(α; s), (5.118)

we can easily see that Φ(α; s) obeys the partial differential equation

∂Φ(α; s)
∂t

=−
[( 1

2 Γ + iω
)
α∗ ∂

∂α∗ +
( 1

2 Γ − iω
)
α

∂

∂α

]
Φ(α; s)

− 1
2 Γ

(
1 − s +

2w↑
Γ

)
|α|2Φ(α; s). (5.119)

Since the characteristic function Φ(α; s) and the phase-space function P(α; s)
are related to each other by the Fourier transformation (4.93), the evolution
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equation for P(α; s) can be obtained by Fourier transformation of Eq. (5.119).
Using the relations

1
π2

∫
d2β exp(αβ∗ − α∗β)|β|2Φ(β; s) = −∂2P(α; s)

∂α∂α∗ (5.120)

and

1
π2

∫
d2β exp(αβ∗ − α∗β)β∗ ∂Φ(β; s)

∂β∗

=
1

π2
∂

∂α

∫
d2β exp(αβ∗ − α∗β)

∂Φ(β; s)
∂β∗ = − ∂

∂α
[αP(α; s)], (5.121)

we can easily see that the sought Fokker–Planck equation can be given in the
form of11

∂P(α; s)
∂t

=
[( 1

2 Γ + iω
) ∂

∂α
α +

( 1
2 Γ − iω

) ∂

∂α∗ α∗
]

P(α; s)

+ 1
2 Γ

(
1 − s +

2w↑
Γ

)
∂2P(α; s)

∂α∂α∗ . (5.122)

Note that the free motion can easily be removed by the ansatz

P(α, t; s) = P(α̃e−iωt, t; s) ≡ P̃(α̃, t; s). (5.123)

It is not difficult to prove that the equation of motion of P̃(α̃; s) reads

∂P̃(α̃; s)
∂t

= 1
2 Γ

(
∂

∂α̃
α̃ +

∂

∂α̃∗ α̃∗
)

P̃(α̃; s)+ 1
2 Γ

(
1−s+

2w↑
Γ

)
∂2P̃(α; s)

∂α̃∂α̃∗ . (5.124)

5.3.4
Radiationless dephasing

The formulae derived in Sections 5.3.1–5.3.3 are based on an interaction
Hamiltonian of the type (5.77). This model is commonly used to describe
the effect of (lowest-order) energy relaxation, the phase relaxation (dephas-
ing) being attributed to the energy relaxation. To see this, we recall that
from inspection of the (balance) equations (5.110) for the diagonal density-
matrix elements σnn the energy relaxation rates wnl for the transitions |n〉→|l〉
(l=n−1,n+1) are found as

wnl = n w↓ δl n−1 + (n + 1)w↑δl n+1. (5.125)

On the other hand, the phase relaxation rates γnm responsible for the decay
of the (phase-sensitive) off-diagonal density-matrix elements σnm (n 
= m) are

11) For methods of solution, see, e. g., Louisell (1973).
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determined solely by the energy relaxation rates; that is,

γnm = 1
2 ∑

l
(wnl + wml) (n 
= m), (5.126)

as can readily be seen by substituting the result (5.125) into Eq. (5.126) for wnl
(and wml) and comparing the result of this with Eq. (5.111). We note that the
relations (5.126) between the energy relaxation rates and the associated phase
relaxation rates is very general and also applicable to other than harmonic-
oscillator systems. In particular, they typically describe the effect of radiative
decay.

In many cases of radiationless relaxations, however, there are decay chan-
nels giving rise to pure dephasings. Let us suppose that the interaction energy
between the system oscillator and the reservoir contains an additional term
bilinear in the system operator [Diestler (1976); Paerschke, Süsse and Welsch
(1980)]:

Ĥ′
int = h̄V̂′ â† â (5.127)

[with (V̂′)† =V̂′].12 According to Eq. (5.9), we make the identifications

Â3 = â† â, (5.128)

R̂3 = V̂′, (5.129)

and define, according to Eq. (5.26), the noise generator

F̂′(t) = exp
[

i
h̄

Ĥres(t − t′)
]

V̂′(t′) exp
[
− i

h̄
Ĥres(t − t′)

]
(5.130)

[with 〈F̂′(t)〉=0]. Applying Eq. (5.48) then yields

− ∆(ω3 + ω3)
(
Γ+

33[Ĉ, Â3]Â3 − Γ−
33 Â3[Ĉ, Â3]

)
= −i∆′[Ĉ, â† ââ† â]− γ′[[Ĉ, â† â], â† â

]
, (5.131)

where

γ′ = 1
2

∫ ∞

0
dτ 〈F̂′(τ)F̂′(0)〉+ c.c., (5.132)

i∆′ = 1
2

∫ ∞

0
dτ 〈F̂′(τ)F̂′(0)〉 − c.c. . (5.133)

The second term on the right-hand side of Eq. (5.131) gives rise to an ad-
ditional damping, whereas the first describes the associated frequency shift.

12) Note that a term h̄V̂′′ ââ† can be thought of as being included in
Ĥ′

int and Ĥres, because h̄V̂′′ ââ† can be rewritten as h̄V̂′′ ââ† = h̄V̂′′+
h̄V̂′′ â† â.
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Note that in contrast to the case of energy relaxation [with the interaction en-
ergy being given by Eq. (5.77)], the frequency-shift term in Eq. (5.131) cannot
be included in the (unperturbed) Hamiltonian of the system oscillator, because
of its quadratic dependence on the number operator. Ignoring this small ef-
fect, we find the complete Langevin equation for any system operator Ĉ by
adding the damping term in Eq. (5.131) to the damping terms on the right-
hand side of Eq. (5.107) (cf. footnote 9, p. 155):

˙̂C =− i
h̄
[Ĉ, Ĥsys]− γ′[[Ĉ, â† â], â† â

]
+ 1

2 w↓
(
â†[Ĉ, â]− [Ĉ, â†]â

)
+ 1

2 w↑
(
â[Ĉ, â†] − [Ĉ, â]â†) + F̂C(t). (5.134)

If Ĉ is a function of the number operator, we simply have [Ĉ, â† â]=0, and
hence in the equation of motion the damping terms only arise from energy
relaxation. The simplest example is the equation of motion for the number
operator itself (Ĉ= n̂= â† â):

˙̂n = − i
h̄

[n̂, Ĥsys]− Γn̂ + w↑ + F̂n(t) (5.135)

(note that Γ=w↓−w↑). The dephasing term (proportional to γ′) in Eq. (5.134)
becomes relevant if the chosen system operator Ĉ is phase-dependent. For
example, when Ĉ= â, we have

˙̂a = − i
h̄

[â, Ĥsys]−
( 1

2 Γ + γ′)â + F̂a(t). (5.136)

In an analogous way to the derivation of Eq. (5.109), from Eq. (5.134) we
derive the corresponding master equation:

dσ̂

dt
=− i

h̄
[σ̂, Ĥsys]− γ′[[σ̂, â† â], â† â]

+ 1
2 w↓([â, σ̂â†] − [â†, âσ̂]) + 1

2 w↑([â†, σ̂â]− [â, â†σ̂]). (5.137)

Representing Eq. (5.137) in the form given in Eqs (5.110) and (5.111), we can
easily see that in the equations of motion for the (phase-sensitive) off-diagonal
density-matrix elements σnm (n 
=m) the dephasing rates are now

γnm = 1
2 [(n + m)w↓ + (n + m + 2)w↑] + γ′(n − m)2. (5.138)

The second term on the right-hand side of Eq. (5.137) can be incorporated
into the Fokker–Planck equation (5.124), by applying the scheme outlined in
Section 5.3.3. The result is

∂P(α; s)
∂t

=
[( 1

2 Γ + iω
) ∂

∂α
α +

( 1
2 Γ − iω

) ∂

∂α∗ α∗
]

P(α; s)

+ 1
2 Γ

(
1 − s +

2w↑
Γ

)
∂2P(α; s)

∂α∂α∗ − γ′
(

α
∂

∂α
− α∗ ∂

∂α∗

)2

P(α; s).

(5.139)
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An alternative way is to put the second term on the right-hand side of
Eq. (5.137) into anti-normal order:13

[[σ̂, â† â], â† â] = â
∂

∂â

(
â

∂σ̂(A)

∂â

)
+

[
∂

∂â†

(
∂σ̂(A)

∂â† â†

)]
â† − 2â

∂2σ̂(A)

∂â∂â† â†

(5.140)

(σ̂(A), density operator in anti-normal order). Thus, the associated c-number
function is just the last term in Eq. (5.139) in the case when s=1, because of
P(α; 1)=π−1σ(α;−1) [Eq. (4.82)]. Now Eq. (4.70) can be used to show that
this result is also valid for other values of s.

5.4
Damped two-level system

In the study of the resonant interaction between atomic systems and light it
is often sufficient to model the atomic systems – according to the number of
resonant transitions that are effectively involved in the respective interaction
process – by few-level systems. The simplest example is the two-level model
widely used in quantum optics. As we will see, it also serves as a very illus-
trative example in the study of damped atomic systems. Standard equations
which describe a driven two-level system that is subject to relaxation are the
optical Bloch equations. We shall formulate them in Section 5.4.2 and also
outline the extension of the theory to multi-level atomic systems.

5.4.1
Basic equations

Denoting the two quantum states of the (unperturbed) atomic system by |1〉
(ground state) and |2〉 (excited state), we may define the system operators
Âmn = |m〉〈n| ({m, n}=1, 2). A complete set of system operators is Â11 (or Â22),
Â12 and Â21, by virtue of the completeness relation Â11 + Â22 = Î. Note that
for operator products the relation Âmn Âkl =δnk Âml holds. The (unperturbed)
system Hamiltonian may be written as

Ĥsys = h̄ω1 Â11 + h̄ω2Â22 . (5.141)

Let us first study the case where the atomic system undergoes energy relax-
ation, so that, by close analogy with Eq. (5.77), the coupling of the system to
the reservoir may be assumed to be based on the interaction energy

Ĥint = h̄(V̂21Â21 + V̂12 Â12), (5.142)

13) Replace σ̂ by σ̂(A) and apply Eqs (C.16) and (C.17).
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where V̂21 may be thought of as being given in the form (5.78) (with
Vνν′ �→ V21,νν′). According to the notation in Eq. (5.9), we now make the
identifications14

Â1 = Â21 , Â2 = Â12 = Â†
1 , (5.143)

R̂1 = V̂21 , R̂2 = V̂12 = R̂†
1 , (5.144)

and define, according to Eq. (5.26),

F̂mn(t) = exp
[

i
h̄

Ĥres(t − t′)
]

V̂mn(t′) exp
[
− i

h̄
Ĥres(t − t′)

]
. (5.145)

The further calculations are very similar to those leading to Eqs (5.81)–(5.91).
Applying the result (5.37) together with Eq. (5.36) to an arbitrary operator
function Ĉ= Ĉ(Âmn), after some algebra we obtain the following Langevin
equation:

˙̂C =− i
h̄

[Ĉ, Ĥsys] − 1
2 (Γ12 − Γ∗

12)
(
[Ĉ, Â21]Â12 + Â21[Ĉ, Â12]

)
− 1

2 (Γ12 + Γ∗
12)

(
[Ĉ, Â21]Â12 − Â21[Ĉ, Â12]

)
− i[Ĉ, Â21]F̂21(t)− iF̂12(t)[Ĉ, Â12], (5.146)

where

Γ12 =
∫ ∞

0
dτ eiω21τ〈[F̂21(τ), F̂12(0)]〉 (5.147)

and ω21=ω2−ω1. Defining

Γ = Γ12 + Γ∗
12 , (5.148)

i∆ = 1
2 (Γ12 − Γ∗

12) (5.149)

[cf. Eqs (5.87)–(5.90)] and using the identity [Ĉ, Â21]Â12 + Â21[Ĉ, Â12] =
[Ĉ, Â22], we may rewrite Eq. (5.146) as

˙̂C =− i
h̄

[Ĉ, Ĥsys + h̄∆Â22]− 1
2 Γ

(
[Ĉ, Â21]Â12 − Â21[Ĉ, Â12]

)
− i[Ĉ, Â21]F̂21(t)− iF̂12(t)[Ĉ, Â12]

=− i
h̄

[Ĉ, Ĥsys + h̄∆Â22]− 1
2 Γ(ĈÂ22 + Â22Ĉ − 2Â21ĈÂ12)

− i[Ĉ, Â21]F̂21(t)− iF̂12(t)[Ĉ, Â12], (5.150)

14) Note that the frequencies ωi introduced in Eq. (5.20) through
Âi(t)= ˆ̃Ai(t)e−iωit must be distinguished from the frequen-
cies defined, according to Eq. (5.141), by the energy eigenval-
ues of the two-level system. The flip operators Âmn evolve as
Âmn(t)= ˆ̃Amn(t)eiωmnt, where ωmn =ωm−ωn, with ωm(n) accord-
ing to Eq. (5.141).
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where the damping rate Γ may be represented in the form (5.87), together
with Eqs (5.88) and (5.89) (Vνν′ �→ V21,νν′) or, in the particular case where the
reservoir is described by a sample of harmonic oscillators, Eqs (5.97) and (5.98)
(κα �→ κ21,α). Furthermore, from inspection of Eqs (5.141) and (5.150) we see
that the effect of a frequency shift may again be thought of as being included
in the system Hamiltonian (Ĥsys + h̄∆Â22 �→ Ĥsys).

If all the premises on which Eq. (5.48) is based are satisfied, we may turn
from the Langevin equation (5.150) to a Langevin equation of the type (5.48).
By close analogy with Eq. (5.107), we obtain (Ĥsys + h̄∆Â22 �→ Ĥsys) the result
(cf. footnote 9, p. 155)

˙̂C =− i
h̄

[Ĉ, Ĥsys] + 1
2 w21

(
Â21[Ĉ, Â12]− [Ĉ, Â21]Â12

)
+ 1

2 w12
(

Â12[Ĉ, Â21] − [Ĉ, Â12]Â21
)
+ F̂C(t)

=− i
h̄

[Ĉ, Ĥsys] + 1
2 w21(2Â21ĈÂ12 − ĈÂ22 − Â22Ĉ)

+ 1
2 w12(2Â12ĈÂ21 − ĈÂ11 − Â11Ĉ) + F̂C(t) (5.151)

with

〈F̂C(t)〉 = 0, (5.152)

and w21 =w↓, w12=w↑. Clearly, the energy relaxation rates w21 and w12 are
just the transition probabilities per unit time for the transitions |2〉→|1〉 and
|1〉→|2〉, respectively [cf. Eqs (5.88) and (5.89) or Eqs (5.97) and (5.98)].

To find the master equation for the reduced (two-level) density operator σ̂

we again apply the procedure leading from Eq. (5.48) to Eq. (5.59). In this way,
we derive from Eq. (5.151)

dσ̂

dt
=− i

h̄
[Ĥsys, σ̂] + 1

2 w21
(
[Â12, σ̂Â21] − [Â21, Â12σ̂]

)
+ 1

2 w12
(
[Â21, σ̂Â12]− [Â12, Â21σ̂]

)
. (5.153)

Let us now allow for an additional dephasing channel. We assume that the
interaction energy between the two-level system and the reservoir has non-
vanishing diagonal matrix elements with respect to the quantum states of the
system:15

Ĥ′
int = V̂22Â22 (5.154)

[cf. Eq. (5.127)]. Making the identifications

Â3 = Â22 , (5.155)

R̂3 = V̂22 , (5.156)

15) Note that a term in the form of h̄V̂11 Â11 can be thought of as be-
ing included in Ĥ′

int and Ĥres, because h̄V̂11 Â11 can be rewritten as
h̄V̂11 Â11 = h̄V̂11 +(h̄V̂22−V̂11)Â22.
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and taking Eq. (5.145) into account, we apply Eq. (5.48) to obtain

− ∆(ω3 + ω3)
(
Γ+

33[Ĉ, Â3]Â3 − Γ−
33 Â3[Ĉ, Â3]

)
= −i∆′[Ĉ, Â22]− γ′[[Ĉ, Â22], Â22

]
, (5.157)

where

γ′ = 1
2

∫ ∞

0
dτ 〈V̂22(τ)V̂22(0)〉+ c.c., (5.158)

i∆′ = 1
2

∫ ∞

0
dτ 〈V̂22(τ)V̂22(0)〉 − c.c.. (5.159)

Including the frequency shift [first term on the right-hand side of Eq. (5.157)]
into the system Hamiltonian and adding the damping term [second term on
the right-hand side of Eq. (5.157)] to the damping terms in Eq. (5.151), the
Langevin equation is (cf. footnote 9, p. 155)

˙̂C =− i
h̄

[Ĉ, Ĥsys] − γ′[[Ĉ, Â22], Â22
]
+ 1

2 w21
(

Â21[Ĉ, Â12] − [Ĉ, Â21]Â12
)

+ 1
2 w12

(
Â12[Ĉ, Â21] − [Ĉ, Â12]Â21

)
+ F̂C(t). (5.160)

The corresponding master equation is then easily found to be

dσ̂

dt
=− i

h̄
[Ĥsys, σ̂]− γ′[[σ̂, Â22], Â22

]
+ 1

2 w21
(
[Â12, σ̂Â21]− [Â21, Â12σ̂]

)
+ 1

2 w12
(
[Â21, σ̂Â12]− [Â12, Â21σ̂]

)
. (5.161)

5.4.2
Optical Bloch equations

If the radiation field to which a two-level system is coupled effectively acts as
a reservoir, Eq. (5.151) [or Eq. (5.153)] applies directly. If, for example, a two-
level system is (resonantly) driven by a monochromatic, (laser-like) coherent
radiation field, the application of Eq. (5.151) (to describe the effects of coherent
excitation) makes no sense, because its conditions of validity are obviously
violated. Let us assume that the coupling of the radiation field to the two-
level system is described by an interaction energy of the form (2.247) and that
the spectral-mode density is sufficiently flat. In this case the two-level system
is linearly coupled to a large sample of harmonic oscillators and the Langevin
equation (5.150) may be more appropriate to the problem than is Eq. (5.151).

Let us suppose that the two-level system is coupled to both the radiation
field and an (unspecified) radiationless reservoir with proper noise genera-
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tors. We may write the interaction energy as

Ĥint = Ĥ(r)
int + Ĥ(nr)

int , (5.162)

Ĥ(r)
int = h̄(V̂(r)

21 Â21 + H.c.), (5.163)

Ĥ(nr)
int = h̄(V̂(nr)

21 Â21 + H.c.) + h̄(V̂(nr)
11 Â11 + V̂(nr)

22 Â22). (5.164)

Here (r) and (nr) indicate the radiative and nonradiative contributions, respec-

tively. In particular, using Eq. (2.247), we may represent V̂(r)
21 as

V̂(r)
21 = −h̄−1d21Ê(+) (5.165)

[recall that Ê(+)=Ê⊥(+) in the absence of media]. Since the radiation field and
the radiationless reservoir represent two systems which are independent of
each other, they affect the Langevin equations additively. Treating the effect
of the radiation field in the approximation of the Langevin equation (5.150)
and that of the radiationless reservoir in the approximation of the Langevin
equation (5.160), we easily see that the (combined) Langevin equation for any
system operator Ĉ may be written in the form

˙̂C =− i
h̄

[Ĉ, Ĥsys] + 1
2 (Γ(r) + w(nr)

21 )
(

Â21[Ĉ, Â12] − [Ĉ, Â21]Â12
)

+ 1
2 w(nr)

12

(
Â12[Ĉ, Â21]− [Ĉ, Â12]Â21

) − γ′[[Ĉ, Â22], Â22
]

− i[Ĉ, Â21]F̂
(r)
21 (t)− iF̂(r)

12 (t)[Ĉ, Â12] + F̂(nr)
C (t) (5.166)

together with

〈F̂(nr)
C (t)〉 = 0 (5.167)

and [cf. Eqs (5.145) and (5.165)]

F̂(r)
21 (t) = −h̄−1d21Ê(+)

free(t), F̂(r)
12 (t) = [F̂(r)

21 (t)]†, (5.168)

where Ê(+)
free(t) evolves freely. The radiative decay rate Γ(r), which is given by

Eqs (5.148) and (5.147) with F̂21 = F̂(r)
21 (and F̂12 = F̂(r)

12 ) from Eq. (5.168), is the
rate of spontaneous emission (Section 10.1). Note that the dephasing rate γ′
can only arise from the radiationless reservoir.

From Eqs (5.166) and (5.167) the equation of motion for the expectation
value of any system variable 〈Ĉ〉 is then

d〈Ĉ〉
dt

= − i
h̄
〈[Ĉ, Ĥsys]〉

+ 1
2 (Γ(r) + w(nr)

21 )
(〈Â21[Ĉ, Â12]〉 − 〈[Ĉ, Â21]Â12〉

)
+ 1

2 w(nr)
12

(〈Â12[Ĉ, Â21]〉 − 〈[Ĉ, Â12]Â21〉
) − γ′〈[

[Ĉ, Â22], Â22
]〉

− i
〈
[Ĉ, Â21]F̂

(r)
21 (t)

〉 − i
〈

F̂(r)
12 (t)[Ĉ, Â12]

〉
, (5.169)
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which corresponds to the following master equation:16

dσ̂

dt
=− i

h̄
[Ĥsys, σ̂] + 1

2 (Γ(r) + w(nr)
21 )

(
[Â12, σ̂Â21]− [Â21, Â12σ̂]

)
+ 1

2 w(nr)
12

(
[Â21, σ̂Â12]− [Â12, Â21σ̂]

) − γ′[[σ̂, Â22], Â22
]

− i[Â21, σ̂F̂(r)
21 (t)]− i[Â12, F̂(r)

12 (t)σ̂]. (5.170)

Further manipulation of Eq. (5.169) or Eq. (5.170) requires knowledge of the
radiation-field state. In particular, if the radiation field is in the vacuum state,

〈· · · F̂(r)
21 〉=〈F̂(r)

12 · · · 〉=0, the last two terms of Eq. (5.169) disappear. Averaging
Eq. (5.170) over the radiation field, the last two terms do not contribute and

the result corresponds to the master equation (5.161) with w21 = Γ(r) + w(nr)
21

and w12 =w(nr)
12 .

Let us assume that the free (external) radiation field can be given in the form
of

Ê(+)
free(t) = ∑

λ

iωλAλ(r)âλeiωλ(t−t′), (5.171)

[cf. Eq. (2.70)], and its density operator (at a chosen initial time t′) is

σ̂(r) =
∫

d2α P(α)|α〉〈α|, (5.172)

with P(α) being the multi-mode P function and |α〉 the multi-mode coherent
states. Here we have introduced the abbreviated notations

α ≡ {αλ}, d2α ≡ ∏
λ

d2αλ. (5.173)

Using Eq. (5.172), in Eq. (5.169) or Eq. (5.170) we may substitute, on recalling

Eqs (5.168) and (5.171), the corresponding c numbers for the operators F̂(r)
21 (t)

and F̂(r)
12 (t)

F(r)
21 (t) = −h̄−1d21 ∑

λ

iωλAλ(r)αλe−iωλ(t−t′) (5.174)

and F(r)
12 (t)=[F(r)

21 (t)]∗ respectively, because F̂(r)
21 (t)|α〉=F(r)

21 (t)|α〉. In this way
we may represent the expectation value of any system operator, 〈Ĉ(t)〉, as

〈Ĉ(t)〉 =
∫

d2α P(α)〈Ĉ(t; α)〉, (5.175)

16) Note that σ̂ still contains operators of the radiation field, and the
average over the field must be performed to obtain the reduced
density operator Trrad σ̂(t) of the two-level system.
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where 〈Ĉ(t; α)〉 obeys the equation of motion (5.169) with the c-number func-

tions F(r)
21 (t) and F(r)

12 (t) instead of the operator functions F̂(r)
21 (t) and F̂(r)

12 (t),
respectively. With regard to Eq. (5.170), we may represent the reduced density
operator of the two-level system as [Trrad σ̂(t) �→ σ̂(t)]

σ̂(t) =
∫

d2α P(α)σ̂(t; α). (5.176)

Obviously, σ̂(t; α) obeys the master equation (5.170) with the c-number func-

tions F(r)
21 (t) and F(r)

12 (t) instead of the operator functions F̂(r)
21 (t) and F̂(r)

12 (t),
respectively, and the expectation value 〈Ĉ(t; α)〉 can be calculated by means of
σ̂(t; α) in the usual way.

Let us now consider the master equation in the basis of the eigenkets |m〉
(m=1, 2) of Ĥsys [Eq. (5.141)]. From Eq. (5.170) we find the following system
of coupled equations of motion for the density-matrix elements σmn(t; α):17

σ̇22(t; α) =− (Γ(r) + w(nr)
21 )σ22(t; α) + w(nr)

12 σ11(t; α)

− iF(r)
21 (t)σ12(t; α) + iF(r)

12 (t)σ21(t; α), (5.177)

σ̇11(t; α) =− w(nr)
12 σ11(t; α) + (Γ(r) + w(nr)

21 )σ22(t; α)

+ iF(r)
21 (t)σ12(t; α)− iF(r)

12 (t)σ21(t; α), (5.178)

σ̇21(t; α) =− [
iω21 + 1

2 (Γ(r) + w(nr)
21 + w(nr)

12 ) + γ′]σ21(t; α)

+ iF(r)
21 (t)[σ22(t; α)− σ11(t; α)], (5.179)

σ̇12(t; α) = σ̇∗
21(t; α). (5.180)

After solving Eqs (5.177)–(5.180), the reduced density matrix elements σmn(t)
can be obtained, according to Eq. (5.176), by averaging the σmn(t; α) with
P(α):18

σmn(t) =
∫

d2α P(α)σmn(t; α). (5.181)

In the semi-classical limit when the (external) radiation field can be treated
approximately as classical, the distribution P(α) may be viewed as an ordinary
probability distribution for the (complex) field amplitudes α.

17) Taking into account that 〈Âmn〉=σnm, the density-matrix equations
of motion can also be obtained from Eq. (5.169).

18) Note that the solution of Eqs (5.177)–(5.180) is not trivial, because

F(r)
mn(t) represents, in general, a set of (arbitrary) functions of time.
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The equations of motion (5.177)–(5.180) are usually called the optical Bloch
equations. They are often used in the form

ṅ(t; α) =− (Γ(r) + w(nr)
21 + w(nr)

12 )[n(t; α)− n0]

− 2iF(r)
21 (t)σ12(t; α) + 2iF(r)

12 (t)σ21(t; α), (5.182)

σ̇21(t; α) =− [
iω21 + 1

2 (Γ(r) + w(nr)
21 + w(nr)

12 ) + γ′]σ21(t; α)

+ iF(r)
21 (t)n(t; α), (5.183)

σ̇12(t; α) = σ̇∗
21(t; α). (5.184)

Here the population inversion n=σ22−σ11 and the relation 1=σ11 +σ22 has
been used, so that

σ11 = 1
2 (1 − n), σ22 = 1

2 (1 + n), (5.185)

and

n0 = −Γ(r) + w(nr)
21 − w(nr)

12

Γ(r) + w(nr)
21 + w(nr)

12

= −1 +
2w(nr)

12

Γ(r) + w(nr)
21 + w(nr)

12

(5.186)

is the equilibrium inversion in the absence of the (external) radiation field.
The generalization to the case where more than two quantum states of the

atomic system are involved in a (resonant) light–matter interaction process
is straightforward. In particular, the overall rate of depopulation of the mth
atomic level, (Γmm)dep, is simply the sum over the depopulation rates (energy
relaxation rates) for the allowed decay channels:

(Γmm)dep = ∑
n

′
wmn , (5.187)

where wmn is the probability per unit time for the transition |m〉→|n〉; the
notation ∑′ means that n 
=m. Accordingly, the overall filling rate of the mth
state, (Γmm)fill, is

(Γmm)fill = ∑
n

′
wnm . (5.188)

In the case of a two-level system, from Eqs (5.177)–(5.180) these rates are seen
to be

(Γ11)dep = w(nr)
12 , (Γ22)dep = Γ(r) + w(nr)

21 , (5.189)

(Γ11)fill = Γ(r) + w(nr)
21 , (Γ22)fill = w(nr)

12 . (5.190)

As already mentioned, the effect of radiative damping described by the rate
Γ(r) corresponds to spontaneous emission (Section 10.1). Clearly, if the effect



5.5 Quantum regression theorem 169

of the (external) radiation field on the two-level system were treated in a re-
laxational approximation [in the sense of Eq. (5.160)], the radiative effects of
induced emission and absorption would appear and would also contribute to
the depopulation and filling rates.

Generally, the damping (dephasing) rates Γmn =Γnm of the off-diagonal
density-matrix elements σmn (m 
=n) may be represented as

Γmn = 1
2∑

k

′
(wmk + wnk) + γ′

mn . (5.191)

It is worth noting that each allowed (energy relaxation) transition from the
states |m〉 and |n〉 to the states |k〉 (|m〉→|k〉, k 
=m and |n〉→|k〉, k 
=n) gives
rise to a contribution of half the transition rate to the overall dephasing rate
Γmn. Deviations from the dephasing rate thus determined may result from
pure phase relaxations (rates γ′

mn), which are typically observed in the case of
a system embedded in a dense medium. In the case of the considered two-
level system, from Eqs (5.177)–(5.180) we obtain

Γ12 = 1
2

(
Γ(r) + w(nr)

21 + w(nr)
12

)
+ γ′. (5.192)

5.5
Quantum regression theorem

The description of quantum-statistical processes requires not only knowledge
of the temporal evolution of the averages of the system variables, but also
knowledge of their various multi-time correlations. To determine these, we
can again start from the quantum Langevin equations. The Markov approxi-
mation used in the derivation of the Langevin equations will enable us to ef-
fectively reduce the problem of calculating (multi-time) correlation functions
of system variables to that of calculating one-time averages [Lax (1967)].

Let us first consider a two-time correlation function of two system operators
Ĉ2 and Ĉ1, 〈Ĉ2(t2)Ĉ1(t1)〉. Using Eq. (5.48), we may write

dĈ2(t2)
dt2

=− i
h̄

[Ĉ2(t2), Ĥsys(t2)]

− ∑
i,j

∆(ωi + ωj)
{

Γ+
ij [Ĉ2(t2), Âi(t2)]Âj(t2)

− Γ−
ji Âj(t2)[Ĉ2(t2), Âi(t2)]

}
+ F̂C2(t2), (5.193)

with 〈F̂C2(t2)〉=0. At this point we recall that, in the Markov approximation,
the system variables at time t1 and noise variables at time t2 may be assumed
to be uncorrelated with each other provided that t2 > t1 (t2− t1�τc); in partic-
ular,

〈F̂C2(t2)Ĉ1(t1)〉 = 0 if t2 > t1 (5.194)
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[cf. the derivation of Eq. (5.48)]. Multiplying Eq. (5.193) by Ĉ1(t1) and us-
ing Eq. (5.194), we can readily see that the correlation function 〈Ĉ2(t2)Ĉ1(t1)〉
obeys the equation of motion

∂

∂t2
〈Ĉ2(t2)Ĉ1(t1)〉 = − i

h̄
〈[Ĉ2(t2), Ĥsys(t2)]Ĉ1(t1)〉

− ∑
i,j

∆(ωi + ωj)
{

Γ+
ij 〈[Ĉ2(t2), Âi(t2)]Âj(t2) Ĉ1(t1)〉

− Γ−
ji 〈Âj(t2)[Ĉ2(t2), Âi(t2)]Ĉ1(t1)〉

}
(5.195)

(t2 > t1). If t1 > t2, the equation of motion ∂〈Ĉ2(t2)Ĉ1(t1)〉/∂t1 = . . . is found
analogously. Note that Eq. (5.195) effectively represents a set of coupled equa-
tions for two-time correlation functions of system variables, because the cor-
relation functions 〈[Ĉ2(t2), Ĥsys(t2)]Ĉ1(t1)〉, 〈[Ĉ2(t2), Âi(t2)]Âj(t2)Ĉ1(t1)〉 and
〈Âj(t2)[Ĉ2(t2), Âi(t2)]Ĉ1(t1)〉 on the right-hand side also obey equations of
motion of the same type, and so on.

Although the mean value 〈Ĉ2(t2)〉 and, with regard to t2, the correlation
function 〈Ĉ2(t2)Ĉ1(t1)〉 obey equations of motion of the same type, the rele-
vant initial conditions are in general different. Introducing the system opera-
tor

Ĉ(t1) = Ĉ2(t2) Ĉ1(t1)
∣∣
t2=t1

≡ lim
t2→t+1

Ĉ2(t2)Ĉ1(t1), (5.196)

the initial condition for 〈Ĉ2(t2)Ĉ1(t1)〉, namely

〈Ĉ2(t2) Ĉ1(t1)〉
∣∣
t2=t1

= 〈Ĉ(t1)〉, (5.197)

must be determined by solving the equation of motion (5.50) for 〈Ĉ(t1)〉 with
appropriately chosen initial value at time t1 = t′:

d〈Ĉ〉
dt1

= − i
h̄
〈[Ĉ, Ĥsys]〉

−∑
i,j

∆(ωi + ωj)
(
Γ+

ij 〈[Ĉ, Âi]Âj〉 − Γ−
ji 〈Âj[Ĉ, Âi]〉

)
. (5.198)

To formulate the above results in the language of master equations, we pro-
ceed in close analogy with Section 5.2.1. Going from the Heisenberg to the
Schrödinger picture, we may write

〈Ĉ2(t2)Ĉ1(t1)〉 = Trsys[σ̂(t′)Ĉ2(t2)Ĉ1(t1)] = Trsys[σ̂(2)(t2)Ĉ2(t′)], (5.199)

where

σ̂(2)(t2) = Trres �̂(2)(t2), (5.200)

�̂(2)(t2) = Û(t2, t1)Ĉ1(t′)�̂(t1)Û†(t2, t1). (5.201)
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Here Û(t2, t1) is the time-evolution operator and �̂(t1) is the ordinary
Schrödinger density operator at time t1 [cf. Eq. (5.54)]. Note that

σ̂(2)(t2)
∣∣
t2=t1

= Ĉ1(t′)σ̂(t1). (5.202)

Substituting into

∂

∂t2
〈Ĉ2(t2)Ĉ1(t1)〉 = Trsys

[
dσ̂(2)(t2)

dt2
Ĉ2(t′)

]
(5.203)

for ∂〈Ĉ2(t2)Ĉ1(t1)〉/∂t2 the result (5.195) and using the cyclic properties of the
trace, we can readily prove that σ̂(2)(t2) (t2 > t1) obeys the master equation
(5.59):

dσ̂(2)

dt2
= − i

h̄
[Ĥsys, σ̂(2)]

−∑
i,j

∆(ωi + ωj)
(
Γ+

ij [Âi, Âjσ̂
(2)]− Γ−

ji [Âi, σ̂(2)Âj]
)
, (5.204)

but with the initial condition

σ̂(2)(t2)
∣∣
t2=t1

= Ĉ1σ̂(t1). (5.205)

Note that σ̂(t1) is the ordinary system-density operator which obeys the above
master equation with appropriately chosen initial values at the chosen initial
time t′ (t′< t1).

The extension of the above results to time-ordered correlation functions of
higher order,

G(n)(tn, tn−1 . . . , t1) = 〈Ĉn(tn)Ĉn−1(tn−1) · · · Ĉ1(t1)〉
(5.206)

(tn > tn−1> · · · > t1 > t′), is straightforward. Defining

σ̂(n)(tn) = Trres �̂(n)(tn), (5.207)

�̂(n)(tn) = Û(tn, tn−1)Ĉn−1�̂(n−1)(tn−1)Û†(tn, tn−1), (5.208)

one can prove that

G(n)(tn, tn−1 . . . , t1) = Trsys[σ̂(n)(tn)Ĉn]. (5.209)

The determination of σ̂(n)(tn) requires the calculation of σ̂(n−1)(tn−1), the de-
termination of σ̂(n−1)(tn−1) requires the calculation of σ̂(n−2)(tn−2), and so on,
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where σ̂(k)(tk), k=1, 2, . . . , n, (tk > tk−1) obeys the master equation (5.59):

dσ̂(k)

dtk
=− i

h̄
[Ĥsys, σ̂(k)]

− ∑
i,j

∆(ωi + ωj)
(
Γ+

ij [Âi, Âjσ̂
(k)]− Γ−

ji [Âi, σ̂(k)Âj]
)
, (5.210)

with the initial condition

σ̂(k)(tk)
∣∣
tk=tk−1

= Ĉk−1σ̂(k−1)(tk−1). (5.211)

Recall that σ̂(1)(t1)≡ σ̂(t1) is the ordinary (physical) density operator of the
system, and the kth order correlation function G(k) is, according to Eq. (5.209),
just determined by σ̂(k). Although the equation of motion for σ̂(k) agrees with
that for the density operator σ̂, σ̂(k) does not, in general, have the typical prop-
erties of a density operator, such as Trsys σ̂=1. In practice, one has to solve the
master equation under the most general initial conditions and specify the solu-
tion step by step according to the initial conditions (5.211), by starting from an
appropriately chosen (physical) system-density operator at the initial time t′.
The content of Eqs (5.209)–(5.211) is usually called the quantum regression
theorem.
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6
Photoelectric detection of light

To study the properties of light experimentally, detectors operating on the ba-
sis of the (internal) photoelectric effect are usually illuminated to produce an
electric output signal, such as the number of emitted photoelectrons or the
photocurrent. The question arises as to what properties of light are measur-
able in this way and how the measured properties of the photoelectric output
signal of such a detector can be related to the properties of the light in the
input channel.

The photons monitored are of course annihilated. If the light to be detected
is required to be available (with the true quantum statistics of certain observ-
ables) after the detection, a so-called quantum nondemolition (QND) mea-
surement is required, which does not modify the measured quantity. As is
well known, during a measurement the quantum state is changed and thus
the statistics of some observables are also changed. In a quantum nondemoli-
tion measurement the measurement-assisted perturbation of the system does
not affect the observable which is desired to be determined, but is confined to
other quantities [Landau and Peierls (1931); Braginsky, Vorontsov and Khalili
(1977); Thorne, Drever, Caves, Zimmermann and Sandberg (1978); Thorne,
Caves, Sandberg, Zimmermann and Drever (1979); Caves, Thorne, Drever,
Sandberg and Zimmermann (1980); Caves (1983); see also the example in Sec-
tion 12.6.2].

6.1
Photoelectric counting

Let us consider, as a simple model of a photodetector, a large sample of N
atomic systems (light-absorbing centers) that are capable of absorbing light
through the photoemission of electrons in a certain time interval t, t + ∆t,
see Fig. 6.1. Clearly, the statistical distribution of the observed photoelectric
counts is expected to be closely related to the quantum-statistical properties of
the incident light. In this way, photoelectric counting experiments have been
successfully used to study various properties of light.

In the following we suppose that the total number N of atomic systems is
large compared with the mean number n of emitted electrons: n� N. Thus
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Fig. 6.1 Model of a photodetector. A sample of atomic systems (empty
circles) is illuminated by light (frequency ωλ). During a certain time in-
terval a few of these centers (filled circles) eject photoelectrons (dots)
due to the absorption of light quanta.

we may assume that each atomic system which is involved in the process of
photoemission of electrons emits not more than one electron. Under these
assumptions the main features of the theory may be developed by apply-
ing Dirac’s perturbation theory to the basic process of light absorption and
combining the corresponding results with methods of classical statistics with
respect to the ensemble of photoelectrons generated by the absorption pro-
cesses [Mandel (1958, 1959, 1963); Kelley and Kleiner (1964); Glauber (1965,
1966, 1972); Lax and Zwanziger (1973)].

6.1.1
Quantum-mechanical transition probabilities

To calculate the quantum-mechanical transition probabilities of photoemis-
sion of electrons in a chosen time interval t, t + ∆t, we start from the Hamil-
tonian

Ĥ = Ĥ0 + Ĥint, (6.1)

where Ĥ0 is assumed to be composed of the Hamiltonian of the radiation field
together with the sources to which the radiation field is attributed (including
the corresponding coupling term) and the Hamiltonian of the atomic systems
of the photodetector. If the wave functions of different detector atoms may
be assumed not to overlap, the coupling of the radiation field to the detector
atoms may be written as

Ĥint =
N

∑
i=1

Ĥ(i)
int, (6.2)

where Ĥ(i)
int describes the interaction of the ith atomic system with the radiation

field.
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In the interaction picture the temporal evolution of the overall system may
be calculated from the density-operator equation of motion

ih̄
dσ̂(τ)

dτ
= [Ĥint(τ), σ̂(τ)], (6.3)

where the interaction Hamiltonian in this picture reads

Ĥint(τ) = exp
[

i
h̄

Ĥ0(τ − t)
]

Ĥint exp
[
− i

h̄
Ĥ0(τ − t)

]
, (6.4)

with t denoting the initial time. By means of the ansatz

σ̂(τ) = Û(τ, t)σ̂(t)Û†(τ, t), (6.5)

from Eq. (6.3) the time-evolution operator Û(τ, t) is seen to satisfy the equa-
tion of motion

ih̄
dÛ(τ, t)

dτ
= Ĥint(τ)Û(τ, t) (6.6)

together with the initial condition

Û(t, t) = 1, (6.7)

and the formal solution of Eq. (6.6) reads

Û(t + ∆t, t) = T+ exp
[
− i

h̄

∫ t+∆t

t
dτ Ĥint(τ)

]
. (6.8)

In the following we assume that the photodetector system is in its ground
state |G〉 at the (initial) time t and that the overall density operator is initially
factorized as

σ̂(t) = |G〉〈G|�̂, (6.9)

where �̂ is the density operator (at time t) of the radiation field with the sources
included. The probability of a photoelectric transition from the ground state
of the photodetector system, |G〉, at time t to the continuum of final states |F〉
at time t+∆t may then be written as

p{F}(t, ∆t) = ∑
{F}

Tr
{

�̂〈G|Û†(t + ∆t, t)|F〉〈F|Û(t + ∆t, t)|G〉
}

. (6.10)

We now ask for the probability of the photoemission of m electrons from
a sub-ensemble of m atomic systems (with one electron each) of the overall
N-atom system. The state vectors |G〉 and |F〉, which are products of state
vectors of the individual atoms, may be given in the form

|G〉 =
m

∏
l=1

|gil
〉, |F〉 =

m

∏
l=1

| fil
〉. (6.11)
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ωλ

|gi〉

| fi〉

Fig. 6.2 Level scheme of a light-absorbing atomic center. The relevant
frequencies ωλ of the radiation field are in resonance with the transi-
tion from the atomic ground state |gi〉 to the manifold of (final) excited
states | fi〉.

Here the state vectors of the ith atomic system are denoted by |gi〉 and | fi〉,
where the | fi〉 are assumed to represent a manifold of (quasi-continuum)
states, cf. Fig. 6.2. The set of indices {il} stands for the sub-ensemble consid-
ered and |F〉〈F| projects onto the Hilbert space of that ensemble. By calculat-
ing the probability in lowest-order perturbation theory, we may approximate
the time-evolution operator (6.8) by the mth-order expansion term:

Û(t + ∆t, t) =
1

m!
T+

[
− i

h̄

∫ t+∆t

t
dτ

m

∑
l=1

Ĥ(il)
int (τ)

]m

. (6.12)

Combining Eqs (6.10)–(6.12) then yields [p{F}(t, ∆t) �→ pi1,...,im(t, ∆t)]

pi1,...,im(t, ∆t) = ∑
fi1

, fi2
,..., fim

Tr
{

�̂

[
T−

m

∏
l=1

i
h̄

∫ t+∆t

t
dτl 〈gil

|Ĥ(il)
int (τl)| fil

〉

×
[
T+

m

∏
l=1

(
− i

h̄

) ∫ t+∆t

t
dτl 〈 fil

|Ĥ(il)
int (τl)|gil

〉
]}

. (6.13)

Treating the coupling of the radiation to the ith atomic system (at position ri) in
the electric-dipole approximation and the rotating-wave approximation, from
Eq. (2.247) we find that1

〈 fi|Ĥ(i)
int(τ)|gi〉 = − exp

[
iω figi

(τ − t)
]

d figi
Ê(+)(ri, τ). (6.14)

1) Note that Ê(±) = (Ê(±))⊥. For notational convenience we omit the
superscript ⊥.
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In this manner, we derive

∑
fi

〈gi|Ĥ(i)
int(τ)| fi〉〈 fi|Ĥ(i)

int(τ′)|gi〉 = Ê(−)(ri, τ)S(i)(τ − τ′)Ê(+)(ri, τ′), (6.15)

where

S(i)(τ − τ′) = ∑
fi

dgi fi
⊗ d figi

exp[−iω figi
(τ − τ′)]. (6.16)

Since the sum in Eq. (6.16) involves summation over all possible orientations
of the electric transition-dipole moments, S(i) may be assumed to reduce to

S(i) = IS(i)(τ − τ′). (6.17)

Inserting Eq. (6.15) together with Eq. (6.17) into Eq. (6.13), we may write

pi1,...,im(t, ∆t)

=
〈
◦◦

m

∏
l=1

∫ t+∆t

t
dτl

∫ t+∆t

t
dτ′

l S(il)(τl − τ′
l )Ê(−)(ril

, τl)Ê(+)(ril
, τ′

l )
◦◦

〉
, (6.18)

where 〈· · · 〉≡Tr(�̂ . . .). Recall that the ◦◦ ◦◦ notation indicates that field oper-
ators are to be written in normal order (creation operators to the left of anni-
hilation operators) and time order (time arguments increasing to the right in
products of creation operators and to the left in products of annihilation op-
erators). Note that the operator ordering must of course be performed before
evaluating the time integrals. Obviously, pi1,...,im(t, ∆t) may be regarded as the
joint probability for photoemission of m electrons from m atomic systems (sit-
uated at positions ril

, l =1, 2, . . . , m) in the time interval t, t+∆t, each atomic
subsystem contributing a single electron.

Now let us suppose that the atoms belong to different photodetectors oper-
ating during appropriately chosen time intervals til

, til
+ ∆til

(l = 1, 2, . . . , m)
and we are interested in the joint probability pi1,...,im(ti1, ∆ti1, . . . , tim , ∆tim)
of photoemission of an electron from the i1th atom in the time interval
ti1, ti1 +∆ti1 , an electron from the i2th atom in the time interval ti2, ti2 +
∆ti2, and so forth, so that altogether m electrons are emitted. To treat this case,
it is convenient to introduce in the interaction Hamiltonian (6.2) switching-
operation functions explicitly indicating the time intervals of interaction of
the various atomic systems with the light to be detected:

Ĥint �→ Ĥint(τ) =
N

∑
i=1

Ĥ(i)
int(τ), (6.19)

where

Ĥ(i)
int(τ) = Θ(τ − ti)Θ(ti + ∆ti − τ)Ĥ(i)

int. (6.20)
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Further calculations can then be performed analogously to that leading to
Eq. (6.18). The result is

pi1,...,im(ti1, ∆ti1 , . . . , tim , ∆tim)

=
〈
◦◦

m

∏
l=1

∫ til
+∆til

til

dτl

∫ til
+∆til

til

dτ′
l S(il)(τl − τ′

l )Ê(−)(ril
, τl)Ê(+)(ril

, τ′
l )

◦◦

〉
, (6.21)

which is the natural generalization of Eq. (6.18). In the particular case where
the time intervals are the same (til

= t, ∆til
= ∆t, l = 1, 2, . . . , m), Eq. (6.21) re-

duces to Eq. (6.18).
In many cases of practical interest one deals with so-called broad-band pho-

todetectors, which means that

S(i)(τ − τ′) ≈ S(i)δ(τ − τ′). (6.22)

To clarify this point, let us consider the probability of photoemission of a sin-
gle electron by a chosen atomic system. Specifying Eq. (6.21) yields2

pi(t, ∆t) =
∫ t+∆t

t
dτ

∫ t+∆t

t
dτ′ S(i)(τ − τ′)〈Ê(−)(ri, τ)Ê(+)(ri, τ′)〉. (6.23)

Introducing the Fourier transformation

S(i)(τ − τ′) =
1

2π

∫
dω e−iω(τ−τ′)S(i)(ω), (6.24)

we may represent Eq. (6.23) as

pi(t, ∆t) =
1

2π

∫
dω S(i)(ω)K(ri, ω, t, ∆t), (6.25)

where

K(ri, ω, t, ∆t) =
∫

dτ
∫

dτ′
[
e−iω(τ−τ′)

× Θ(τ−t)Θ(t+∆t−τ)Θ(τ′−t)Θ(t+∆t−τ′)〈Ê(−)(ri, τ)Ê(+)(ri, τ′)〉
]
.

(6.26)

Let us now assume that in the relevant frequency range of K(ri, ω, t, ∆t) the
spectral response function S(i)(ω) is slowly varying. In other words, we as-
sume that the bandwidth ∆ωS of S(i)(ω) is large compared with the band-
width ∆ωK of K(r, ω, t, ∆t):

∆ωS � ∆ωK, (6.27)

2) The ◦◦ ◦◦ ordering prescription is superfluous here since only one
positive (negative) frequency operator occurs.
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where ∆ωK may be estimated as

∆ωK ≈ max
{

∆ωR, (∆t)−1}, (6.28)

with ∆ωR being the bandwidth of the radiation under study. Clearly, if the
condition (6.27) is satisfied (broad-band photodetector), in Eq. (6.25) the spec-
tral response function S(i)(ω) may be regarded as approximately independent
of ω [S(i)(ω)
S(i)(ω0)≡S(i), ω0 being an appropriately chosen mid-band fre-
quency], so that it can be taken outside the integral. Now, it is easily seen
that this approximation just corresponds to substituting the result (6.22) into
Eq. (6.23) for S(i)(τ−τ′):

pi(t, ∆t) = S(i)
∫ t+∆t

t
dτ 〈Ê(−)(ri, τ)Ê(+)(ri, τ)〉. (6.29)

6.1.2
Photoelectric counting probabilities

We now turn to the problem of determining the probability Pm(t, ∆t) of emis-
sion of m photoelectrons in the time interval t, t + ∆t within the framework
of classical probability theory.3 Applying Bernoulli’s scheme, we introduce
(independent) random variables ni (i=1, 2, . . . , N), each of which has two re-
alizations ni = 0, 1, where ni = 1 if in the time interval t, t + ∆t the ith atomic
system contributes an electron to the electrons ejected by the overall system,
and ni =0 otherwise. The random variable for the total number of photoelec-
trons emitted during the time interval t, t+∆t may then be introduced as

n =
N

∑
i=1

ni. (6.30)

The probability Pm(t, ∆t) may be derived from the characteristic (generating)
function4

y(x, t, ∆t) = (1 + x)n =
∞

∑
m=0

Pm(t, ∆t)(1 + x)m, (6.31)

from which the relation

Pm(t, ∆t) =
1

m!
∂m

∂xm y(x, t, ∆t)
∣∣∣∣
x=−1

(6.32)

3) For methods of statistics see, e. g., van Kampen (1981) or Gardiner
(1983).

4) Here and in the following, over-bars indicate classical statistical
averaging.
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is seen to be valid. To calculate the characteristic function y(x, t, ∆t) we expand
it in a Taylor series:

y(x, t, ∆t) =
∞

∑
m=0

1
m!

Fm(t, ∆t)xm, (6.33)

where

Fm(t, ∆t) =
∂m

∂xm y(x, t, ∆t)
∣∣∣∣
x=0

. (6.34)

Combining Eqs (6.34) and (6.31) obviously yields

Fm(t, ∆t) =
m

∏
j=1

[n − (j − 1)] ; (6.35)

that is, the Fm are the factorial moments of the random number n of photoelec-
trons. Recalling Eq. (6.30) and taking into account that ni=n2

i , we may rewrite
Eq. (6.35) as (m<N)

Fm(t, ∆t) = ∑
i1,...,im

′
ni1 · · · nim = ∑

i1,...,im

′
pi1,...,im(t, ∆t), (6.36)

where the notation ∑ ′ implies excluding from the summation terms with
equal indices ij.

The pi1,...,im(t, ∆t) may be identified with the (quantum-mechanical) joint
probabilities as given in Eq. (6.18). We thus may write, with little error,5

Fm(t, ∆t) = 〈 ◦◦ [Γ̂(t, ∆t)]m ◦◦ 〉, (6.37)

where

Γ̂(t, ∆t) =
N

∑
i=1

∫ t+∆t

t
dτ

∫ t+∆t

t
dτ′ S(i)(τ − τ′)Ê(−)(ri, τ)Ê(+)(ri, τ′), (6.38)

which for a broad-band photodetector reduces to

Γ̂(t, ∆t) =
N

∑
i=1

S(i)
∫ t+∆t

t
dτ Ê(−)(ri, τ)Ê(+)(ri, τ) (6.39)

[see Eq. (6.22)]. When the photosensitive centers are localized in a sufficiently
small range of space whose linear dimensions are small compared with those
of the slowly varying amplitude of light, the detector is said to be point-like.

5) Note that, with regard to Eq. (6.36) (primed sum ∑ ′ ), the error
made in Eq. (6.37) together with Eq. (6.38) is of the order of mag-
nitude m/N and vanishes for N→∞.
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In this case, the expression on the right-hand side of Eq. (6.39) becomes pro-
portional to the time-integrated intensity of the radiation field at the position
of detection r:

Γ̂(t, ∆t) = ξ Î(r, t, ∆t), (6.40)

Î(r, t, ∆t) =
∫ t+∆t

t
dτ Î(r, τ), (6.41)

Î(r, t) = Ê(−)(r, t)Ê(+)(r, τ). (6.42)

The proportional factor ξ, which for equal detector atoms (S≡ S(i) = S(j)) is
given by ξ =NS, is also called the detection efficiency.

Substituting into Eq. (6.33) for Fm(t, ∆t) the expression given in Eq. (6.37),
we may represent the characteristic function y(x, t, ∆t) in the form (N→∞)

y(x, t, ∆t) =
〈

◦◦
∞

∑
m=0

1
m!

[Γ̂(t, ∆t)x]m ◦◦

〉
= 〈 ◦◦ exp[Γ̂(t, ∆t)x] ◦◦ 〉. (6.43)

Recalling Eq. (6.32), from Eq. (6.43) we can easily derive the sought photoelec-
tric counting probabilities

Pm(t, ∆t) =
1

m!
〈 ◦◦ [Γ̂(t, ∆t)]m exp[−Γ̂(t, ∆t)] ◦◦ 〉. (6.44)

It is worth noting that Pm(t, ∆t) resembles a Poissonian distribution, which is
not surprising because of the assumption that n/N→0. In the case of a clas-
sical nonfluctuating light field6 or, in the case of a quantum field in a coherent
state, the statistics Pm(t, ∆t) is indeed Poissonian. However, in other cases the
resemblance of Pm(t, ∆t) in Eq. (6.44) to a Poissonian is only formal.

For some calculations it may be convenient to use the exponential charac-
teristic function

u(z, t, ∆t) = enz =
∞

∑
m=0

Pm(t, ∆t)emz, (6.45)

so that Pm(t, ∆t) is simply the Fourier transform of the characteristic function:

Pm(t, ∆t) =
1

2π

∫ 2π

0
dx u(ix, t, ∆t)e−imx. (6.46)

We further see that the (ordinary) moments of the number of emitted electrons
may be derived from the characteristic function u(z, t, ∆t) as

nm =
∂m

∂zm u(z, t, ∆t)|z=0 . (6.47)

6) In the case of a classical light field the (quantum-mechanical) or-
dering prescription ◦◦ ◦◦ becomes meaningless and the symbol 〈· · · 〉
simply introduces classical statistical averaging.
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To calculate u(z, t, ∆t) we note that, comparing the definitions of u(z, t, ∆t),
Eq. (6.45), and of y(x, t, ∆t), Eq. (6.31), yields the relation

u(z, t, ∆t) = y
(
ez−1, t, ∆t

)
. (6.48)

Hence we may represent the characteristic function u(z, t, ∆t), by using
Eq. (6.43), in the form

u(z, t, ∆t) = 〈 ◦◦ exp[Γ̂(t, ∆t)(ez − 1)] ◦◦ 〉. (6.49)

We briefly extend the above results to the case where M photodetectors are
involved in a detection experiment. For this purpose, let us assume that the
first detector operates during the time interval t1, t1 +∆t1, the second during
the time interval t2, t2+∆t2, and so forth, and let us ask for the joint probability
P{ml}({tl , ∆tl})≡Pm1,...,mM(t1, ∆t1, . . . , tM, ∆tM) for m1 photoelectrons ejected
by the first detector during the time interval t1, t1 + ∆t1, m2 photoelectrons
by the second detector during the time interval t2, t2 + ∆t2, and so forth. To
determine this probability, we start from the characteristic function

y({tl, ∆tl}) = ∑
{ml}

P{ml}({tl , ∆tl})
M

∏
l=1

(1 + xl)ml , (6.50)

which is obviously the natural generalization of Eq. (6.31). Further calcula-
tions may now be performed analogously to those for a single detector, using
Eq. (6.21). We therefore omit the details here and simply present the result,
which, in the generalization of Eqs (6.37) and (6.44), is

F{ml}({tl , ∆tl}) =
〈

◦◦
M

∏
l=1

[
Γ̂(l)(tl , ∆tl)

]ml ◦◦

〉
, (6.51)

P{ml}({tl , ∆tl}) =
〈

◦◦
M

∏
l=1

1
ml !

[
Γ̂(l)(tl, ∆tl)

]ml exp
[
−Γ̂(l)(tl, ∆tl)

] ◦◦

〉
, (6.52)

Γ̂(l)(tl , tl+∆tl) being defined according to Eq. (6.38)–(6.40). Clearly, if the pho-
todetectors used are identical (equal efficiencies) the superscript (l) essentially
characterizes the positions of the detectors involved in the detection scheme.
It should be pointed out that the derivation of Eq. (6.52) outlined here implies
that P{ml}({tl, ∆tl}) may also be applied to the study of correlations of counts
recorded by a single photodetector operating during a sequence of nonover-
lapping time intervals tl , tl +∆tl (l=1, 2, . . . , M), ti +∆ti < ti+1.

From inspection of Eq. (6.52) [together with Eqs (6.38)–(6.40)] we see that the
photoelectric counting probability distribution P{ml}({tl , ∆tl}) is determined
by all orders of normally and time-ordered electric-field correlation functions

G(r,s)
{kikj}({ri, ti, rj, tj}) of the type defined by Eq. (2.314) for r= s (F̂(±) �→ Ê(±)).
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The appearance of normally and time-ordered correlation functions implies
that Eq. (6.52) can be rewritten in the source-quantity representation by re-
placing the ◦◦ ◦◦ ordering with the •• •• ordering (see Section 2.8). In particular,
when at the position of the photodetector, the free field may be assumed to be
in the vacuum state, so that the conditions

〈· · · Ê(+)
k free〉 = 〈Ê(−)

k free · · · 〉 = 0 (6.53)

hold [see Eq. (2.319)], the •• •• ordering allows one to omit all the free field
terms [cf. Eq. (2.320)]. In this way, P{ml}({tl, ∆tl}) may be expressed in
terms of time-ordered (atomic) source-quantity correlation functions accord-
ing to Eq. (2.320). Note that after power-series expansion of the operator
exponentials exp[−Γ̂(l)(tl, ∆tl)] and expressing, according to Eq. (2.274),
the source-field operators in terms of the atomic operators, in the result-
ing source-quantity correlation functions, the atomic operators must be time
ordered (T±).

6.1.3
Counting moments and correlations

Let us consider some statistical properties of the photoelectric counts typi-
cally recorded by a point-like broad-band photodetector. From Eq. (6.44) [or
Eqs (6.47) and (6.49)] together with Eqs (6.40)–(6.42) it is not difficult to see
that the mean number of counts recorded during the time interval t, t+∆t is
proportional to the time-integrated intensity of the radiation field:

n(t, ∆t) =
∞

∑
m=0

m Pm(t, ∆t) = ξ〈 Î(r, t, ∆t)〉. (6.54)

In particular, in the short-time domain we have

n(t, ∆t) = ξ∆t〈 Î(r, t)〉. (6.55)

This equation enables us to define the photocounting rate

R = n(t, ∆t)(∆t)−1 = ξ〈 Î(r, t)〉, (6.56)

which is independent of ∆t and proportional to the mean intensity of light.
Next, let us consider the variance of counts

[∆n(t, ∆t)]2 = n2(t, ∆t)−
[
n(t, ∆t)

]2. (6.57)

Applying again Eq. (6.44) [or Eqs (6.47) and (6.49)] together with Eqs (6.40)–
(6.42), we can easily derive

n2(t, ∆t) =
∞

∑
m=0

m2Pm(t, ∆t) = n(t, ∆t) + ξ2〈 ◦◦ Î2(r, t, ∆t) ◦◦ 〉, (6.58)
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which reads in detail as

n2(t, ∆t) = n(t, ∆t) + ξ2
∫ t+∆t

t
dτ

∫ t+∆t

t
dτ′ G(2)(r, τ, r, τ′), (6.59)

with

G(2)(r, τ, r, τ′)

=
〈[
T−Ê(−)

k (r, τ)Ê(−)
k′ (r, τ′)

][
T+Ê(+)

k′ (r, τ′)Ê(+)
k (r, τ)

]〉
(6.60)

being the normally and time-ordered (second-order) intensity correlation
function of the light under study. Substituting into Eq. (6.57) for n2 and n2 the
results of Eqs (6.58) and (6.54), respectively, we derive

[∆n(t, ∆t)]2 = n(t, ∆t) + ξ2〈 ◦◦ [∆ Î(r, t, ∆t)]2 ◦◦ 〉. (6.61)

Note that in the short-time domain

∆ Î(r, t, ∆t) = ∆t ∆ Î(r, t), (6.62)

so that Eq. (6.61) reduces to

[∆n(t, ∆t)]2 = n(t, ∆t) + ξ2(∆t)2〈: [∆ Î(r, t)]2 :〉. (6.63)

From inspection of Eq. (6.61) [or Eq. (6.63)] two kinds of noise are seen to
contribute to the variance of the number of ejected photoelectrons. The (shot-
noise) term n obviously results from the photon-number fluctuation according
to a (classical) Poissonian distribution. The term proportional to 〈 ◦◦ (∆ Î)2 ◦◦ 〉
reflects the noise of the detected light. As mentioned above, in the case when
the light may be regarded as being a classical nonfluctuating one, in Eq. (6.61)
[or Eq. (6.63)] the second term vanishes and hence the variance is equal to that
of classical particles with Poissonian statistics: (∆n)2=n. In classical optics the
normally and time-ordered variance of the integrated light intensity simply
reduces to the ordinary variance, 〈 ◦◦ (∆ Î)2 ◦◦ 〉→〈(∆I)2〉cl, which of course can-
not be negative. Thus for a classical noisy radiation field 〈(∆I)2〉cl >0, which
implies a counting statistics of super-Poissonian type: (∆n)2 > n. In quantum
optics the situation may change drastically because 〈 ◦◦ (∆ Î)2 ◦◦ 〉 may attain also
negative values. Hence so-called nonclassical light with 〈 ◦◦ (∆ Î)2 ◦◦ 〉<0 gives
rise to sub-Poissonian counting statistics: (∆n)2<n (for more details see Chap-
ter 8).

Let us now proceed with the calculation of the two-time correlation of
counts registered during the time intervals t, t+∆t and t+τ, t+τ+∆t. If the
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Fig. 6.3 Subdivision of two overlapping time intervals t, t+∆t and t+
τ, t+τ +∆t (below time axis) into three nonoverlapping intervals (above
time axis).

two intervals do not overlap (τ>∆t), we may simply calculate the sought cor-
relation by means of the probability Pm1,m2(t, ∆t, t+τ, ∆t) as given in Eq. (6.52)
(for M=2):

n(t, ∆t)n(t + τ, ∆t) =
∞

∑
m1,m2=0

m1m2 Pm1,m2(t, ∆t, t + τ, ∆t)

= ξ2〈 ◦◦ Î(r, t, ∆t) Î(r, t + τ, ∆t) ◦◦ 〉, τ > ∆t. (6.64)

In order to take account of the self-correlation in the case of overlapping time
intervals (τ<∆t), we subdivide the whole time interval t, t+τ+∆t into three
nonoverlapping time intervals t1, t1 +∆t1, t2, t2 +∆t2, t3, t3 +∆t3, where

t1 = t, t2 = t + τ, t3 = t + ∆t,

∆t1 = τ, ∆t2 = ∆t − τ, ∆t3 = τ, (6.65)

see Fig. 6.3. The probability Pm1,m2,m3(t1, ∆t1, t2, ∆t2, t3, ∆t3) for the emission
of m1 photoelectrons during the time interval t1, t1 + ∆t1, m2 photoelectrons
during the time interval t2, t2+∆t2, and m3 photoelectrons during the time in-
terval t3, t3 +∆t3 may then be taken from Eq. (6.52) (M=3). Since the numbers
of photoelectrons ejected during the time intervals t=t1, t+∆t=t1 +∆t1 +∆t2
and t+τ= t2, t+τ+∆t= t2 +∆t2 +∆t3 are m1 + m2 and m2 + m3 respectively,
the sought correlation of counts is just the average of (m1 +m2)(m2+m3),

n(t, ∆t)n(t + τ, ∆t)

=
∞

∑
m1,m2,m3=0

(m1+m2)(m2+m3) Pm1,m2,m3(t1, ∆t1, t2, ∆t2, t3, ∆t3), (6.66)

from which it follows that (τ<∆t)

n(t, ∆t)n(t + τ, ∆t) = n2(t2, ∆t2) + n(t1, ∆t1)n(t3, ∆t3)

+ n(t1, ∆t1)n(t2, ∆t2) + n(t2, ∆t2)n(t3, ∆t3) . (6.67)

The mean-square number and the two-time correlations of counts on the right-
hand side of Eq. (6.67) may now be calculated by applying the relations (6.58)



186 6 Photoelectric detection of light

and (6.64) respectively. Recalling the relations (6.65), after straightforward
calculation we arrive at

n(t, ∆t)n(t + τ, ∆t) = Θ(∆t − τ) n(t + τ, ∆t − τ)

+ ξ2〈 ◦◦ Î(r, t, ∆t) Î(r, t + τ, ∆t) ◦◦ 〉. (6.68)

Note that when τ goes to zero, then Eq. (6.68) simply reduces to Eq. (6.58). In
the short-time limit Eq. (6.68) reduces to

n(t, ∆t)n(t + τ, ∆t) = ξΘ(∆t − τ)(∆t−τ)
〈

Î(r, t)
〉

+ ξ2(∆t)2〈 ◦◦ Î(r, t) Î(r, t + τ) ◦◦ 〉. (6.69)

Until now we have considered moments and correlations of photoelectric
counts up to second order. It is evident that higher-order moments and corre-
lations may be derived analogously. In particular, in the short-time limit the
Mth order correlation of counts registered by different photodetectors is given
by

M

∏
l=1

n(tl, ∆tl) = G(M)({rl , τl})
M

∏
l=1

ξl∆tl , (6.70)

where

G(M)({rl , tl}) = G(m,n)({ri, ti, rj, tj})
∣∣
m=n=M

=
〈

◦◦
M

∏
l=1

Ê(−)(rl , tl)Ê(+)(rl , tl) ◦◦

〉
(6.71)

is the normally and time-ordered Mth-order intensity correlation function.
In practical measurements the quantities to be observed are often photocur-

rents. The question therefore arises of how to relate the photoelectrons to the
photocurrent. In the case of amplification this is a rather difficult problem, be-
cause of the complex mechanism of multiplying the photoelectrons (primarily
generated through absorption of light) that build up the amplified photocur-
rent.8 Within the framework of a deterministic description of the multipli-
cation process [see, e. g., Carmichael (1987); Huttner and Ben-Aryeh (1988)],
in the simplest case of constant gain factor g the total number of electrons

8) Photomultiplier-like devices typically op-
erate by multiplying the photoelectrons
that are primarily generated. Since this
multiplication process, in general, intro-
duces additional noise, the sensitivity of
the receiver is determined by the noise of
both the light and the gain process. Con-

sequently, statistical concepts for dealing
with the multiplication process need to be
applied [see, e. g., McIntyre (1966); Person-
ick (1971); Conradi (1972); Teich, Matsuo
and Saleh (1986a,b); Kühn and Welsch
(1991)].
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available (after multiplication) in a time interval t, t + ∆t is gn, with n being
the number of primarily generated electrons. The photocurrent may then be
introduced as

i(t) = gen(t, ∆t)(∆t)−1 (6.72)

(e, electron charge). The photocurrent moments and correlations thus read 9

M

∏
l=1

i(tl) =
( ge

∆t

)M M

∏
l=1

n(tl , ∆t) . (6.73)

Note that the photocurrent time resolution ∆t is usually required to be suf-
ficiently small so that the short-time results apply on the right-hand side of
Eq. (6.73). Otherwise, the photocurrent only yields information about field
properties averaged over the time-resolution interval.

6.2
Photoelectric counts and photons

We have seen that the statistics of photoelectrons recorded by a point-like,
broad-band photodetector may be expressed in terms of normally and time-
ordered intensity correlation functions of the radiation field at the points of
observation. Let us now turn to the problem of relating the counting statis-
tics to the photon-number statistics, expressing the time-integrated correla-
tion functions of the incident radiation in terms of moments and correlations
of photon (number) operators [Mandel (1966); Peřina, Saleh and Teich (1983);
Fleischhauer and Welsch (1991)].

6.2.1
Detection scheme

For this purpose, we consider radiation traveling along the positive x direc-
tion into point-like broad-band photodetectors of used detection areas Al , the
direction of polarization being perpendicular to the x axis (see Fig. 6.4 for a
single detector). Application of Eqs (6.40)–(6.42) yields

Γ̂(l)(tl , ∆tl) = ξl Î(xl, tl , ∆tl), (6.74)

Î(xl , tl, ∆tl) =
∫ tl+∆tl

tl

dτ Î(xl, τ), (6.75)

Î(xl , τ) = Ê(−)(xl , τ)Ê(+)(xl, τ), (6.76)

9) When different photodetectors are used and Eq. (6.73) applies, then
the gain factors may be different for different detectors.
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S PD

+

−

xs xl

x

Fig. 6.4 Light produced by a source S travels along the positive x direc-
tion into a photodetector PD.

where xl is the position of the lth detection area. To calculate intensity corre-
lation functions of the type relevant for photodetection,

G(M)({xl , tl}) =
〈

◦◦
M

∏
l=1

Ê(−)(xl , tl)Ê(+)(xl, tl) ◦◦

〉
(6.77)

[see Eq. (6.71)], we assume that the light source is on the left-hand side of
the photodetectors. That is, xs <xl , where xs is the position of the right-hand
boundary of the light source. At any point x with xs≤x≤xl the operator of
the (total) electric-field strength obviously consists of two parts:10

Ê(±)(x, t) = Ê(±)
+ (x, t) + Ê(±)

− (x, t), (6.78)

Ê(+)
± (x, t) = i

∫ ∞

0
dω

√
h̄ω

4πε0cA e±iωx/câ±(ω, t), Ê(−)
± =

(
Ê(+)
±

)†, (6.79)

where the operators â±(ω) are introduced for the field modes propagating in
the positive (+) and negative (−) x direction. With regard to the position of

the light source, Ê(±)
+ and Ê(±)

− are respectively the outgoing and incoming
fields.

According to the detection scheme considered, we may assume that, at the
points of observation, the free field represents the vacuum field, so that at
these points the condition (2.319) is satisfied. Thus applying Eq. (2.320) en-
ables us to replace the ◦◦ ◦◦ ordering by the •• •• ordering in Eq. (6.77). Since
for xs ≤ x ≤ xl only fields that propagate in the positive x direction can be
attributed to sources, we may complement the source-field parts by the free-

field parts to obtain the full-field parts Ê(±)
+ and replace the •• •• ordering by

the ◦◦ ◦◦ ordering. Assuming that back-actions of the photodetectors on the
sources may be ignored, from the arguments given in Section 2.7 it follows

that the Ê(±)
+ may be regarded as being effectively free fields, because the

10) Equations (6.78) and (6.79) are easily obtained by specifying the
plane-wave expansion given in Section 2.2.2.3 [see also Eq. (3.90)].
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time-dependent commutation relations are the same relations as in the free-
field case.11 Thus, the ◦◦ ◦◦ ordering simply reduces to normal ordering and
we may rewrite Eq. (6.77) as

G(M)({xl , tl}) =
〈

:
M

∏
l=1

Ê(−)
+ (xl , tl)Ê(+)

+ (xl , tl) :
〉

. (6.80)

Hence, replacing Eqs (6.74)–(6.76) according to

Γ̂(l)(tl , ∆tl) �→ ξl Î+(xl , tl, ∆tl), (6.81)

Î+(xl , tl, ∆tl) =
∫ tl+∆tl

tl

dτ Î+(xl , τ), (6.82)

Î+(xl , τ) = Ê(−)
+ (xl , τ)Ê(+)

+ (xl , τ), (6.83)

we may omit the time-ordering prescriptions, and Eq. (6.52) can be given in
the form

P{ml}({tl , ∆tl}) =
〈

:
M

∏
l=1

1
ml !

[
ξl Î+(xl , tl , ∆tl)

]ml exp
[
−ξl Î+(xl , tl, ∆tl)

]
:
〉

.

(6.84)

The field relevant for photodetection is the field impinging on the lth detector
in the measurement time interval tl , tl +∆tl .

6.2.2
Mode expansion

Defining the periodic field

Ê(±)
D (xl, τ) = Ê(±)

D (xl, τ + ∆tl) (6.85)

in such a way that in the time interval tl, tl +∆tl the field Ê(±)
D (xl, τ) is equal

to the actual incoming field Ê(±)
+ (xl, τ),

Ê(±)
D (xl, τ) = Ê(±)

+ (xl, τ) (tl < τ < tl + ∆tl), (6.86)

we may represent Ê(±)
D (xl , τ) by Fourier decomposition as

Ê(+)
D (xl , τ) =

i√
∆tl

∑
µ

√
h̄ωµ

2ε0cA âµ exp
[
−iωµ

(
τ− xl

c

)]
,

Ê(−)
D =

(
Ê(+)

D

)†,

(6.87)

11) Examples of time-dependent commutation relations for incoming
and outgoing fields of the type considered here are treated in more
detail in Chapter 9.
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âµ = − i√
∆tl

√
2ε0cA
h̄ωµ

∫ tl+∆tl

tl

dτ Ê(+)
+ (xl , τ) exp

[
iωµ

(
τ − xl

c

)]
, (6.88)

where ωµ =2πµ/∆tl , (µ =0, 1, 2, . . .). Apart from the values at the boundary

times τ= tl and τ= tl +∆tl , the field Ê(±)
D (xl , τ) as given in Eqs (6.87) and (6.88)

does indeed agree with Ê(±)
+ (xl , τ) in the time interval tl , tl + ∆tl. Note that

the two boundary values are meaningless, because we are only interested in
quantities integrated over the time interval tl , tl +∆tl .

It is appropriate to regard the operators â†
µ and âµ as photon creation and

annihilation operators respectively, so that the operators n̂µ = â†
µ âµ represent

photon-number operators. To show this, let us calculate the commutator

[âµ, â†
µ′ ]. Recalling that Ê(±)

+ may be regarded as being an effectively free field

and using Eq. (6.79), we find that12

[
Ê(+)

+ (xl , τ), Ê(−)
+ (xl , τ′)

]
eiω0(τ−τ′)

=
[
Ê(+)

+ free(xl , τ), Ê(−)
+ free(xl, τ′)

]
eiω0(τ−τ′)

=
h̄

4πε0cA
∫ ∞

0
dω ω e−i(ω−ω0)(τ−τ′) 
 h̄ω0

2πε0cA δ(τ − τ′). (6.89)

Here we have assumed that the bandwidth of the detected (optical) radiation
is small compared with some center frequency ω0, and we have confined our-
selves to resolving times large compared with ω−1

0 . Combination of Eqs (6.88)
and (6.89) then gives the well-known boson commutation rule

[âµ, â†
µ′ ] = δµµ′ . (6.90)

We combine Eqs (6.82), (6.86) and (6.87) to obtain13

ξl Î+(xl , tl, ∆tl) =
ξl

2ε0cA ∑
µ

h̄ωµn̂µ 
 ηl ∑
µ

n̂µ, (6.91)

with ηl = ξl h̄ω0/(2ε0cA) being the detection efficiency (quantum efficiency)
with regard to the number of photons to be detected. It is worth noting that
the photon picture introduced here allows an interpretation closely related to
the conventional procedure of field quantization in a (finite) volume V . This
can easily be seen by performing in the time integral in Eq. (6.82) [together
with Eqs (6.86) and (6.87)] the change of variables τ = tl +(xl −x)/c. Because
of the condition tl ≤τ≤ tl + ∆tl , the range of variation of x is xl −L≤ x≤ xl ,

12) Note that Ê(±)
+ free(x, t) is given by Eq. (6.79), with â+(ω, t) being re-

placed according to â+(ω, t) �→ â+(ω)e−iωt, and [â+(ω), â†
+(ω′)]=

δ(ω−ω′).
13) Note that 2ε0cÎ+(xl , t) may be regarded as the operator of the energy

flux density falling on a photodetector with entrance plane at xl .



6.2 Photoelectric counts and photons 191

where L=c∆t. Hence, the radiation field interacting with a photodetector at
position xl during the time interval tl , tl+∆tl is just the field inside the volume
V=AL with L=c∆tl, provided that the detection area coincides with A, i. e.,
Al =A. In this case V may indeed be regarded as the natural quantization
volume for defining photons of the field relevant for photodetection.

The above used mode decomposition corresponds to a monochromatic
mode expansion as considered in Section 2.2.2. As shown in Section 2.2.3,
unitary transformations can be applied to the photon creation and annihila-
tion operators associated with the monochromatic waves to obtain new op-
erators that are associated with wave packets (nonmonochromatic modes).
Obviously, Eq. (6.91) also applies to nonoverlapping wave packets, n̂µ being
the photon-number operator assigned to the µth wave packet.

It might often be convenient to represent the operator of the number of pho-
tons falling on a photodetector at position xl during the time interval tl , tl+∆tl
in a form closely related to a continuous mode expansion as given in Eq. (6.79).
For this purpose, let us consider the so-called detection operator

d̂(xl , t) =
(

1
2π

) 1
2 ∫ ∞

0
dω â+(ω, t)eiωxl/c. (6.92)

Combining Eqs (6.82) and (6.79), taking into account that the bandwidth of
the light has been assumed to be small compared with the center frequency,
and using Eq. (6.92), we may (approximately) rewrite Eq. (6.82) to obtain

ξl Î+(xl , tl, ∆tl) = ηl

∫ tl+∆tl

tl

dτ d̂†(xl , τ)d̂(xl , τ). (6.93)

Comparing Eqs (6.93) and (6.91), we find that the operator of the total number
of photons falling on the photodetector during the time interval tl , tl +∆tl may
be represented in the form

∑
µ

n̂µ =
∫ tl+∆tl

tl

dτ d̂†(xl , τ)d̂(xl, τ). (6.94)

The operator d̂ (d̂†) may therefore be regarded as being the (photon per unit
time)1/2 units annihilation (creation) operator of the radiation field incident
on the photodetector (with entrance plane at xl). Accordingly, the operator
d̂†d̂ may be viewed as the corresponding number operator in photon per unit
time units. Note that the time dependence of â+(ω, t) [in Eq. (6.92)] must be
determined from the solution of the full light-source interaction problem.

6.2.3
Photon-number statistics

Let us consider a single photodetector with entrance plane at xl . According to
Eqs (6.84) and (6.91), we can represent the probabilities for the photoelectrons
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ejected during the time interval tl , tl +∆tl in the form

Pm = 〈P̂m({âµ, â†
µ})〉, (6.95)

where14

P̂m = P̂m({âµ, â†
µ}) = :

1
m!

(ηn̂)me−ηn̂ : , (6.96)

n̂ = ∑
µ

n̂µ (6.97)

(η≡ηl ). Here and in the following we omit the arguments tl and ∆tl , which
indicate the chosen measurement interval. Let us view P̂m as a function of
the detection efficiency η. It is not difficult to prove that expansion of the
exponential in Eq. (6.96) gives

P̂m({âµ, â†
µ}) =

∞

∑
n=0

Pm|n(η) P̂n({âµ, â†
µ})

∣∣
η=1 , (6.98)

where

Pm|n(η) =




(
n
m

)
ηm(1 − η)n−m if n ≥ m,

0 if n < m.
(6.99)

In order to calculate P̂n for η=1, we note that the associated c-number function
for s=1 (normal order) reads

Pn({αµ, α†
µ}; 1)

∣∣
η=1 =

1
n!

(
∑
µ

|αµ|2
)n

exp
(
−∑

µ

|αµ|2
)

= ∑
{nµ}

∏
µ

|αµ|2nµ

nµ!
e−|αµ|2 = ∑

{nµ}
∏

µ

|〈αµ|nµ〉|2, ∑
µ

nµ = n. (6.100)

Recalling that |〈αµ|nµ〉|2 is the c-number function associated with the number-
state projector |nµ〉〈nµ| in normal order [cf. Eq. (4.60)], we see that P̂n for η =1
is a multi-mode number-state projector:

P̂n({âµ, â†
µ})

∣∣
η=1 = ∑

{nµ}
|{nµ}〉〈{nµ}|, ∑

µ

nµ = n. (6.101)

14) Note that the set of P̂m is an example
of a positive operator valued measure
(POVM), because each Hermitian oper-
ator P̂m is a non-negative operator, and
∑m P̂m = Î. The main difference between
POVMs and von Neumann’s projection

valued measures, is that the elements of
POVMs are not necessarily orthogonal
projectors, so that the corresponding prob-
ability distributions cannot be infinitely
sharply peaked in general [for details see,
e. g., Helstrom (1976)].
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Thus for η<1, P̂m in Eq. (6.98) is a statistical mixture of orthogonal projectors
that project onto multi-mode number states whose total photon numbers n
satisfy the condition that n≥m.

Combining Eqs (6.95), (6.98) and (6.101), we may write

Pm =
∞

∑
n=0

Pm|n(η)pn , (6.102)

where

pn = ∑
{nµ}

〈{nµ}|�̂|{nµ}〉, ∑
µ

nµ = n, (6.103)

is the probability that the incident light contains n photons. In Eq. (6.102),
Pm|n is the probability of detecting m photoelectrons conditioned on n inci-
dent photons. Clearly, in order to observe m photoelectrons the number n of
incident photons must not be smaller than m. The joint probability of n in-
cident photons being available and m photoelectrons being recorded is then
Pm|npn. Summing over n yields the marginal probability Pm of recording m
photoelectrons. When η→1 then Pm|n→δmn, and Pm→ pm, i. e., when the de-
tection efficiency is equal to unity (perfect detection), then the observed prob-
ability distribution is the (total) photon-number probability distribution of the
incident radiation in the chosen detection interval.15

Equation (6.102) [together with Eq. (6.99)] is a Bernoulli transformation,
which yields the counting probabilities in terms of the photon-number prob-
abilities. In practice the photon-number probabilities are desired to be deter-
mined. The problem can formally be solved by the inverse Bernoulli transfor-
mation

pm =
∞

∑
n=0

Pm|n
(
η−1)Pn , (6.104)

the derivation of which is similar to that of the Bernoulli transformation except
that one has to start from P̂m for η=1. From Eq. (6.99) it is easily seen that the
coefficients Pm|n(η−1) in Eq. (6.104) are not bounded for η<0.5 and hence the
reconstruction of pm from Pm leads, in practice, to an error explosion.

Equation (6.95) together with Eq. (6.96) can be used to relate the moments
of counts to the (relevant) moments of the (total) photon number in a straight-

15) When η<1 then some of the incident photons are lost and Pm can be
regarded as being the photon-number probability distribution after
losing the (nondetected) photons.
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forward manner. In particular, in close analogy with Eqs (6.55) and (6.63) we
derive

n = η〈n̂〉, (6.105)

(∆n)2 = η〈n̂〉 + η2〈: (∆n̂)2 :〉 = η(1 − η)〈n̂〉 + η2〈(∆n̂)2〉. (6.106)

This result reveals that the variance of the number of photoelectrons is not
solely determined by the variance of the number of incident photons but also
by the mean photon number. Only in the limit as η→1 (perfect detection) are
the two variances directly related to each other. In the context of the study of
nonclassical light, it is often useful to introduce Fano factors and to express
the result of Eq. (6.106) in terms of them. Defining the electronic Fano factor
Fel by

Fel =
(∆n)2

n
(6.107)

and accordingly the photonic Fano factor Fph as

Fph =
〈(∆n̂)2〉
〈n̂〉 , (6.108)

we can easily see that Eq. (6.106) implies that

Fel − 1 = η(Fph − 1). (6.109)

Therefore, when the observed statistics of electrons is sub-Poissonian (Fel<1),
one may conclude that the photon statistics is also (Fph <1).

It is not difficult to extend Eq. (6.95) to the case where more than one de-
tector is used. Recalling Eq. (6.52), the joint probability P{ml} for m1 photo-
electrons ejected by the first detector during the time interval t1, t1 + ∆t1, m2
photoelectrons by the second detector during the time interval t2, t2+∆t2, and
so forth, is

P{ml} = 〈P̂{ml}〉, (6.110)

where

P̂{ml} =
M

∏
l=1

P̂ml({âµl , â†
µl
}). (6.111)

Here P̂ml is defined according to Eq. (6.96) where âµl (â†
µl

) is the photon anni-
hilation (creation) operator associated with the µlth mode relevant for the lth
detector. Accordingly,

n̂l = ∑
µl

â†
lµl

âlµl
(6.112)



6.3 Nonperturbative corrections 195

is the operator of the number of photons falling on the lth detector during its
operation-time interval tl , tl +∆tl .

6.3
Nonperturbative corrections

The approach to the quantum theory of photodetection developed in the pre-
ceding sections is based on a perturbative treatment of the interaction between
the light to be detected and the sample of detector atoms. It may therefore
lead to unphysical consequences if the conditions of validity of perturbation
theory are not taken into account. To illustrate the inadequacies that might
appear, let us again consider a light field traveling along the positive x axis
into a (broad-band) photodetector of (used) detection area Al at position xl
and suppose that the direction of polarization is fixed. From inspection of
Eq. (6.105) it can be seen that the value of ηl must not exceed unity. Otherwise
the number of photoelectrons would exceed the number of incident photons.
However, since ηl is proportional to the number of detector atoms, there is no
upper bound. This inadequacy is of course a result of illicitly extending the
range of validity of perturbation theory. Clearly, in the perturbative approach
developed, the attenuation of radiation due to the detection process is com-
pletely disregarded. Hence the result (6.105) may be regarded as being valid
for sufficiently small values of ηl (ηl �1), so that only a small fraction of inci-
dent photons can be absorbed by the photodetector. On the other hand, when
(low-intensity) quantum light fields are detected, one is interested in high de-
tection efficiency. The question therefore arises of how to extend the perturba-
tive results in order to include nonperturbative corrections. This problem has
been studied in particular for the case of a single-mode cavity field [Mollow
(1968); Scully and Lamb, Jr. (1969); Selloni, Schwendimann, Quattropani and
Baltes (1978); Srinivas and Davies (1981); Ueda (1990)]. The common situation
with photodetection is that the light emitted from a source propagates in free
space and falls onto the photodetector, which is spatially well separated from
the source. To describe the propagation of light from the source to the detec-
tor followed by light attenuation during the detection process, a multi-mode
theory is required [Chmara (1987); Fleischhauer and Welsch (1991)].

We recall that the formulae for the photoelectric counting distributions have
been derived under the assumption that the number of detector atoms sub-
stantially exceeds the (mean) number of photons to be detected. In this case
the probability of a detector atom being excited during the time interval of de-
tection is very small so that saturation effects are meaningless. The interaction
of each detector atom with the radiation field may therefore be treated within
the framework of lowest-order perturbation theory with little error. However,



196 6 Photoelectric detection of light

the radiation field actually interacting with a given detector atom is not the
unperturbed field as given by the outgoing field from the sources incident on
the entrance plane of the detector, but it is a modified version of it, because
of the interaction of the field with the remaining detector atoms. Clearly, with
increasing ηl this modification becomes more and more pronounced. The in-
tensity of light can no longer be regarded as (approximately) constant within
the photosensitive detection slab and the treatment of the photodetector as a
point-like device needs more careful consideration.

Going back to Eq. (6.39) and performing the summation over the detector
atoms in the sense of an integration (S≡S(i)=S(j)), ξl Î+(xl , tl, ∆tl) in Eq. (6.81)
must be replaced according to

ξl Î+(xl , tl, ∆tl) �→ Sl

∫ tl+∆tl

tl

dτ
∫ xl+Dl

xl

dx σl(x) Î+(x, τ), (6.113)

where Î+(x, τ) is defined according to Eq. (6.83), σl(x) is the atomic number
density (per unit length) and Dl is the thickness of the photoelectrically sensi-
tive slab. Note that

ξl = Sl Nl = Sl

∫ xl+Dl

xl

dx σl(x), (6.114)

where Nl is the number of atoms within the volume Al Dl of the photosensitive
detection slab. Application of Eq. (6.54) together with the replacement (6.113)
yields the mean number of counts recorded during the time interval tl , tl + ∆tl :

n(tl, ∆tl) = Sl

∫ tl+∆tl

tl

dτ
∫ xl+Dl

xl

dx σl(x)〈 Î+(x, τ)〉. (6.115)

We now take into account that the light field propagating from the entrance
plane at xl to a plane at x (xl <x<xl +Dl) loses intensity owing to its interac-
tion with the (absorbing) detector atoms. According to the Lambert–Beer law
we may write

〈 Î+(x, t)〉 = 〈 Î+(xl, t)〉e−κl(x−xl), (6.116)

so that

n(tl, ∆tl) = ξ ′l〈 Î+(xl , tl , ∆tl)〉, (6.117)

where Î+(xl , tl , ∆tl) again refers to the entrance plane of the detector, but the
new, renormalized efficiency reads

ξ ′l = Sl

∫ xl+Dl

xl

dx e−κl(x−xl)σl(x). (6.118)
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Assuming that the detector atoms are uniformly distributed [σl(x)= Nl/Dl],
from Eq. (6.118) we evaluate

ξ ′l =
ξl

κl Dl

(
1 − e−κl Dl

)
. (6.119)

Hence the detection efficiency which relates the number of counts to the num-
ber of incident photons [see Eq. (6.91)] must also be replaced by a renormal-
ized one:

ηl �→ η′
l =

h̄ω0

2ε0cA
ξl

κl Dl

(
1 − e−κl Dl

)
. (6.120)

Let us assume that the losses described by the extinction coefficient κl only
result from the absorption of light by the detector atoms. In this case κl is
proportional to ξl . Since the mean number n of counts must tend to the frac-
tion (Al/A)〈n̂〉 of incident photons as κl Dl goes to infinity, from Eq. (6.105)
together with Eq. (6.120) we conclude that

κl Dl = ξl
h̄ω0

2ε0cAl
. (6.121)

In this way, we may rewrite Eqs (6.119) and (6.120) as

ξ ′l =
2ε0cAl

h̄ω0

[
1 − exp

(
−ξl

h̄ω0

2ε0cAl

)]
, (6.122)

η′ =
Al

A

[
1 − exp

(
−η

A
Al

)]
. (6.123)

Clearly, for small values of ηl (ηl �1) the well-known result from perturbation
theory emerges (ξ ′l ≈ ξl , η′

l ≈ ηl). Moreover, from Eqs (6.105) and (6.123) it is
easily found that the number of counts cannot exceed the number of incident
photons, even when the value of η becomes large.

Although the above arguments are somewhat intuitive and mainly concern
the mean number of counts, they suggest that (under the assumptions made)
the nonperturbative extension of the results given in the preceding sections
simply consists in interpreting the detection efficiencies (ξl and ηl) as renor-
malized ones, which, in particular, implies that the forms of the counting dis-
tribution functions need not be changed. We omit the general proof here and
refer the reader to the literature [Fleischhauer and Welsch (1991)].

6.4
Spectral detection

In photodetection experiments the light under study frequently passes
through a more or less complicated setup of optical instruments before it
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is registered by photodetectors. Spectral properties of light may be observed
by appropriately combining photodetectors with frequency-sensitive devices,
such as spectral filters of Fabry–Perot type. Another typical example is the
superimposition of two or more light fields by means of beam splitters and
the detection of the combined fields. Interferometric detection schemes of this
type have been successfully used in quantum-state measurement (Chapter 7).

The field relevant for photodetection is that at the entrance plane of the de-
tector. If the light produced by some kind of source passes through an optical
instrument before it is detected, the field impinging on the detector is the field
transformed by the action of the instrument. As long as absorption may be
disregarded, a Fabry–Perot spectral apparatus or a beam splitter may be re-
garded as a four-port device, whose action may be treated in quantum optics
within the concept of field quantization in a dielectric with space-dependent
refractive index, as developed in Section 2.4.1. Moreover, both a Fabry–Perot
device and a beam splitter may be viewed as a type of multi-slab dielectric
configuration, the significant difference between the two devices being the
frequency sensitivity.

6.4.1
Radiation-field modes

For clarity, and to avoid rather lengthy derivations and formulae, we confine
ourselves to the simplest model of a nonabsorbing four-port device, namely
a dielectric plate of real refractive index n and thickness d [Knöll, Vogel and
Welsch (1986, 1990); Ley and Loudon (1987)]. Let us consider the scheme in
Fig. 6.5. Assuming fixed directions of propagation and polarization of the ra-
diation under study, we may omit vector indices and the electric-field strength
can be given by

Ê(x) = Ê(+)(x) + Ê(−)(x), (6.124)

Ê(+)(x) = i
∫

dk c|k|A(k, x)â(k), Ê(−) =
(
Ê(+))†. (6.125)

The Helmholtz equation (2.195) for determining the mode functions A(k, x)
simplifies to

∂2

∂x2 A(k, x) + n2(x)k2A(k, x) = 0, k2 =
ω2

c2 , (6.126)

where, according to our model of a dielectric plate,

n(x) =
√

ε(x) =

{
n if − 1

2 d ≤ x ≤ 1
2 d,

1 if |x| > 1
2 d.

(6.127)

Accounting for the boundary conditions at the surfaces of discontinuity
x=±d/2 and for the normalization condition (2.196) [together with Eq. (2.71)],
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Fig. 6.5 Scheme of a spectral measurement. The light emitted by the
source (S) passes through a frequency-sensitive (multi-slab dielectric)
device of Fabry–Perot type (FP) in a photodetector (PD).

a straightforward calculation yields the following expressions for the mode
functions

A(k, x) =

√
h̄

4πε0ωA

{
eikx + R(ω)e−ikx if x ≤ − 1

2 d,

T(ω)eikx if x ≥ 1
2 d

(6.128)

for k>0, and

A(k, x) =

√
h̄

4πε0ωA

{
T(ω)eikx if x ≤ − 1

2 d,

eikx + R(ω)e−ikx if x ≥ 1
2 d

(6.129)

for k < 0, with A being an appropriately chosen normalization area. In
Eqs (6.128) and (6.129), T(ω) and R(ω) are the spectral transmission and re-
flection response functions of the dielectric plate, respectively, which, in agree-
ment with the Airy formulae [see, e. g., Born and Wolf (1959)], are

T(ω) exp
[
−i(dopt − d)

ω

c

]
=

1 − r2

1 − r2 exp(2iωdopt/c)
, (6.130)

R(ω) exp
(

id
ω

c

)
= −r + r exp

[
i(dopt + d)

ω

c

]
T(ω), (6.131)

r2 =
(

n − 1
n + 1

)2

, (6.132)

where dopt =nd is the optical path through the dielectric plate. It can easily be
proved that T(ω) and R(ω) satisfy the conditions

|T(ω)|2 + |R(ω)|2 = 1, (6.133)

T(ω)R∗(ω) + T∗(ω)R(ω) = 0. (6.134)

Although Eqs (6.128) and (6.129) are derived for the simple case of a dielectric
plate, their forms may be regarded as being valid also for more complicated
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multi-slab four-port devices. Clearly, the formulae for the spectral transmis-
sion and reflection response functions may become more complicated than
those given in Eqs (6.130) and (6.131).

With regard to the considered dielectric plate, the (complex) poles Ωm of the
spectral transmission response function T(ω) determined from the equation

1 − r2 exp
(

2iΩm
dopt

c

)
= 0 (6.135)

read

Ωm = ωm − 1
2 iΓ, (6.136)

where (m, integer)

ωm = mπ
c

dopt
, (6.137)

Γ = − c
dopt

ln r2. (6.138)

In particular, for very high reflectance (r2 ≈ 1) the plate obviously acts as a
spectral filter. In this case Eq. (6.138) may be approximated as

Γ =
c

dopt
(1 − r2), (6.139)

so that the passband width Γ becomes small compared with the setting fre-
quencies ωm and the distance ∆ω =πc/dopt between neighboring setting fre-
quencies. From Eqs (6.130), (6.136) and (6.139) the behavior of T(ω) for fre-
quencies in the vicinity of a chosen setting frequency ωm is then found to be

T(ω) exp
[
−i(dopt − d)

ω

c

]
=

1
2 Γ

1
2 Γ − i(ω − ωm)

. (6.140)

That is, the spectral transmission response function becomes very effective in
discriminating against values of ω different from the setting frequency ωm.

6.4.2
Input-output relations

From inspection of Eqs (6.128) and (6.129) we see that two kinds of mode func-
tions are to be considered, describing incoming waves from the left and right,
each of which is partly reflected and transmitted.16 Using Eqs (6.128) and

16) In Fig. 6.5 it is assumed that the light under study is produced by a
source on the left of the dielectric plate. In practical measurements,
one of course tries to avoid directing the reflected part of the light
into the source, for example by inclined incidence of light and ap-
propriately arranged diaphragms, so that the reflected part of the
light cannot strike the source.
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(6.129), we now decompose the field outside the plate in incoming and outgo-
ing fields:

Ê(x) =
2

∑
ν=1

[
Ê(+)

ν (x) + Ê′
ν
(+)(x)

]
+ H.c., (6.141)

where (|x|≥d/2)

Ê(+)
ν (x) = i

∫ ∞

0
dω

√
h̄ω

4πε0cA eikνxâν(ω), (6.142)

Ê′
ν
(+)(x) = i

∫ ∞

0
dω

√
h̄ω

4πε0cA eikνxâ′ν(ω), (6.143)

and k1 = ω/c, k2 = −ω/c. Here the photonic operators of the outgoing
field, â′ν(ω), are related to the photonic operators of the incoming field,
âν(ω)=c−1/2â(k), according to the input-output relations

â′1(ω) = T(ω)â1(ω) + R(ω)â2(ω), (6.144)

â′2(ω) = R(ω)â1(ω) + T(ω)â2(ω). (6.145)

Note that, from Eqs (6.133) and (6.134), it follows that Eqs (6.144) and (6.145)
represent a unitary transformation of the input operators âν into the output
operators â′ν. Thus the bosonic commutation relations are preserved:

[âν(ω), â†
ν′(ω′)] = [â′ν(ω), â′ν′

†(ω′)] = δνν′δ(ω−ω′), (6.146)

[âν(ω), âν′(ω′)] = [â′ν(ω), â′ν′(ω′)] = 0. (6.147)

Applying the input-output relations (6.144) and (6.145) and combining
Eqs (6.142) and (6.143), we can express the outgoing fields in terms of the
incoming fields. The outgoing fields then read

Ê′(+)
1 (x) =

∫
dt′ T(t′)Ê(+)

1 (x + ct′) +
∫

dt′ R(t′)Ê(+)
2 (−x − ct′), (6.148)

Ê′(+)
2 (x) =

∫
dt′ R(t′)Ê(+)

1 (−x + ct′) +
∫

dt′ T(t′)Ê(+)
2 (x − ct′), (6.149)

where the transmission response function T(t) and the reflection response
function R(t) are given by

T(t) =
1

2π

∫ ∞

0
dω T(ω)e−iωt (6.150)

and

R(t) =
1

2π

∫ ∞

0
dω R(ω)e−iωt. (6.151)
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Equations (6.148) and (6.149) are operator equations which are not related
to any specific quantum-mechanical picture of temporal evolution. In partic-
ular, in the Heisenberg picture, where the temporal evolution of the operators

formally looks like the classical one, we may replace the Ê(+)
ν (x) according to

Ê(+)
1 (x) �→ Ê(+)

1 (x, t) = Ê (+)
1 (t − x/c), (6.152)

Ê(+)
2 (x) �→ Ê(+)

2 (x, t) = Ê (+)
2 (t + x/c), (6.153)

and Ê′
ν
(+)(x) accordingly. Thus Eqs (6.148) and (6.149) take the form

Ê ′(+)
1 (t) =

∫
dt′ T(t − t′) Ê (+)

1 (t′) +
∫

dt′ R(t − t′) Ê (+)
2 (t′), (6.154)

Ê ′(+)
2 (t) =

∫
dt′ R(t − t′)Ê (+)

1 (t′) +
∫

dt′ T(t − t′)Ê (+)
2 (t′). (6.155)

In Fig. 6.5 it is assumed that the field relevant for photodetection is that in the
channel 1′, so that Eqs (6.81)–(6.84) with

Ê(±)
+ (xl, tl) = Ê′(±)

1 (xl, tl) = Ê ′(±)
1 (tl − xl/c) (6.156)

apply. Since in classical optics the vacuum in the input channel 2 in Fig. 6.5
is irrelevant, the spectrally filtered field may be expressed as a convolution
of the incoming unfiltered field with the transmission response function of
the spectral apparatus [Eq. (6.154) with c numbers instead of operators and

E (+)
2 (t′)=0]. In quantum optics the situation is changed because now both

incoming fields are needed to ensure that the commutation relations are not
violated, and thus the full operator equation (6.154) must be taken into ac-
count.

6.4.3
Spectral correlation functions

Detection of light behind a spectral apparatus yields the physically accessible
information on its spectral properties.17 Thus the introduced spectra are often
called physical spectra [Eberly and Wódkiewicz (1977)]. In contrast to these,
intrinsic spectral properties may be defined mathematically by a Fourier anal-
ysis of the light [Metha and Wolf (1967)].

Spectral properties are commonly expressed in terms of spectrally resolved
correlation functions. According to Eqs (6.80)–(6.136), in photocounting mea-
surements of spectrally filtered light, normally ordered intensity correlation

17) Alternatively, the unfiltered light is detected and the photocurrent is
electronically filtered.
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functions of the type18

G(M)({xl , tl}) =
〈

:
M

∏
l=1

Ê ′(−)
1 (τl)Ê ′(+)

1 (τl) :
〉

(τl = tl − xl/c) (6.157)

can be detected, with Ê ′(+)
1 [and Ê ′(−)

1 =(Ê ′(+)
1 )†] being given by Eq. (6.154).

Since we may assume (see Fig. 6.5) that the source only contributes to the Ê (±)
1 ,

we may omit the E (±)
2 on following the arguments given in Section 6.2.1. Intro-

ducing the normally ordered correlation functions of the incoming unfiltered
light,

Γ(m,n)({ti, tj}) =
〈

:
m

∏
i=1

n

∏
j=m+1

Ê1
(−)(ti)Ê1

(+)(tj) :
〉

, (6.158)

we may rewrite Eq. (6.157), on using Eq. (6.154), as

G(M)({xl , tl}) =
∫

dt′1

∫
dt′M+1 T∗

1 (τ1−t′1)T1(τ1−t′M+1) · · ·

· · ·
∫

dt′M

∫
dt′2M T∗

M(τM−t′M)TM(τM−t′2M) Γ(M,M)(t′1, . . . , t′2M).

(6.159)

Here we have allowed for different spectral filters in order to study the corre-
lation behavior of different frequency components. This can be realized in an
appropriately extended scheme that uses spectral filters in combination with
beam splitters. The simplest example of such an experimental setup is the fol-
lowing. The outgoing radiation field from the light source is subdivided into
two parts by means of a beam splitter. These parts may then be used as input
fields for two spectral filters that differ in setting frequency. The correlations
between the corresponding output fields may finally be detected in a two-
photodetector photocounting experiment. From Eq. (6.159) we see that the
normally ordered intensity correlation functions G(M) observed behind the
filters may be expressed in terms of convolutions of normally ordered field
correlation functions Γ(m,n) of the incoming unfiltered light with the transmis-
sion response functions of the filters.

In some cases it may be useful to decompose the incoming unfiltered light
into the free-field and the source-field,

Ê (±)
1 (t) = Ê (±)

s 1 (t) + Ê (±)
free 1(t). (6.160)

18) Here it is assumed that there are no back-actions of the equipment
on the light source. Otherwise, time orderings must be considered,
i. e., the normal ordering must be replaced by the ◦◦ ◦◦ ordering ac-
cording to Eq. (6.77).
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When the free field represents the vacuum, then Eq. (2.320) applies and
Eq. (6.158) can be rewritten as

Γ(m,n)({ti, tj} =
〈

••
m

∏
i=1

m+n

∏
j=m+1

Ê (−)
s 1 (ti)Ê (+)

s 1 (tj) ••

〉
, (6.161)

where now, according to the •• •• ordering prescription, normal ordering and
time ordering (with regard to the atomic source-quantity operators) must be
considered.

As already mentioned, spectral properties of light are frequently introduced
by means of Fourier decomposition of the field under study, which allows
one to define radiation-field correlation functions in the frequency domain.
Let us consider the normally ordered correlation function Γ(m,n) as given in
Eq. (6.158). Introducing the Fourier transform

Γ(m,n)({ωi, ωj}) =
∫ dt1

2π
e−iω1t1 · · ·

∫ dtm+n

2π
eiωm+ntm+n Γ(m,n)(t1, . . . , tm+n),

(6.162)

we may relate, on recalling Eq. (6.150), the measured correlation functions
(6.159) to the Fourier transforms of the (normally ordered) correlation func-
tions of the incoming unfiltered light as follows:

G(M)({tl , xl}) =
∫

dω1

∫
dωM+1 eiτ1(ω1−ωM+1)T∗

1(ω1)T1(ωM+1) · · ·

· · ·
∫

dωM

∫
dω2M eiτM(ωM−ω2M)T∗

M(ωM)TM(ω2M) Γ(M,M)(ω1, . . . , ω2M).

(6.163)

In the simplest case of measuring the intensity of the filtered light,

I = G(1)(t, x) =
〈
E ′(−)

1 (t − x/c)E ′(+)
1 (t − x/c)

〉
, (6.164)

application of Eq. (6.163) yields

I =
∫

dω
∫

dω′ ei(ω−ω′)(t−x/c)T̄∗(ω)T̄(ω′)Γ(1,1)(ω, ω′). (6.165)

In particular, in the steady-state regime we may write

Γ(1,1)(t, t′) = Γ(1,1)(t − t′, 0), (6.166)

and thus from Eq. (6.162) it follows that

Γ(1,1)(ω, ω′) = δ(ω − ω′)S1(ω), (6.167)
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where S1(ω) is the Wiener–Khintchine spectrum (power spectrum) of the light
under study. Substitution of this expression into Eq. (6.165) then yields

I =
∫

dω |T(ω)|2S1(ω). (6.168)

If |T2(ω)| becomes sufficiently effective in discriminating against values of
ω different from the chosen setting frequency ωm [cf. Eq. (6.140)], the power
spectrum at ω=ωm is detected:

I 
 |T(ωm)|2S1(ωm). (6.169)

6.5
Homodyne detection

From Section 6.1 we know that photodetectors respond to the intensity of the
incident light. Thus correlation functions of the type G(m,n) with m =n can be
observed. In order to measure phase-sensitive properties of light, interfero-
metric methods are required. In the four-port basic scheme (Fig. 6.6), a signal
field is combined through a beam splitter with a reference field and the super-
imposed fields impinge on the photodetectors. Then, however, the correlation
functions which are detected, contain contributions of correlation functions
G(m,n) of the signal field also with m �=n.

In homodyne detection, a highly stable reference field is used which has
the same mid-frequency as the signal field. The reference field, also called lo-
cal oscillator, is usually prepared in a coherent state of large photon number
[see, e. g., Yuen and Shapiro (1978); Shapiro and Yuen (1979); Mandel (1982);
Schumaker (1984); Yurke (1985); Walker and Caroll (1984); Carmichael (1987);
Walker (1987)]. The observed counting statistics, which vary with the differ-
ence in phase between the signal field and the local oscillator, reflect the quan-
tum statistics of the signal field and can be used – under certain circumstances
– to obtain the quantum state of the signal field (Chapter 7).

6.5.1
Fields combining through a nonabsorbing beam splitter

The scheme in Fig. 6.6 corresponds, for inclined incidence, to the scheme in
Fig. 6.5 supplemented by a second light source. Describing the beam split-
ter by the simple model of a nonabsorbing dielectric plate, the basic formulas
derived in Section 6.4 for a spectral filter also apply to a beam splitter, ex-
cept that there is no need for specifying the dependence on frequency of the
spectral transmittance and reflectance T and R, respectively. The dielectric-
plate model leads to input-output relations of the type given in Eqs (6.144) and
(6.145), which are valid for a symmetric four-port device where the phases φT
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S1

S2

â1

â2

â′1

â′2

PD

PD

BS

Fig. 6.6 Scheme of a beam splitter BS with two incoming light fields
produced by the sources S1 and S2. The outgoing fields can be de-
tected by the photodetectors PD.

and φR of T and R, respectively, satisfy, according to Eq. (6.134), the condition
φT −φR =±π/2. In the more general case of an asymmetric, linear four-port
device, the transmittance and reflectance from the one side of the device may
be expected to be different from those from the other side.

6.5.1.1 Input-output relations

For notational reasons it is convenient to combine the photonic operators âν

(â′ν) to a two-component vector â=(âν, â′ν)T so that the equations can be given
in a compact form. The extension of the input-output relations (6.144) and
(6.145) to an asymmetric device can then be written in the form of

â′(ω) = U(ω)â(ω), (6.170)

where the elements of the 2 × 2 matrix are given as follows:

U11(ω) = T(ω), U12(ω) = R′(ω), (6.171)

U21(ω) = R(ω), U22(ω) = T′(ω). (6.172)

Here T and R are the transmittance and reflectance of the beam splitter from
one side, and T′ and R′ are those from the other side. From inspection of
Eq. (6.170) we easily see that the bosonic commutation relations are preserved
if the transformation matrix U is a U(2) group matrix:

U+(ω) = U−1(ω), (6.173)
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which implies that the following conditions hold for the Uνν′ :

|U11(ω)|2 + |U12(ω)|2 = |T(ω)|2 + |R′(ω)|2 = 1, (6.174)

|U21(ω)|2 + |U22(ω)|2 = |R(ω)|2 + |T′(ω)|2 = 1, (6.175)

U11(ω)U∗
21(ω) + U12(ω)U∗

22(ω) = T(ω)R∗(ω) + R′(ω)T′∗(ω) = 0,
(6.176)

from which it follows that

|T′(ω)| = |T(ω)|, |R′(ω)| = |R(ω)|, (6.177)

φT (ω)− φR(ω) + φT′(ω)− φR′(ω) = ±π. (6.178)

The input-output relations in Eq. (6.170) enables one to calculate arbitrary cor-
relation functions of the outgoing fields from the correlation functions of the
incoming fields.

With the redefinitions

ϕ(ω) = 1
2 [φT(ω) + φT′(ω)], (6.179)

ϕT (ω) = 1
2 [φT(ω)− φT′(ω)], (6.180)

ϕR(ω) = 1
2 [2φR′(ω)− φT(ω)− φT′(ω)] = 1

2 [φR′(ω)− φR(ω)± π],
(6.181)

and

T (ω) = eiϕT (ω) cos ϑ(ω), (6.182)

R(ω) = eiϕR(ω) sin ϑ(ω) (6.183)

(0≤ϑ≤π/2) the matrix U may be rewritten as

U(ω) = eiϕ(ω)

(
T (ω) R(ω)

−R∗(ω) T ∗(ω)

)
. (6.184)

It is not difficult to prove that it can be decomposed as follows:

U(ω) = eiϕ(ω)U(ϕ+)
z (ω)U(2ϑ)

y (ω)U(ϕ−)
z (ω), (6.185)

where

U(ϕ±)
z (ω) =

(
eiϕ±(ω)/2 0

0 e−iϕ±(ω)/2

)
, (6.186)

U(2ϑ)
y (ω) =

(
cos ϑ(ω) sin ϑ(ω)

− sin ϑ(ω) cos ϑ(ω)

)
, (6.187)
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and ϕ± = ϕT ± ϕR. Obviously, the phase factor eiϕ separated from the trans-
formation matrix U can be thought of as being included in the definition of the
operators âν and can therefore be omitted. Thus the transformation realized
by a beam splitter can always be regarded as an SU(2) group transformation.

6.5.1.2 Quantum-state transformation

To obtain the quantum state of the outgoing fields, the question arises as
to which quantum-state transformation corresponds to the operator input-
output relations in Eq. (6.170). To answer it, we note that a U(2) or SU(2)
group transformation implies a unitary operator transformation according to

â′(ω) = Û†â(ω)Û = U(ω)â(ω), (6.188)

where the unitary operator Û can be given by

Û = exp
{
−i

∫ ∞

0
dω [â†(ω)]TΦ(ω)â(ω)

}
. (6.189)

(the symbol T introduces transposition). Here the 2× 2 Hermitian matrix Φ is
related to the 2 × 2 unitary matrix U as19

e−iΦ(ω) = U(ω). (6.190)

Let �̂ be the density operator of the quantum state of the incoming fields.
The effect of the four-port device can then equivalently be described by leav-
ing the photonic operators âν unchanged (â′ν = âν) but transforming the input-
state density operator �̂ to obtain the output-state density operator �̂′ as

�̂′ = Û�̂Û†. (6.191)

Since �̂ can be regarded as being an operator functional of the photonic op-
erators âν(ω) and â†

ν(ω), �̂ = �̂[â(ω), â†(ω)], from Eq. (6.191) together with
Eq. (6.188) it follows that the transformed density operator can be given by

�̂′[â(ω), â†(ω)] = �̂[Ûâ(ω)Û†, Ûâ†(ω)Û†]

= �̂[U+(ω)â(ω), UT(ω)â†(ω)]. (6.192)

It is often useful and illustrative to describe quantum states in terms of phase-
space functions, such as the familiar s-parameterized phase-space functions
(Chapter 4). Equation (6.192) implies that an s-parameterized phase-space
functional P[α(ω), α∗(ω); s] is transformed into

P′[α(ω), α∗(ω); s] = P[U+(ω)α(ω), UT(ω)α∗(ω); s]. (6.193)

19) Eqs (6.188)–(6.190) can be proved in a similar way to the SU(1,1)
transformation formulas in Section 3.3.
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In Eq. (6.193) we have used the fact that application of the unitary transfor-
mation under consideration implies preservation of operator ordering, i. e.,
the annihilation and creation operators are not mixed by the quantum-state
transformation.

For practical purposes a description of the incoming and outgoing radiation
in terms of discrete modes is frequently preferred. We divide the frequency
axis into sufficiently small intervals of mid-frequencies ωm and widths ∆ωm.
Now we define the discrete photonic input operators

âm =
√

∆ωm â(ωm), (6.194)

and the discrete photonic output operators â′m accordingly, and assign to each
pair of operators âm and â′m the input-output relations (6.170) with the 2×2
matrix Um =U(ωm),

â′m = Umâm. (6.195)

According to Eq. (6.189) the unitary operator Û then reads as

Û = ∏
m

Ûm, (6.196)

where

Ûm = exp[−i(â†
m)TΦmâm] (6.197)

with Φm = Φ(ωm). Obviously, the discrete-mode concept also applies to
nonmonochromatic modes that extend over frequency intervals in which the
transmittance and reflectance can be regarded as being (approximately) con-
stant.

The decomposition of each transformation matrix Um according to Eqs (6.185)–
(6.187) corresponds to an equivalent decomposition of the associated trans-
formation operator Ûm. In particular, for a single mode in each input channel
(m=1) the U(2) transformation operator can be factorized as

Û = exp(iϕN̂) exp
(
iϕ+ L̂z

)
exp

(
2iϑL̂y

)
exp

(
iϕ− L̂z

)
, (6.198)

where N̂= n̂1 + n̂2, and20

L̂y = 1
2i (â†

1 â2 − â†
2 â1), (6.199)

L̂z = 1
2 (â†

1 â1 − â†
2 â2). (6.200)

20) Note that L̂y, L̂z and L̂x =(â†
1 â2 + â†

2 â1)/2 are the generators of the
SU(2) group, which satisfy the angular-momentum commutation re-
lations (h̄=1). The operator L̂0 = N̂/2 completes the set of generators
of the U(2) group.
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It can be further disentangled to obtain [Wódkiewicz and Eberly (1985)]

Û =
(
eiϕT

)n̂1 exp
(
−eiϕR∗ â†

2 â1
)

exp
(
e−iϕRâ†

1 â2
)(

e−iϕT
)−n̂2 . (6.201)

Let us consider the simple case where the incoming radiation is prepared in
a two-mode coherent state |Ψ〉= |α〉.21 The state vector of the field in the two
output channels, |Ψ〉′, may then be written as

|Ψ〉′ = Û|α〉 ≡ Û|α1, α2〉. (6.202)

Using Eqs (3.50) and (3.44) we have

|Ψ〉′ = ÛD̂(α)Û† |0, 0〉, (6.203)

where

D̂(α) = exp(αTâ† − H.c.) (6.204)

(note that Û|0, 0〉= |0, 0〉). It is not difficult to prove that

ÛD̂(α)Û† = exp[αT(ÛâÛ†)† − H.c.] = exp(α′Tâ† − H.c.), (6.205)

where

α′ = Uα, (6.206)

which implies that a coherent state |Ψ〉= |α〉 is transformed into a coherent
state |Ψ〉′= |α′〉, where the coherent amplitudes are transformed as the opera-
tors in Eq. (6.170).

6.5.2
Fields combining through an absorbing beam splitter

Input-output relations of the type given in Eq. (6.170) can only be valid for
nonabsorbing four-port devices. Since for absorbing devices an inequality of
the type of |T|2 + |R|2 <1 is valid, the characteristic transformation matrix U
defined by Eq. (6.172) cannot be unitary. Application of Eq. (6.170) would not
preserve the bosonic commutation relations and thus Eqs (6.146) and (6.147)
would be violated. To preserve the commutation relations, Eq. (6.170) must
be supplemented with a term that relates the operators â′ν(ω) of the outgoing
radiation fields to bosonic device operators ĝν(ω):

â′(ω) = T(ω)â(ω) + A(ω)ĝ(ω). (6.207)

21) For explicit formulas for the transformation of number states, see
Yurke, McCall and Klauder (1986); Campos, Saleh and Teich (1989).
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Here and in the following the symbol T (in place of U) is used for the 2 × 2
characteristic transformation matrix [which contains the transmittance and re-
flectance according to Eq. (6.172)] and A is the 2 × 2 characteristic absorption
matrix. The two matrices obey the equation

T(ω)T+(ω) + A(ω)A+(ω) = I (6.208)

(I, identity matrix), which replaces Eq. (6.173). Obviously it ensures the re-
quired preservation of the commutation relations.

As shown in Section 6.4, input-output relations of the type given in
Eq. (6.170) can be derived by applying mode decomposition on the basis
of the (macroscopic) Helmholtz equation (2.195). They are valid for narrow-
bandwidth light far from medium resonances. Input-output relations of the
type given in Eq. (6.207) apply to optical fields at arbitrary frequencies and
bandwidths. They can be derived by applying the more general source-
quantity representation introduced in Section 2.6, p. 63 and following [for
details, see Gruner and Welsch (1996); Khanbekyan, Knöll and Welsch (2003)].
In this way the matrices T and A can be expressed in terms of the space- and
frequency-profile of the complex permittivity of the device. When the imagi-
nary part of the permittivity is disregarded, then the characteristic absorption
matrix vanishes and the input-output relations (6.170) are recognized.

The input-output relations (6.207) can be used to calculate various moments
and correlations of the outgoing fields from the moments and correlations of
the incoming fields and the device excitations. Let us ask for the quantum-
state transformation that corresponds to the operator input-output relations
(6.207). Due to the absorption we will definitely not be able to construct
any unitary transformation which acts on the electromagnetic field operators
alone. But we may look for one in the larger Hilbert space which comprises
both the electromagnetic field and the device. Defining the four-component
vector b̂(ω) with b̂1(ω)= â1(ω), b̂2(ω)= â2(ω), b̂3(ω)= ĝ1(ω), b̂4(ω)= ĝ2(ω),
we may extend the input-output relations (6.207) to the form

b̂′(ω) = U(ω)b̂(ω), (6.209)

where U(ω) is a unitary 4×4-matrix, hence U(ω)U†(ω)= I. After separation
of some phases from the matrices T and A and their inclusion in the input
operators âν(ω) and ĝν(ω), the matrix U can be regarded (for each ω) as an
element of the group SU(4) and it can be expressed in terms of the matrices T
and A as [Knöll, Scheel, Schmidt, Welsch and Chizhov (1999)]

U(ω) =

(
T(ω) A(ω)

−S(ω)C−1(ω)T(ω) C(ω)S−1(ω)A(ω)

)
, (6.210)

where

C(ω) =
√

T(ω)T+(ω) (6.211)
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and

S(ω) =
√

A(ω)A+(ω) . (6.212)

Obviously, Eq. (6.209) [together with Eq. (6.210)] yields the input-output rela-
tions (6.207) and it is not difficult to prove that U is a unitary matrix.

The matrix transformation in Eq. (6.209) can then be realized as a unitary
operator transformation according to Eqs (6.188)–(6.190) [â �→ b̂ and U from
Eq. (6.210)]. Instead the operators may be left unchanged but the quantum
state (of the overall system) is transformed according to Eqs (6.191)–(6.193).
Projecting �̂′ onto the Hilbert space of the radiation field then yields the den-
sity operator of the outgoing fields

�̂′F[â(ω), â†(ω)] = TrD
{

�̂′[b̂(ω), b̂†(ω)]
}

= TrD
{

�̂[U+(ω)b̂(ω), UT(ω)b̂†(ω)]
}

, (6.213)

where TrD means the trace with respect to the device. Accordingly, an
s-parameterized phase-space functional of the outgoing radiation fields is
obtained from the corresponding phase-space functional of the overall system
by the functional integral

P′
F[α(ω), α∗(ω); s] =

∫
Dγ P′[β(ω), β∗(ω); s]

=
∫

Dγ P[U+(ω)β(ω), UT(ω)β∗(ω); s], (6.214)

where β1(ω) = α1(ω), β2(ω) = α2(ω), β3(ω) = γ1(ω), β4(ω) = γ2(ω), with
the αν(ω) and γν(ω) being the phase-space variables of the radiation and the
device, respectively, and the functional integration (notation Dγ) is taken over
the continua of the complex phase-space variables γ1(ω) and γ2(ω) of the
device.

Let us again consider the simple case of coherent-state transformation,22

restricting our attention to (quasi-)monochromatic fields, so that it is sufficient
to consider only a single frequency component. Suppose the incoming fields
and the device are prepared in coherent states, i. e., |Ψ〉= |β〉≡|α1, α2, γ1, γ2〉.
Then the transformed state |Ψ〉′ = Û|β〉 is, according to Eqs (6.202)–(6.206),
again a coherent state, |Ψ〉′ = |β′〉, where β′ = Uβ with U from Eq. (6.210).
Applying Eq. (6.213), we can easily see that the outgoing fields are prepared
in coherent states:

�̂′F = |α′〉〈α′|, α′ = Tα + Aγ. (6.215)

22) For explicit formulas for the transformation of number states, see
Knöll, Scheel, Schmidt, Welsch and Chizhov (1999).
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Thus the coherent amplitudes α′ν of the outgoing fields are not only deter-
mined by the characteristic transformation matrix but also by the characteris-
tic absorption matrix, provided that the device is excited (γν �=0).

6.5.3
Unbalanced four-port homodyning

As already mentioned, homodyne detection renders it possible to measure
phase-sensitive properties of light which are not accessible by direct photode-
tection. To illustrate this, let us consider the four-port scheme sketched in
Fig. 6.6, p. 206.

6.5.3.1 Basic relations

We assume that a single-mode signal field (â1 = â) prepared in a quantum
state �̂ is combined, through an (almost) lossless beam splitter, with a (mode-
matched) local-oscillator field (â2 = âL) prepared in a coherent state |αL〉,
αL = |αL|eiϕL, so that the two-mode quantum state reads

σ̂ = �̂|αL〉〈αL|. (6.216)

The superimposed light (â′1) is recorded by a photodetector, the resulting num-
ber of emitted (electronically processed) photoelectrons being the unbalanced
homodyne detection output. The modes may be thought of as being pulse-like
and the detection-time interval is assumed to cover the full mode extension.

The mean number of photoelectric counts and the variance of counts can
be calculated by applying the results of Section 6.2.3. Using Eq. (6.105) and
applying the input-output relations (6.195) [with Um according to Eq. (6.184)
for ϕ=0], the mean number of counts is given by

n = η〈n̂′
1〉, (6.217)

where

n̂′
1 = â′1

† â′1 = (T â +RâL)†(T â + RâL)

= |T |2n̂ + |R|2n̂L + (T ∗Râ† âL + H.c.). (6.218)

Substituting the result (6.218) into Eq. (6.217) for n̂′
1 and recalling Eq. (6.216),

we obtain

n = η[|T |2〈n̂〉 + |R|2|αL|2 + |T ||R||αL|〈x̂(ϕ)〉], (6.219)

where the phase ϕ of the phase-rotated quadrature operator of the signal
mode,

x̂(ϕ) = âeiϕ + â†e−iϕ, (6.220)
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is given by

ϕ = ϕT − ϕR − ϕL . (6.221)

In Eq. (6.219) the first term in the square brackets is the contribution from
the signal-field photon number reduced by |T |2 at the beam splitter and the
second term is the contribution from the local-oscillator photon number re-
duced by |R|2 at the beam splitter. The third term obviously results from the
interference between the local-oscillator field and the signal field and is closely
related to the (mean) electric-field strength of the signal field (the rapidly vary-
ing phase in the field operator being replaced by the phase parameter ϕ). In
particular, when the signal and the local oscillator come from the same source,
then the phase parameter ϕ can be controlled easily, so that the dependence
on ϕ of x̂(ϕ) can be controlled by shifting the phase difference between the
signal and the local oscillator in the input ports of the beam splitter.

Next let us consider the variance of counts which, according to Eq. (6.106),
reads

(∆n)2 = η〈n̂′
1〉 + η2〈: (∆n̂′

1)
2 :〉. (6.222)

Using Eq. (6.218), we may represent ∆n̂′
1 as

∆n̂′
1 = |T |2∆n̂ + |R|2∆n̂L + [T ∗R(â† âL − 〈â† âL〉) + H.c.]. (6.223)

Straightforward calculation then leads to the result

(∆n)2 = n + η2{|T |2|R|2|αL|2〈: [∆x̂(ϕ)]2 :〉
+ 2|T |3|R||αL|〈: ∆n̂∆x̂(ϕ) :〉 + |T |4〈: (∆n̂)2 :〉

}
. (6.224)

From Eq. (6.224) the shot-noise level is seen to be determined by the mean
number of counts n. The effect of the signal-field fluctuation is described by
the terms in the curly brackets. Whereas the first term results from the fluctu-
ation of the phase-rotated quadrature, which is closely related to the noise of
the electric-field strength, the third term results from the photon-number fluc-
tuation. The second term represents the correlation of photon-number and
phase-rotated quadrature. Depending on the (quantum) noise properties of
the signal field, the noise level of the number of counts can be increased above
the shot-noise level as well as reduced below it. In particular, noise reduction
is typically a nonclassical effect (Chapter 8).

For example, when the strength of the local-oscillator field greatly exceeds
that of the signal field, the mean number of counts (and hence the shot-noise
level) is determined by the local-oscillator field,

n 
 η|R|2|αL|2, (6.225)
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and the effect of the signal-field noise on the variance of counts comes from the
term which is related to the normally ordered variance of the phase-rotated
quadrature [first term in the curly brackets in Eq. (6.224)]:

(∆n)2 
 n + η2|T |2|R|2|αL|2〈: [∆x̂(ϕ)]2 :〉. (6.226)

If

〈: [∆x̂(ϕ)]2 :〉 < 0, (6.227)

then the noise level of the number of photoelectric counts created by the su-
perimposed light is below the shot-noise level. The condition (6.227) indicates
that the phase-rotated quadrature fluctuations are squeezed below the vac-
uum noise level (cf. Section 3.3). We see that homodyne detection is a useful
method for the experimental study of squeezed light.

6.5.3.2 Displaced photon-number statistics

Let F̂ be an operator that is an arbitrary function of â′1 and â′1
† in normal order.

From the first row in Eq. (6.218) it then follows that

F̂ = : f (â′1, â′1
†) : = : f [(T â + RâL), (T â + RâL)†] : . (6.228)

Recalling Eq. (6.216), the expectation value of F̂ reads

〈F̂〉 = Tr{�̂ : f [T (â − α), T ∗(â − α)†] :}, (6.229)

where

α = −R
T αL. (6.230)

It is not difficult to prove that, on using Eqs (3.47) and (3.48),

T (â − α) = |T |e−iϕT n̂(α)â(α)eiϕT n̂(α), (6.231)

where

â(α) = â − α = D̂(α)âD̂†(α), (6.232)

and n̂(α) = â†(α)â(α) is the displaced photon-number operator of the signal
mode. Combining Eqs (6.229) and (6.231), we derive

〈F̂〉 = Tr{�̂′ : f (|T |â, |T |â†) :}, (6.233)

where

�̂′ = D̂†(α)eiϕT n̂(α)�̂ e−iϕT n̂(α)D̂(α). (6.234)
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When a signal and a strong local oscillator, |αL|→∞, are mixed by a beam
splitter with high transmittance, |T |→ 1, and low reflectance, |R|→ 0, such
that the product |RαL| is finite, then

〈F̂〉 → Tr
{

�̂′ : f (â, â†) :
}

; (6.235)

that is, the quantum state of the outgoing signal is just given by the density
operator �̂′ in Eq. (6.234). In particular, for ϕT = 0 a (coherent) displacement
of the quantum state of the signal is realized. Otherwise, only the diagonal
matrix element of �̂′1 in the number basis are given by the diagonal matrix
elements of �̂1 in the displaced number basis, because

〈m|�̂′|n〉 → 〈m, α|�̂|n, α〉 eiϕT (m−n), (6.236)

with the

|n, α〉 = D̂(α) |n〉 (6.237)

being the displaced photon-number states, which are the eigenstates of the
displaced photon-number operator (Section 3.2.3). The result reveals that ho-
modyne detection can be used to measure the displaced photon-number sta-
tistics of the signal field [Wallentowitz and Vogel (1996); Banaszek and Wód-
kiewicz (1996)]. Identifying the operator F̂ with the generalized projector P̂m

[Eq. (6.96)], whose expectation value is the probability of recording m counts,
Pm=〈P̂m〉 [Eq. (6.95)], application of Eqs (6.228), (6.229) and (6.231) yields

P̂m = :
1

m!
[ηT n̂(α)]me−ηT n̂(α) : , (6.238)

where

ηT = η|T |2 (6.239)

is the (overall) quantum efficiency with which the displaced photon-number
statistics can be measured. Hence Pm → pm(α) = 〈m, α|�̂|m, α〉 if ηT → 1. In
practice |T |2 is always smaller than one, so that ηT is smaller than η, which
itself is smaller than one, in general. Note that precise measurement of the dis-
placed photon-number statistics in unbalanced homodyning requires highly
efficient photodetectors which can discriminate between m and m+1 photons.

In order to obtain the displaced photon-number statistics pm(α) for all (rel-
evant) displacements α, a succession of ensemble measurements must be per-
formed, α being controlled by the local-oscillator complex amplitude αL [cf.
Eq. (6.230)]. Whereas for a chosen value of α the quantity pm(α) is an ordi-
nary probability for the displaced photon number m of the signal mode, for a
chosen value of m it can be regarded (apart from the factor π) as a probability
distribution for α,

pm(α) = π〈P̂(α)〉, (6.240)
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which corresponds to the POVM23

P̂σ̂(α) = π−1D̂(α)σ̂D̂†(α) (6.241)

with

σ̂ = |m〉〈m|. (6.242)

Obviously, it generalizes the Q function (m = 0) to m > 0 and thus contains
(for each value of m) all knowable information on the signal-mode quantum
state. Measurement of the displaced photon-number statistics as a function
of α is therefore expected to yield more data than the minimum necessary for
reconstructing it (see Section 7.3.2).

6.5.4
Balanced four-port homodyning

The calculation of the photon number in the second output channel of the
beam splitter in Fig. 6.6, p. 206, which can be performed analogously to the
calculation of the photon number in the first output channel, Eq. (6.218), yields

n̂′
2 = â′2

† â′2 = (−R∗ â + T ∗ âL)†(−R∗ â + T ∗ âL)

= |R|2n̂ + |T |2n̂L − (T ∗Râ† âL + H.c.). (6.243)

When, in a balanced scheme, a 50%:50% beam splitter is used, then the relation
|T |= |R|= 1/

√
2 is valid, and hence the difference photon number 〈n̂′

1〉−〈n̂′
2〉

is proportional to the phase-rotated quadrature of the signal mode,

〈n̂′
1〉 − 〈n̂′

2〉 = |αL|〈x̂(ϕ)〉, (6.244)

as is easily seen by combining Eqs (6.218) and (6.243). This result suggests that
it is advantageous to use a balanced scheme and to measure the difference
events or the corresponding difference of the photocurrents of the detectors in
the two output channels in order to eliminate the intensities of the two input
fields from the measured output. The method is also called balanced homo-
dyning and can be used advantageously in order to suppress perturbing ef-
fects due to classical excess noise of the local oscillator. In particular, when the
local oscillator is much stronger than the signal field, then even small intensity

23) Note that for any density operator σ̂ the
(continuous) set of operators P̂σ̂(α) repre-
sents a POVM, and it can be shown that
〈P̂σ(α)〉, which is also called the propen-
sity, can be given by a convolution of
the Wigner function of the signal with

the Wigner function of a reference sys-
tem prepared in a quantum state σ̂ [see,
e. g., Walker (1987)]. The reference sys-
tem which acts as a filter is also called the
quantum ruler.
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fluctuations of the local oscillator may significantly disturb the signal-mode
quadrature components which are required to be observed. For example, if
the quadrature-component variance is intended to be derived from the vari-
ance of events measured by a single detector, the classical noise of the local os-
cillator and the quantum noise of the signal would contribute to the measured
data in the same manner, so that the two effects are hardly distinguishable.
Since in the two output channels identical classical-noise effects are observed,
in the balanced scheme they eventually cancel in the measured signal, due to
the subtraction procedure.

From the arguments given so far it is only established that for chosen phase
parameters the mean value of the measured difference events or photocur-
rents is proportional to the expectation value of a quadrature component of
the signal mode. From a more careful (quantum-mechanical) analysis it can
be shown that in perfect balanced homodyning the quadrature-component
statistics of the signal mode are indeed measured, provided that the local os-
cillator is sufficiently strong compared with the mean number of signal pho-
tons [Carmichael (1987); Braunstein (1990); Vogel and Grabow (1993)]. To de-
rive the statistics of difference events, we start from the joint-event probability
Pm1,m2 of measuring m1 and m2 events in the two output channels in Fig. 6.6.
Applying Eqs (6.110) and (6.111) together with Eq. (6.96), we have

Pm1,m2 = 〈P̂m1,m2〉, (6.245)

where the POVM operators

P̂m1,m2 = :
2

∏
l=1

(ηl n̂′
l)

ml

ml !
e−ηl n̂

′
l : , (6.246)

with n̂′
1 and n̂′

2 given by Eqs (6.218) and (6.243), respectively (ηl , quantum
efficiency for detecting a photon in the lth output channel). The probability
for the difference events

∆m = m1 − m2 (6.247)

is obtained from the joint probability as

P∆m = 〈P̂∆m〉, (6.248)

where

P̂∆m = ∑
m2

P̂m2+∆m,m2 . (6.249)

Introducing the c-number functions Pm1,m2(α1, α2; 1) and P∆m(α1, α2; 1) that are
associated with P̂m1,m2 and P̂∆m, respectively, in normal order (s = 1), we may
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write

Pm1,m2(α1, α2; 1) =
2

∏
l=1

(ηl |α′l |2)ml

ml !
e−ηl |α′l |2 , (6.250)

P∆m(α1, α2; 1) = ∑
m2

Pm2+∆m,m2(α1, α2; 1), (6.251)

where

|α′1|2 = |T α1 + Rα2|2, (6.252)

|α′2|2 = | −R∗α1 + T ∗α2|2. (6.253)

Substituting the result (6.250) into Eq. (6.251) for Pm2+∆m,m2 and performing
the m2 summation, we derive

P∆m(α1, α2; 1) =

(
η1|α′1|2
η2|α′2|2

)∆m
2

I∆m

(
2
√

η1|α′1|2η2|α′2|2
)

e−η1|α′1|2 e−η2|α′2|2 ,

(6.254)

where In(z) is the modified Bessel function [note that I−n(z)= In(z)]. Since the
local-oscillator mode is prepared, according to Eq. (6.216), in a coherent state,
we may set α2=αL, so that P∆m(α1, α2; 1) effectively becomes a function solely
of α≡α1:24

P∆m(α1, α2; 1) �→ P∆m(α, αL; 1) ≡ P∆m(α; 1). (6.255)

Now we consider P∆m(α; 1) in the limit of a strong local oscillator when |αL|2
is large compared with the average number of photons in the signal field. Let
us assume that the detectors are identical,

η1 = η2 = η, (6.256)

and consider a 50%:50% beam splitter,

|T | = |R| =
√

1
2 , (6.257)

which implies that Eqs (6.252) and (6.253) reduce to

|α′1|2 = 1
2

∣∣α + e−i(ϕT −ϕR)αL
∣∣2, (6.258)

|α′2|2 = 1
2

∣∣α − e−i(ϕT −ϕR)αL
∣∣2. (6.259)

24) Note that P∆m(α; 1) is the c-number function associated with the
operator P̂∆m averaged with respect to the local oscillator.
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Using the asymptotic expression of the modified Bessel function,25

In(z) 
 1√
2πz

exp
(

z − n2

2z

)
(6.260)

(|z|→∞, n→∞,
√
|n2/z| finite) and the approximations

(
|α′1|2
|α′2|2

)∆m
2

= exp
(

∆m ln
∣∣∣∣α+λαL

α−λαL

∣∣∣∣
)

 exp

[
2∆m

Re{λαLα∗}
|αL|2

]
, (6.261)

exp
(
2η|α′1||α′2|−η|α′1|2−η|α′2|2

)
= exp

[
− 1

2 η(|α+λαL| − |α−λαL|)2]

 exp

{
− 2η

|αL|2
[Re (λαLα∗)]2

}
(6.262)

(λ=e−i(ϕT −ϕR)), Eq. (6.254) reduces to

P∆m(α; 1) =
1√

2πη|αL|2
exp

{
− [∆m − η(|αL|eiϕα + c.c.)]2

2η|αL|2
}

, (6.263)

with ϕ being defined by Eq. (6.221). Introducing the phase-rotated quadrature
operator x̂(ϕ) [Eq. (6.220)], we may rewrite Eq. (6.263) as

P∆m(α; 1) =
1√

2πη|αL|2
exp

{
− 1

2 η[∆m/(η|αL|) − 〈α|x̂(ϕ)|α〉]2
}

. (6.264)

Comparing Eq. (6.264) with Eq. (3.202), we see that for perfect detection
(η = 1) the function P∆m(α; 1) is (apart from the factor |αL|−1) the c-number
function associated with a phase-rotated quadrature projector of the signal
mode, thus

P̂∆m =
1

|αL|
|x, ϕ〉〈x, ϕ| ↔ P∆m =

1
|αL|

p(x, ϕ), (6.265)

with x being related to the number of difference events ∆m according to

x =
∆m
|αL|

. (6.266)

Hence the measured difference-event probability distribution is a (scaled)
phase-rotated quadrature distribution. Note that when the local oscillator is
sufficiently strong, then ∆m/|αL| is effectively continuous. In other words,

25) Equation (6.260) can be obtained from a saddle-
point analysis of the integral representation
In(z)=(z/2)n/[Γ(1/2)Γ(n+1/2)]

∫ 1
−1 dt (1−t2)n−1/2ezt, n>1/2

[Freyberger, Vogel and Schleich (1993)].
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single-photon resolution is not needed in order to measure the (continuous)
quadrature-component statistics with high accuracy. In this case, highly ef-
ficient linear response photodiodes can be used, which do not discriminate
between single photons but which nearly reach 100% quantum efficiency.

In the case of nonperfect detection (η < 1) the function P∆m(α; 1) is (apart
from the factor η|αL|−1) a convolution of the c-number functions associated
with the phase-rotated quadrature projectors (of chosen ϕ) of the signal mode
with a Gaussian [Vogel and Grabow (1993)]. That is, P̂∆m is a statistical mixture
of phase-rotated quadrature projectors:

P̂∆m =
1

η|αL|
∫

dx′ q(x−x′; η) |x′, ϕ〉〈x′, ϕ|, (6.267)

where

q(x; η) =
√

η

2π(1 − η)
exp

[
− ηx2

2(1 − η)

]
(6.268)

and

x =
∆m

η|αL|
. (6.269)

Accordingly, the measured difference-event probability distribution is a con-
volution of the phase-rotated quadrature distribution p(x′, ϕ) with the Gauss-
ian q(x−x′; η):

P∆m =
1

η|αL|
p
(

x =
∆m

η|αL|
, ϕ; η

)
, (6.270)

p(x, ϕ; η) =
∫

dx′ q(x − x′; η)p(x′, ϕ). (6.271)

Note that when η → 1 then q(x−x′; η) → δ(x−x′) and the convolution ex-
actly reduces to p(x, ϕ). The Gaussian [with variance σ2 = (1− η)/η] obvi-
ously reflects the noise associated with nonperfect detection.26 The distribu-
tion p(x, ϕ; η) corresponds to the phase-rotated quadrature X̂(ϕ) of a super-
position of the phase-rotated quadrature of the signal, x̂(ϕ), and that of an
additional (Gaussian) noise source, x̂N(ϕ),

X̂(ϕ) =
√

η x̂(ϕ) +
√

1 − η x̂N(ϕ), (6.272)

so that p(X, ϕ)= p(x/
√

η, ϕ; η)/
√

η. In particular, Eq. (6.272) reveals that the
effect of nonperfect detection can be modeled by assuming a (virtual) beam
splitter placed in front of a perfect detector, since Eq. (6.272) exactly corre-
sponds to a beam-splitter transformation [Yurke and Stoler (1987)]. In this
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P∆m
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Fig. 6.7 Difference statistics P∆m for a signal mode prepared in a one-
photon number state for various mean photon numbers of the local os-
cillator: |αL|2 =0 (a), 0.5 (b) and 5 (c,d); η =1 in (a)–(c) and η =0.75
in (d). The solid curves represent the (scaled) phase-rotated quadrature
distribution p(x, ϕ; η), Eq. (6.271). [After Vogel and Grabow (1993).]

case the fields are only partly detected, together with a fraction of vacuum
noise introduced through the “unused” input ports of the beam splitters.

To illustrate the method let us consider the case where the signal field is
prepared in a one-photon number state. In order to calculate the probabilities
P∆m for arbitrary strength of the local oscillator, we note that when the P-
function of the signal mode is known, then “averaging” P∆m(α; 1) with the
P-function immediately yields P∆m:

P∆m =
∫

d2α P(α)P∆m(α; 1). (6.273)

Calculating P∆m(α; 1) according to Eqs (6.254) and (6.255), substituting for the
P(α) the result (4.117) with n=1 and integrating by parts, we derive

P∆m =
{

1 − 1
2 (η1 + η2) +

[
∆m
|αL|

− 1
2 (η1 − η2)|αL|

]2}(
η1

η2

)∆m
2

× I∆m
(√

η1η2 |αL|2
)

exp
[
− 1

2 |αL|2(η1 + η2)
]
, (6.274)

26) Note that for η=1/2 the Gaussian is the (phase-independent) phase-
rotated quadrature distribution of the vacuum (σ2 = 1/2).
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which in the limit of a strong local oscillator and equal detector efficiencies
reduces, in agreement with Eqs (6.270) and (6.271), to

P∆m =
1√

2πη|αL|2

[
1 − η +

(∆m)2

|αL|2
]

exp
[
− (∆m)2

2η|αL|2
]

. (6.275)

In Fig. 6.7 the difference-event probability P∆m as given in Eq. (6.274) for a
signal field prepared in a one-photon number state |n =1〉, is shown for var-
ious values of the mean photon number of the local oscillator, |αL|2, and the
result is compared with the phase-rotated quadrature distribution as given by
Eq. (6.271). We see that in the limit as |αL| → 0 the difference-count statistics
simply reflect the fact that the probability of detecting the input photon in one
of the output channels is 1/2, so that P∆m =1/2 for ∆m=±1 and P∆m =0 oth-
erwise. It is worth noting that (for a signal prepared in a one-photon state)
only very few local-oscillator photons are needed to find the difference-event
probabilities close to the phase-rotated quadrature probabilities.

6.5.5
Balanced eight-port homodyning

From Eq. (6.265) together with Eq. (6.221) we readily find that p(x, ϕ + ∆ϕ)
can be observed in a separate measurement, in which a phase shifter is in-
serted, e. g., in the local-oscillator beam such that ϕL → ϕL −∆ϕ. In this way,
by varying ∆ϕ from measurement to measurement, the phase-rotated quad-
rature distribution can be determined as a function of the phase parameter
ϕ. In particular, to determine the distributions of two π/2 shifted quadrature
components (“position” and “momentum”) two separate measurements with
phases ϕ and ϕ±π/2 are needed. At this point the question arises of what
is measured when the two measurements are combined in an eight-port de-
tection scheme as shown in Fig. 6.8. Straightforward application of the input-
output relations (6.195) [with Um according to Eq. (6.184) for ϕ=0] yields, on
assuming identical beam splitters,

â′1 = |T |2 â1 +RT ∗ â2 − |R|2 â3 −R∗T â4 , (6.276)

â′2 = −iR∗T ∗ â1 + iT ∗2â2 −R∗T ∗ â3 + R∗2 â4 , (6.277)

â′3 = −i|R|2 â1 + iRT ∗ â2 + |T |2 â3 −R∗T â4 , (6.278)

â′4 = RT â1 + R2 â2 +RT â3 + T 2â4 , (6.279)

from which the output photon-number operators n̂′
l = â′l

† â′l (l = 1, . . . , 4) can
easily be obtained. The operators P̂{ml} of the POVM for the measured joint-
event probabilities P{ml} are then given by

P̂{ml} = :
4

∏
l=1

(ηl n̂′
l)

ml

ml !
e−ηl n̂

′
l : (6.280)
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â1
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â′4
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Fig. 6.8 Eight-port detection scheme of four beam splitters BS and a
λ/4 phase shifter. Light from the sources S1 and S2 are fed into two
input ports, whereas two input ports are unused. The outgoing fields
can be detected by the photodetectors PD.

[cf. Eq. (6.246)] and the associated c-number functions in normal order read,
on using Eqs (6.276)–(6.279) and recalling that the input channels 2 and 4 are
unused,27

P{ml}(α1, α3; 1) = :
4

∏
l=1

(ηl |α′l |2)ml

ml !
e−ηl |α′l |2 : (6.281)

[cf. Eq. (6.250)], where

|α′1|2 = ||T |2α1 − |R|2α3|2, (6.282)

|α′2|2 = |R|2|T |2|α1 − iα3|2, (6.283)

|α′3|2 = ||R|2α1 + i|T |2α2|2, (6.284)

|α′4|2 = |R|2|T |2|α1 + α3|2. (6.285)

Introducing the POVM for the joint probability of the difference counts
∆m1 =m1−m4 and ∆m2 =m3−m2,

P̂∆m1,∆m2 = ∑
m4,m6

P̂m4+∆m1,m4,m6+∆m2,m6 (6.286)

27) Strictly speaking, P{ml}(α1, α3; 1) is the c-number function associ-
ated with P̂{ml} averaged with respect to the unused input channels
(α2 =α4 =0).
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[cf. Eq. (6.249)], whose associated c-number function in normal order reads

P∆m1,∆m2(α1, α3; 1) = K∆m1(α1, α3)K∆m2(α1, α3), (6.287)

where

K∆m1(α1, α3) =

(
η1|α′1|2
η4|α′4|2

)∆m1
2

I∆m1

(
2
√

η1|α′1|2η4|α′4|2
)

e−η1|α′1|2 e−η4|α′4|2 ,

(6.288)

and K∆m2(α1, α3) accordingly [cf. Eq. (6.254)]. If we again assume that
50%:50% beam splitters are used, so that

|α′1|2 = 1
4 |α1 − α3|2, |α′4|2 = 1

4 |α1 + α3|2, (6.289)

|α′3|2 = 1
4 |α1 + iα3|2, |α′2|2 = 1

4 |α1 − iα3|2, (6.290)

and that the detectors have equal efficiencies, the functions K∆m1(α1, α3) and
K∆m2(α1,α3) are

K∆m1(α1, α3) =
∣∣∣∣α1 − α3

α1 + α3

∣∣∣∣
∆m1

I∆m1

( 1
2 η|α2

1 − α2
3|
)

exp
[
− 1

2 η(|α1|2 + |α3|2)
]
,

(6.291)

and

K∆m2(α1, α3) =
∣∣∣∣α1 + iα3

α1 − iα3

∣∣∣∣
∆m2

I∆m2

( 1
2 η|α2

1 + α2
3|
)

exp
[
− 1

2 η(|α1|2 + |α3|2)
]
.

(6.292)

We now regard the fields in the input channels 1 and 3 as being the signal
field and a strong local oscillator prepared in a coherent state |αL〉, respec-
tively, so that (α=α1)

P∆m1,∆m2(α1, α3; 1) �→ P∆m1,∆m2(α, αL; 1) ≡ P∆m1,∆m2(α; 1). (6.293)

[cf. Eq. (6.255)]. Using the asymptotic expression (6.260) for the modified
Bessel function and performing similar approximations as in the derivation of
Eq. (6.263), we deduce that

P∆m1,∆m2(α; 1) =
1

πη|αL|2
exp

{
− [2∆m1 + η(α∗Lα + c.c.)]2

4η|αL|2
}

× exp
{
− [2∆m2 + iη(α∗Lα − c.c.)]2

4η|αL|2
}

, (6.294)
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Fig. 6.9 Joint-difference statistics P∆m1∆m2 for a signal mode prepared
in a one-photon number state for η =1 and various mean photon num-
bers of the local oscillator: |αL|2 =0.25 (a), 4 (b) and 25 (c). [After Frey-
berger, Vogel and Schleich (1993).]

which can be rewritten as

P∆m1,∆m2(α; 1) =
1

πη|αL|2
exp

[
−η

∣∣∣∣ i∆m2 − ∆m1

ηα∗L
− α

∣∣∣∣
2]

. (6.295)

We compare Eq. (6.295) with Eq. (3.65) and see that for perfect detection
(η=1) the function P∆m1,∆m2(α; 1) is (apart from the factor |αL|−2) the Q func-
tion of the signal mode, thus

P̂∆m1,∆m2 =
1

|αL|2
|α〉〈α| ↔ P∆m1,∆m2 =

1
|αL|2

Q(α), (6.296)

with α being given by

α =
i∆m2 − ∆m1

α∗L
. (6.297)

That is, for a strong local oscillator and perfect detection the measured joint
probability distribution of the difference events, P∆m1,∆m2 , is the (scaled)
Q function of the signal field [Freyberger and Schleich (1992)].28 In Fig. 6.9
the dependence on the strength of the local oscillator of the (unnormalized)
probabilities is shown for the case of a signal field prepared in a one-photon
number state. It is not difficult to prove that for nonperfect detection (η<1)
the measured probability distribution P∆m1,∆m2 is a (scaled) s-parameterized
phase-space function P(α; s) with s<−1 [Leonhardt and Paul (1993)]:

P∆m1,∆m2 =
1

η2|αL|2
P
(

α =
i∆m2 − ∆m1

ηα∗L
; 1 − 2

η

)
. (6.298)

28) It can be shown that six-port homodyne detection is the minimum
in order to determine the Q function [Zucchetti, Vogel and Welsch
(1996)].
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Note that for s < −1 the function P(α; s) is a convolution of the Q function
Q(α)=P(α;−1) with a Gaussian [cf. Eq. (4.70)], which for η =1/2 is just the
vacuum Q function.

To relate the results of measurements in an eight-port scheme to the results
of two independent four-port-scheme measurements which yield the proba-
bility distributions of two π/2 shifted quadrature components, we note that
Eq. (6.294) can be rewritten as

P∆m1,∆m2(α; 1) =
2

∏
k=1

P(k)
∆mk

(α; 1), (6.299)

where P(k)
∆mk

(α; 1) is given by

P(k)
∆mk

(α; 1) =
1√

2πηk|αL|2
exp

{
− 1

2 ηk[∆mk/(ηk|αL|) − 〈α|x̂(ϕk)|α〉]2
}

,

(6.300)

where ϕ1 = π − ϕL, ϕ2 = ϕ1 + π/2 and η1 = η2 = η/2. A comparison with

Eq. (6.264) reveals that the P(k)
∆mk

(α; 1) and the associated operators P̂(k)
∆mk

just
define the POVMs for measuring two π/2 shifted phase-rotated quadrature
distributions in balanced four-port homodyning with the detection efficiency
η reduced to η/2, which reflects the effect of the photon vacuum in the two
unused input ports in the eight-port detection scheme. We thus obtain, on
recalling Eqs (6.267) and (6.268),

P̂∆m1,∆m2 =
1

(η/2)2|αL|2
2

∏
k=1

∫
dx′k q

(
xk − x′k; 1

2 η
)
|x′k, ϕk〉〈x′k, ϕk|; (6.301)

that is,

P∆m1,∆m2 =
1

(η/2)2|αL|2
p
(
x1, x2, ϕ1, ϕ2; 1

2 η
)
. (6.302)

We see that in an eight-port scheme the joint probability distribution function
of the signal-field quadratures are observed to be convoluted with the product
of two Gaussians, which for perfect detection simply result from the photon
vacuum in the unused input ports.29 One could say that the vacuum input is
needed to “smooth out” the two π/2 shifted quadratures to obtain simultane-
ously measurable quantities, whose joint probability distribution is just given

29) Note that if the modes in these ports were prepared in some states
σ̂ (σ̂ �= |0〉〈0|), then the measured probability distribution would
correspond to the POVM π−1D̂(α)σ̂D̂†(α) (cf. the last paragraph in
Section 6.5.3).
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by the Q function,

Q(α) = 4p
(
x1, x2, ϕ1, ϕ2; 1

2

)
, (6.303)

where α=eiϕL(ix2−x1)/2.
The eight-port scheme in Fig. 6.8 has also been used for phase measure-

ments [Noh, Fougères and Mandel (1991, 1992, 1993)]. Based on this measure-
ment scheme phase operators have been operationally defined and their prop-
erties have been observed. In the limit when one of the input fields is a strong
local oscillator, one can measure the phase distribution of the other input field
(signal) in the form of the radially integrated Q function [Noh, Fougères and
Mandel (1993)].

6.5.6
Homodyne correlation measurement

Let Ê (±)(t) be the (positive and negative frequency parts of the) operator of
the electric-field strength of the signal field [cf. Eq. (6.152)]. We may consider
a time-resolved intensity measurement that is performed by unbalanced ho-
modyning with a strong local oscillator, cf. Section 6.5.3. In this case we have

n(t, ∆t) 
 ξ∆t|R|2|ẼL|2 (6.304)

and

[∆n(t, ∆t)]2 
 n + ξ2(∆t)2|T |2|R|2|ẼL|2〈: [∆Ê(t − x/c, ϕ)]2 :〉 (6.305)

in place of Eqs (6.225) and (6.226), respectively, where ẼL is the amplitude of
the electric field of the local oscillator and

Ê(t, ϕ) = Ê (+)(t)ei(ω0t+ϕ) + H.c. = Ê (+)(t, ϕ) + H.c.. (6.306)

Here Ê (±)(t)e±iω0t are just the slowly varying amplitude operators of the elec-
tric field of the signal (ω0, mid-frequency). In the operators Ê (±)(t, ϕ) the fast
time dependence is replaced with the dependence on the local oscillator phase
ϕ. From Eqs (6.304) and (6.305) it follows that the relative deviation of the ob-
served noise from the shot-noise level due to the fluctuation of the signal field
is

[∆n(t, ∆t)]2 − n(t, ∆t)
n(t, ∆t)


 ξ∆t|T |2〈: [∆Ê(t − x/c, ϕ)]2 :〉. (6.307)

We see that the magnitude of the effect is limited by the detection efficiency ξ.
For many applications this kind of limitation may be irrelevant. For exam-
ple, when the light field under study is strong and highly collimated so that
efficient detection is possible.30

30) Note that the overall detection efficiency ξ may be less than the ef-
ficiency ξPD of the photodetector used, ξ≤ξPD, because of various
losses between light source and detector.
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1

2

C

SI

LO

SF
PD1

PD2

BS1 BS2

Fig. 6.10 Scheme of a homodyne correlation measurement. The signal
field (SI) is combined through a beam splitter (BS1) with the local oscil-
lator (LO). The superimposed field (SF) is split, on using a second beam
splitter (BS2), into two fields detected in channels 1 and 2 by means of
two detectors (PD1, PD2) together with a correlator (C) to measure the
intensity correlation. The dashed arrows indicate vacuum input.

It is of course of interest also to study the fluctuation behavior of the elec-
tric field of light that does not satisfy such conditions. A typical example is the
extremely weak resonance fluorescence from a single atom, where the low col-
lection efficiency of the fluorescence renders it almost impossible to determine
the fluctuations of the electric field from measurement of the sub-Poissonian
statistics [Mandel (1982)]. In these cases an alternative way of measuring the
noise of the signal field is a homodyne measurement of the intensity correla-
tions of the superimposed light by using a weak local oscillator [Vogel (1991,
1995); Carmichael, Castro-Beltran, Foster, and Orozco (2000)], that is, the local-
oscillator field is of the same order of magnitude as the signal field.31 In this
type of observation scheme, one of the detectors in Fig. 6.6, p. 206, is replaced
by a correlation apparatus with two detectors, as shown in Fig. 6.10.

The observed second-order correlation of counts can be found by straight-
forwardly applying the results given in Sections 6.1.3, 6.2.1 and 6.5.1:

n(t1, ∆t1)n(t2, ∆t2)
ξ1ξ2∆t1∆t2

= |T2|2|R2|2Γ′(2,2)(t1 − x1/c, t2 − x2/c2), (6.308)

31) Homodyne correlation measurements have also been studied for a
strong local oscillator [Ou, Hong and Mandel (1987)]. In this case
the classical noise of the local oscillator becomes a serious limitation
of the method. For a weak local oscillator the corresponding noise
effects can be suppressed [Vogel (1995)].
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where

Γ′(2,2)(t1, t2) = 〈Ê ′
1
(−)(t1)Ê ′

1
(−)(t2)Ê ′

1
(+)(t2)Ê ′

1
(+)(t1)〉

= 〈: Î′1(t1) Î′1(t2) :〉 (6.309)

is the normally ordered intensity correlation of the superimposed field E ′
1

falling on the beam splitter BS2 in Fig. 6.10. Expressing it in terms of the fields
E=E1 and EL = E2 fed into the input ports of the beam splitter BS1, yields

Î′1(t) = |T1|2 Î + |R1|2 ÎL + [T ∗
1 R1Ê (−)(t)Ê (+)

L (t) + H.c.] (6.310)

[cf. Eq. (6.218)]. Now let us consider the steady-state regime. For this purpose,
we write

Γ′(2,2)(t′, t) = Γ′(2,2)(t + τ, t), t′ = t + τ, (6.311)

and take the limit as t→∞ to introduce the function Γ′(2,2)(τ), which depends
only on the time difference τ:

Γ′(2,2)(τ) ≡ lim
t→∞

Γ′(2,2)(t + τ, t). (6.312)

In particular, assuming that the correlation decays for sufficiently large time
difference τ, we have32

Γ′(2,2)(∞) = 〈 Î′〉2. (6.313)

To obtain a quantitative measure of the relative change of correlation, we now
compare the zero-time value Γ′(2,2)(0) with the long-time value Γ′(2,2)(∞):

Γ′(2,2)(0)−Γ′(2,2)(∞)
Γ′(2,2)(∞)

=
〈: (∆ Î′)2 :〉

〈 Î′〉2
. (6.314)

Note that the relative change in the intensity correlation as introduced in
Eq. (6.314) does not depend on the detection efficiency.

In the special case where the local oscillator is strong, Eq. (6.314) reduces to

Γ′(2,2)(0)− Γ′(2,2)(∞)
Γ′(2,2)(∞)

=
|T1|2
|R1|2

〈: [∆Ê(ϕ)]2 :〉
|ẼL|2

. (6.315)

Clearly, the relative change in the intensity correlation is small when the signal
field is weak compared with the (strong) local oscillator. Large effects can be

32) Since steady-state one-time expectation values do not depend on
time, the time argument t=∞ is omitted.
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observed when the strength of the local oscillator becomes comparable to that
of the signal. In this case we find that

Γ′(2,2)(∞) =
[
|T1|2〈 Î〉+ |R1|2|ẼL|2 + |T1||R1||ẼL|〈Ê(ϕ)〉

]2, (6.316)

Γ′(2,2)(0)−Γ′(2,2)(∞) = |T1|2|R1|2|ẼL|2〈: [∆Ê(ϕ)]2 :〉
+ 2|T1|3|R1||ẼL|〈: ∆ Î∆Ê(ϕ) :〉 + |T1|4〈: (∆ Î)2 :〉. (6.317)

From Eq. (6.317), we can see that in such a measurement various kinds of
terms contribute to the observed intensity correlation. The first term results
from the signal-field noise, whereas the third term describes the effect of the
intensity noise of the signal field. The second term results from the correlation
of the intensity and field-strength noise of the signal. The three terms, which
contribute significantly to the observed intensity correlation when the local
oscillator is weak, can be separated from each other. From Eq. (6.306) together
with Eq. (6.221) it is seen that they differ in periodicity with regard to the
phase ϕ of the local oscillator. For a detailed discussion of the separation of
the three contributions to the measured signal, see Vogel (1995).

6.5.7
Normally ordered moments

The homodyne correlation measurement scheme can be advanced, as illus-
trated in Fig. 6.11, to detect higher-order normally ordered signal-field corre-
lations and moments with unequal powers of annihilation and creation oper-
ators [Shchukin and Vogel (2005)].33 It is evident that the scheme in Fig. 6.11
can easily be further extended, by replacing each of the photodetectors with
another beam splitter and two detectors in its output channels and so forth.
Needless to say that the extension is limited by the fact that the output signals
are reduced, which necessarily requires a longer measurement time to ensure
the desired signal-to-noise ratio. To overcome this problem, one can measure
the homodyne correlation data with a strong local oscillator and analyze the
data in a balanced manner [Shchukin and Vogel (2006)].

Comparing the setup in Fig. 6.11 with that in Fig. 6.10, it is obvious that
the detector pairs PD1,2 are equivalent to each other in the two schemes. The
detector pair PD3,4 acts in a quite similar way, except that the transmission
and reflection coefficients of the entrance beam splitter exchange their roles.
Hence we may use the same notation as in Section 6.5.6. We begin with the

33) For sampling normally ordered moments from the phase-rotated
quadrature statistics measured in balanced four-port homodyning,
see Section 7.5.
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LO SI

PD1 PD2 PD3 PD4

BS

BS BS

Fig. 6.11 Scheme for the determination of normally ordered correla-
tion functions by homodyne correlation measurements. The notations
correspond to those in Fig. 6.10.

analysis of the mean number of counts of one detector, say PD1:

n(t1, ∆t1)
ξ1∆t1

= |T2|2〈 Î′1(t1 − x1/c)〉 ≡ |T2|2Γ(1,1)(t1 − x1/c, ϕ), (6.318)

where Γ(1,1)(t, ϕ) corresponds to the expectation value of the intensity opera-
tor given by Eq. (6.310):

Γ(1,1)(t, ϕ) = |T1|2 I(t) + |R1|2 IL(t) + [T ∗
1 R1〈Ê (−)(t, ϕ)〉ẼL + H.c.]. (6.319)

For the following considerations we have explicitly indicated the dependence
of the measured intensity on the phase ϕ of the local oscillator, which is again
assumed to be in a coherent state with (real) amplitude ẼL. The measured set
of data can be analyzed by Fourier transform to obtain

Γ1,1
m (t, φ) =

1
2π

∫ 2π

0
dϕ eim(φ−ϕ)Γ1,1

m (t, ϕ) (6.320)

(m=0,±1). Using Eq. (6.319) together with (6.306), we can easily calculate the
Fourier components Γ1,1

m (t, φ). The phase-independent component is given by

Γ1,1
0 (t, φ) = |T1|2 I(t) + |R1|2 IL(t), (6.321)

and the first-order components read as

Γ1,1
−1(t, φ) = T ∗

1 R1ẼL〈Ê (−)(t, φ)〉, Γ1,1
+1(t, φ) = T1R∗

1 ẼL〈Ê (+)(t, φ)〉. (6.322)

Hence the field strength moments of first order can be inferred from the mea-
sured data as follows:

〈Ê (−)(t, φ)〉 =
Γ1,1
−1(t, φ)
T ∗

1 R1ẼL
, 〈Ê (+)(t, φ)〉 =

Γ1,1
+1(t, φ)
T1R∗

1 ẼL
. (6.323)
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That is to say, the first-order moments of the positive and negative frequency
parts of the signal field, which are complex conjugate to each other, are ob-
tained, independently from each other, from different Fourier coefficients.

In the next step one may consider the detection of equal-time coincidences
recorded with two detectors, say PD1 and PD2, leading to Γ(2,2)(t, ϕ)≡Γ(2,2)(t, t),
with Γ(2,2)(t, t) according to Eq. (6.309). Proceeding in this way, one may even-
tually detect the equal-time coincidences of n photodetectors, Γ(n,n)(t, ϕ), in
dependence on the phase ϕ of the local oscillator. Performing a Fourier anal-
ysis of the measured data,

Γ(n,n)
m (t, φ) =

1
2π

∫ 2π

0
dϕ eim(φ−ϕ)Γ(n,n)(t, ϕ) (6.324)

(m≤n), one may directly obtain the nth-order moment

〈[Ê (±)(t, φ)]n〉 ∼ Γ(n,n)
±n (t, φ), (6.325)

which cannot be observed by direct photodetection. The Fourier components

Γ(n,n)
±m (t, φ) (m<n) contain linear combinations of different moments, in gen-

eral. By a stepwise increase in the number of detectors, however, only one
new type of moment is added in each step. In this manner it becomes possible
to derive all the moments of the order m+n,

G(m,n) = 〈[Ê (−)(t, φ)]m[Ê (+)(t, φ)]n〉, (6.326)

by homodyne correlation measurement with a weak local oscillator [for de-
tails, see Shchukin and Vogel (2005)]. Allowing for a strong local oscillator,
the method can be generalized to measure normally ordered space-time de-
pendent correlation functions [Shchukin and Vogel (2006)].
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7
Quantum-state reconstruction

The state of a quantum object is commonly described by a normalized Hilbert-
space vector |Ψ〉 or, more generally, by a density operator �̂ which is a Hermit-
ian and non-negative valued Hilbert-space operator of trace one. The Hilbert
space of the object is usually spanned up by an orthonormalized set of ba-
sic vectors |A〉 representing the eigenvectors (eigenstates) of Hermitian op-
erators Â associated with a complete set of simultaneously measurable ob-
servables (physical quantities) of the object.1 The eigenvalues A of these op-
erators are the values of the observables which can be registered in a mea-
surement. Here we must distinguish between an individual (single) and an
ensemble measurement (i. e., in principle, an infinitely large number of re-
peated measurements on identically prepared objects). Performing a single
measurement on the object, a totally unpredictable value A is observed, in
general, and the state of the object has collapsed to the state |A〉 according
to the von Neumann’s projection definition of a measurement [von Neumann
(1932)]. If the same measurement is repeated immediately after the first mea-
surement (on the same object), the result is now very predictable – the same
value A as in the first measurement, is observed. Obviously, owing to the first
measurement, the object has been prepared in the state |A〉. Repeating the
measurement many times on an identically prepared object, the relative rate
at which the result A is observed approaches the diagonal density-matrix el-
ement 〈A|�̂|A〉 as the number of measurements tends to infinity. Measuring
〈A|�̂|A〉 for all values of A, the statistics of Â (and of any function of Â) are
known. To completely describe the quantum state, i. e., to determine all the
quantum-statistical properties of the object, knowledge of all density-matrix
elements 〈A|�̂|A′〉 is needed. In particular, the off-diagonal elements essen-
tially determine the statistics of such sets of observables B̂ that are not com-
patible with Â ([Â, B̂] �= 0) and cannot be measured simultaneously with Â.
Obviously, the statistics of B̂ can also be obtained directly – similar to the sta-
tistics of Â – from an ensemble measurement yielding the diagonal density-
matrix elements 〈B|�̂|B〉 in the basis of the eigenvectors |B〉 of B̂. Now one can

1) For notational convenience we write Â, without further specifying
the quantities belonging to the set.
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proceed to consider other sets of observables which are not compatible with
Â and B̂. When a set of observables Âi, also called a quorum, is found, such
that the density operator can be represented in the form of 2

�̂ = ∑
i

Ĉi 〈Âi〉, (7.1)

then, in principle, all knowable information on the quantum state of the sys-
tem can be obtained [Fano (1957)]. In particular, when in a chosen basis |Λ〉
the matrix elements 〈Λ|Ĉi|Λ′〉 are bounded for all values of i, then the density-
matrix elements 〈Λ|�̂|Λ′〉 can be sampled directly from the measured 〈Âi〉
according to the relation

〈Λ|�̂|Λ′〉 = ∑
i
〈Λ|Ĉi|Λ′〉〈Âi〉. (7.2)

Roughly speaking, there have been two routes used to collect measurable
data for reconstructing the quantum state of an object under consideration.
In the first, which closely follows the method given above, a succession of
(ensemble) measurements is made such that a set of noncommutative object
observables is measured which carries the complete information about the
quantum state. A typical example is the reconstruction of the quantum state
from the [in balanced four-port homodyning (Section 6.5.4) measurable] prob-
ability distributions p(x, ϕ) = 〈x, ϕ|�̂|x, ϕ〉 of the phase-rotated quadratures
x̂(ϕ) [Eq. (3.143)]. Here the projectors |x, ϕ〉〈x, ϕ| for all phases ϕ within a π

interval play the role of the Âi in Eqs (7.1) (Section 7.1.1).
In the second, the object is coupled to a reference system (whose quantum

state is well known) such that the measurement of observables of the compos-
ite system corresponds to “simultaneous” measurement of noncommutative
observables of the object. In this case the number of observables (of the com-
posite system) which must be measured in a succession of (ensemble) mea-
surements can be reduced drastically, but at the expense of the image sharp-
ness of the object. As a result of the additional noise introduced by the refer-
ence system, only fuzzy measurements on the object can be performed, which
just makes a “simultaneous” measurement of incompatible object observables
feasible. A typical example is the [in balanced eight-port homodyning (Section
6.5.5) measurable] Q function, which is given by the diagonal density-matrix
elements in the coherent-state basis, Q(α)=π−1〈α|�̂|α〉 [Eq. (4.67)]. Here, the
POVM operators π−1|α〉〈α| play the role of the Âi in Eqs (7.1) [Eq. (4.83) for
s=−1]. The Q function can already be obtained from one ensemble measure-
ment of the complex amplitude α in balanced eight-port homodyning, which

2) Here we have assumed a discrete set of observables. For continu-
ous sets of observables, the sum in Eq. (7.1) must be replaced by an
integral.
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corresponds to a fuzzy measurement of the ”joint” probability distribution of
two canonically conjugated observables x̂(ϕ) and x̂(ϕ+π/2) of the object.

Since the sets of quantities measured via the one or the other route (or an
appropriate combination of both) carry the complete information on the quan-
tum state of the object, they can be regarded, in a sense, as representations
of the quantum state, which can be more or less close to familiar quantum-
state representations, such as the density matrix in the number-state basis or
a phase-space function. In any case, the question arises of how to reconstruct,
from the measured data, specific quantum-state representations (or specific
quantum-statistical properties of the object for which a direct measurement
scheme is not available). Again, there have been two typical methods of solv-
ing the problem. In the first, equations that relate the measured quantities to
the desired quantities are derived and solved either analytically or numeri-
cally in order to obtain the desired quantities in terms of the measured quanti-
ties. In practice, the measured data are often incomplete, i. e., not all quantities
needed for a precise reconstruction are measured,3 and moreover, the mea-
sured data are inaccurate. Obviously, any experiment can only run for a finite
time, which prevents one, in principle, from performing an infinite number of
repeated measurements in order to obtain precise expectation values. These
inadequacies give rise to systematic and statistical errors of the reconstructed
quantities, which can be quantified in terms of confidence intervals.

In the second approach, statistical methods are used from the very begin-
ning in order to obtain the best a posteriori estimation of the desired quantities
on the basis of the available (i. e., incomplete and/or inaccurate) data mea-
sured. However, the price to pay may be high. Whereas in the first concept
linear equations are typically to be handled and estimates of the desired quan-
tities (including statistical errors) can often be directly sampled from the mea-
sured data, application of purely statistical methods, such as the principle of
maximum entropy or Bayesian inference, require the treatment of nonlinear
equations and a reconstruction in real time is, in general, impossible. Here
we concentrate on the first concept, restricting our attention to single-mode
systems [for a review on quantum-state reconstruction, see Welsch, Vogel and
Opatrný (1999)].

7.1
Optical homodyne tomography

From Section 6.5.4 we know that, in a succession of (phase-shifted) balanced
four-port homodyne measurements, the phase-rotated quadrature distribu-

3) To compensate for incomplete data, some a priori knowledge of the
quantum state is needed, in general.
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tion p(x, ϕ) of a signal-field mode can be obtained for various values of the
phase parameter ϕ, provided that 100% detection efficiency is realized. As we
will see, the quantum state is then known when p(x, ϕ) is known for all values
of ϕ within a π interval [Vogel and Risken (1989)]. That is to say, all quantum-
statistical properties can be obtained from the quadrature-component distri-
butions measured in a π interval.

7.1.1
Quantum state and phase-rotated quadratures

In order to relate the phase-rotated quadrature distributions

p(x, ϕ) = 〈x, ϕ|�̂|x, ϕ〉 = Tr (�̂|x, ϕ〉〈x, ϕ|) (7.3)

to the quantum state, we note that the projector

|x, ϕ〉〈x, ϕ| = δ̂[x̂(ϕ) − x] =
1

2π

∫
dy e−iyxeiyx̂(ϕ) (7.4)

can be expressed in terms of the displacement operator D̂ [Eq. (3.44)] as fol-
lows:

|x, ϕ〉〈x, ϕ| =
1

2π

∫
dy e−iyxD̂

(
iye−iϕ)

. (7.5)

We now introduce the characteristic (generating) function Ψ(y, ϕ) of the prob-
ability distribution p(x, ϕ) via the Fourier transform

p(x, ϕ) =
1

2π

∫
dy e−iyxΨ(y, ϕ), (7.6)

Ψ(y, ϕ) =
∫

dx eiyx p(x, ϕ). (7.7)

Recalling the definition (3.143) of x̂(ϕ), it is not difficult to prove the following
symmetry relations

p(−x, ϕ ± π) = p(x, ϕ), (7.8)

Ψ(−y, ϕ ± π) = Ψ(y, ϕ). (7.9)

Substituting the expression (7.4) into Eq. (7.3) and comparing with Eq. (7.6),
we can easily see that Ψ(y, ϕ) is the expectation value of a displacement oper-
ator:

Ψ(y, ϕ) = Tr {�̂ exp[iyx̂(ϕ)]} = Tr
[
�̂D̂

(
iye−iϕ)]

. (7.10)

On the other hand, the characteristic function Φ(α; s) of an s-parameterized
phase-space function P(α; s) is given by

Φ(α; s) = Tr [�̂D̂(α; s)] = e
1
2 s|α|2 Tr [�̂D̂(α)] (7.11)
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[Eq. (4.91) together with Eqs (4.90) and (4.47)]. Comparing Eqs (7.10) and
(7.11), we find that

Ψ(y, ϕ) = e−
1
2 sy2

Φ
(
iye−iϕ; s

)
. (7.12)

As expected, Ψ(y, ϕ) can be directly determined from Φ(α; s). To determine
Φ(α; s) from Ψ(y, ϕ), we note that the relation α = |α|eiϕα = iye−iϕ, with real y,
implies that

|α|einπ = y, ϕα + ϕ = 1
2 (2n + 1)π. (7.13)

From Eqs (7.12) and (7.13) together with the symmetry relation (7.9), it then
follows that for chosen values of α and s, Φ(α; s) can be obtained from Ψ(y, ϕ)
according to

Φ(α; s) = e
1
2 s|α|2Ψ

(|α|, 1
2 π − ϕα

)
. (7.14)

We can see that for a fixed value of the quadrature phase ϕ the function Φ(α; s)
can be determined from Ψ(y, ϕ) only along a line in the complex α plane which
is at an angle of ϕα =π/2−ϕ to the real axis. That is, complete information on
the quantum state, as given by the knowledge of Φ(α; s) for all values of ϕα

in a 2π interval can only be provided by knowing Ψ(y, ϕ) for all values of ϕ

in a π interval. This just expresses the fact that the quantum state contains
potential information on measurements of all possible observables, whereas
Ψ(y, ϕ) for chosen ϕ contains that information only for a specific choice of the
observable x̂(ϕ).

The correspondence between the phase-space function P(α; s) and the
phase-rotated quadrature distributions p(x, ϕ) is analogous. Whereas p(x, ϕ)
can be determined from P(α; s), the determination of P(α; s) requires knowl-
edge of p(x, ϕ) for all values of ϕ within a π interval. The first statement is
again not surprising, because p(x, ϕ) is the expectation value of |x, ϕ〉〈x, ϕ|
and any expectation value can be calculated by means of a phase-space func-
tion P(α; s). Combining Eqs (7.6) and (7.12) yields

p(x, ϕ) =
1

2π

∫
dy exp

(−iyx − 1
2 sy2)Φ

(
iye−iϕ; s

)
. (7.15)

Using Eq. (4.92) in Eq. (7.15) to express Φ(α; s) in terms of P(α; s), we obtain

p(x, ϕ) =
1

2π

∫
dy exp

(−iyx− 1
2 sy2)∫

d2α exp[iy〈α|x̂(ϕ)|α〉] P(α; s), (7.16)

where the relation

〈α|x̂(ϕ)|α〉 = αeiϕ + α∗e−iϕ (7.17)
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[cf. Eq. (3.203)] has been used. When we assume that s≥0 (or Re s≥0), then in
Eq. (7.16) the integration over y can be performed to obtain

p(x, ϕ) =
∫

d2α p[x − 〈α|x̂(ϕ)|α〉; s]P(α; s), (7.18)

where the function p(x; s) is defined by

p(x; s) =
1

2π

∫
dy exp

(−iyx − 1
2 sy2) =

1√
2πs

exp
(
− x2

2s

)
, (7.19)

which in the limit as s→0 reduces to a δ function:

lim
s→0

p(x; s) = δ(x). (7.20)

In Eq. (7.18) the Gaussian p[x − 〈α|x̂(ϕ)|α〉; s] is obviously the associated
c-number function of the projector |x, ϕ〉〈x, ϕ| put in s order (s ≥ 0).4 In
particular, when s = 1 (Glauber–Sudarshan representation) the function
p[x−〈α|x̂(ϕ)|α〉; 1] is just the phase-rotated quadrature distribution of a co-
herent state |α〉 [cf. Eq. (3.202)].

Let us now turn to the problem of determining P(α; s) from p(x, ϕ). Sub-
stituting in Eq. (4.93) for Φ(β; s) the result of Eq. (7.14) and using Eq. (7.7),
we derive, on changing the integration variables and applying the symmetry
relation (7.8),

P(α; s) =
1

π2

∫
π

dϕ
∫

dy |y|e 1
2 sr2

exp[−iy〈α|x̂(ϕ)|α〉]
∫

dx eiyx p(x, ϕ).

(7.21)

From inspection of Eq. (7.21) we see that when s < 0 (or Re s < 0), then the y
integration can be performed separately to obtain

P(α; s) =
∫

π
dϕ

∫
dx p̃[x − 〈α|x̂(ϕ)|α〉; s]p(x, ϕ), (7.22)

where we have introduced the function

p̃(x; s) =
2

π2

∫ ∞

0
dr re

1
2 sr2

cos(rx) =
2

π2|s| F
(

1,
1
2

;− x2

2|s|
)

(7.23)

[F(a, b; x), confluent hyper-geometric function]. Note that the integral of this
function vanishes:∫

dx p̃(x; s) = 0. (7.24)

4) Note that if one uses Eq. (7.18) together with (7.19) for values of
s with s<0, then one has to deal with a highly singular function
p(x; s), which reflects the fact that the associated c-number function
of the projector |x, ϕ〉〈x, ϕ| put in s order with s<0 is not well be-
haved. In practice this difficulty can be overcome by preserving the
original order of integration.
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For s > 0 the application of Eq. (7.22) together with Eq. (7.23) would require
dealing with a highly singular function p̃(x; s). We recall that, for positive
values of s, depending on the analytic form of p(x, ϕ), the distribution P(α; s)
may become highly singular as well, whereas for negative values of s it is well
behaved in any case.

Applying Eq. (4.79) to the density operator �̂ and and making use of
Eqs (7.11) and (7.14), we arrive, on changing the integration variables and
applying the symmetry relation (7.9), at the following expansion of �̂

�̂ =
1
π

∫
π

dϕ
∫

dy |y|e 1
2 sr2

Ψ(−y, ϕ)D̂
(
iye−iϕ;−s

)

=
1
π

∫
π

dϕ
∫

dy |y|Ψ(−y, ϕ) exp[iyx̂(ϕ)], (7.25)

which can be represented in the equivalent form as

�̂ =
2
π

∫
π
dϕ

∫ ∞

0
dy |y| {〈cos[yx̂(ϕ)] 〉 cos[yx̂(ϕ)] + 〈sin[yx̂(ϕ)] 〉 sin[yx̂(ϕ)]} .

(7.26)

A comparison with Eq. (7.1) shows that the operators cos[yx̂(ϕ)] and
sin[yx̂(ϕ)], for all positive values of y and all values of ϕ within a π interval,
play the role of the operators Âi in Eq. (7.1). Expressing in Eq. (7.25) Ψ(−y, ϕ)
in terms of p(x, ϕ) according to Eq. (7.7), we may (formally) relate �̂ to p(x, ϕ)
as

�̂ =
∫

π
dϕ

∫
dx K̂(x, ϕ)p(x, ϕ), (7.27)

where the kernel operator is given by

K̂(x, ϕ) =
1
π

∫
dy |y| exp{iy[x̂(ϕ)− x]} (7.28)

[note that K̂(−x, ϕ ± π) = K̂(x, ϕ)]. A comparison with Eq. (7.1) shows that
now the projectors |x, ϕ〉〈x, ϕ| for all values of x and all values of ϕ within a
π interval play the role of the operators Âi in Eq. (7.1).

The extension of Eqs (7.25) and (7.27) to multi-mode fields is straightfor-
ward. The single-mode phase-rotated quadrature distributions are replaced
by multi-mode joint probability distributions and the kernel operators are re-
placed by the corresponding multi-mode kernel operators, which are the di-
rect products of the single-mode kernel operators. In particular, for a two-
mode system Eq. (7.25) extends to

�̂ =
1

π2

∫
π

dϕ1

∫
π

dϕ2

∫
dy1

∫
dy2

{|y1||y2|
× Ψ(−y1,−y2, ϕ1, ϕ2) exp[iy1x̂1(ϕ1) + iy2 x̂2(ϕ2)]

}
, (7.29)
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and Eqs (7.27) and (7.28) extend to

�̂ =
∫

π
dϕ1

∫
π

dϕ2

∫
dx1

∫
dx2 K̂(x1, x2, ϕ1, ϕ2)p(x1, x2, ϕ1, ϕ2), (7.30)

K̂(x1, x2, ϕ1, ϕ2)

=
1

π2

∫
dy1

∫
dy2 |y1||y2| exp{iy1[x̂1(ϕ1) − x1] + iy2[x̂2(ϕ2) − x2]}.

(7.31)

Instead, the probability distributions p(x, ϑ, ϕ1, ϕ2) of the weighted sums

x̂(ϑ, ϕ1, ϕ2) = x̂1(ϕ1) cos ϑ + x̂2(ϕ2) sin ϑ (7.32)

can be considered, with ϑ being within a π/2 interval. The probability distri-
butions of the sums are related to the joint probability distributions as

p(x, ϑ, ϕ1, ϕ2) =
∫

dx1

∫
dx2 p(x1, x2, ϕ1, ϕ2)δ(x − x1 cos ϑ − x2 sin ϑ),

(7.33)

from which it follows that their characteristic functions (Fourier transforms)
Ψ(y1, y2, ϕ1, ϕ2) and Ψ(y, ϑ, ϕ1, ϕ2) are related to each other as

Ψ(y1 = y cos ϑ, y2 = y sin ϑ, ϕ1, ϕ2) = Ψ(y, ϑ, ϕ1, ϕ2). (7.34)

7.1.2
Wigner function

Application of Eq. (7.18) to the case where s=0 yields the phase-rotated quad-
rature distributions expressed in terms of the Wigner function. With the help
of Eq. (7.20) it is not difficult to prove, on changing the integration variables,
that

p(x, ϕ) = 1
2

∫
dy W

[ 1
2 x cos ϕ + y sin ϕ + i

(− 1
2 x sin ϕ + y cos ϕ

)]
. (7.35)

Equation (7.35) reveals that the (scaled) phase-rotated quadrature distribu-
tions can be regarded as marginals of the Wigner function. An integral rela-
tion of the form given in Eq. (7.35) is also called Radon transformation. Inverse
Radon transformation then yields the Wigner function in terms of the phase-
rotated quadrature distributions for all phases within a π interval.

Application of Eq. (7.21) [together with Eq. (7.17)] to the case where s = 0
yields the inverse Radon transformation in the form of

W(α) =
1

π2

∫
π

dϕ
∫

dy
∫

dx |y| exp[iy(x − 2αR cos ϕ + 2αI sin ϕ)]p(x, ϕ).

(7.36)
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Fig. 7.1 (a) In balanced four-port homodyning measured phase-rotated
quadrature distributions [Xϕ = x/

√
2, Pϕ(Xϕ)=

√
2 p(x=

√
2Xϕ)] of a

squeezed state. (b) Measured variances ∆X2
ϕ = 〈[∆x̂(ϕ)]2〉/2 of the

phase-rotated quadratures: circles, squeezed state; triangle, vacuum
state. In the experiment 4000 repeated measurements of the photoelec-
tron difference number at 27 values of the relative phase ϕ were made.
[After Smithey, Beck, Raymer and Faridani (1993).]

Performing the y integral first would lead to an integral kernel which is not
well-behaved. In the numerical calculation, regularization techniques can of
course be used in order to overcome this difficulty. In the filtered back projec-
tion algorithm, the y integral is truncated such that

W(α) 	 WC =
∫

π
dϕ

∫
dx KC(x − 2αR cos ϕ + 2αI sin ϕ)p(x, ϕ), (7.37)

where

KC(x) =
1

π2

∫ yC

−yC

dy |y|eiyx (7.38)

(yC > 0). In the first experimental demonstration of the method [Smithey,
Beck, Raymer and Faridani (1993)], a pulsed signal field was superimposed
by a pulsed local-oscillator field much stronger than the signal field, and the
measurements and reconstructions were performed for a squeezed signal field
(Figs 7.1 and 7.2) and for a vacuum signal field, the field mode detected being
selected by the spatio-temporal mode of the local-oscillator field.

As mentioned in Section 6.5.4, the measured phase-rotated quadrature
distributions do not correspond, in general, to the true signal mode, but
they must be regarded as the distributions of a superposition of the signal
and an additional noise source [Eq. (6.272)], because of nonperfect detection.
Substituting in Eq. (7.35) for p(x, ϕ) the measured distributions p(x, ϕ; η)
with η<1 [Eq. (6.271)] and performing the inverse Radon transform on
them, the Wigner function of a noise-assisted signal field is effectively re-
constructed. Equivalently, the reconstructed Wigner function can be regarded



246 7 Quantum-state reconstruction

Fig. 7.2 Wigner distributions W(X, P)=2−1W[α=2−1/2(X + iP)] re-
constructed from the measured rotated-phase quadrature distributions
for a squeezed state, viewed in (a) 3D and as (b) contour plots, with
equal numbers of constant-height contours. The reconstruction is per-
formed by using inverse Radon transformation. [After Smithey, Beck,
Raymer and Faridani (1993).]

as an s-parameterized phase-space function of the true signal field, however
with s<0.

From Eq. (6.271) together with Eq. (6.268) it follows that the characteristic
function Ψ(y, ϕ; η) of p(x, ϕ; η) typically measured when η <1 [Eq. (7.7) with
p(x, ϕ; η) in place of p(x, ϕ)] is related to the characteristic function Ψ(y, ϕ) of
p(x, ϕ) as

Ψ(y, ϕ; η) = exp
[ 1

2 (1 − η−1)y2]Ψ(y, ϕ). (7.39)

Combining Eqs (7.12) and (7.39), we see that Ψ(y, ϕ; η) and Φ(β; s) are related
to each other as

Ψ(y, ϕ; η) = exp
[− 1

2 (s − 1 + η−1)y2]Φ
(
iye−iϕ; s

)
. (7.40)

Hence, in the exponentials in Eqs (7.16) and (7.21) for s performing the sub-
stitution s−1 + η−1 yields the relations between P(α; s) and p(x, ϕ; η). From
Eq. (7.21) it then follows that, on recalling Eq. (7.17),

P(α; s) =
1

π2

∫
π

dϕ
∫

dy
∫

dx
{

exp
[ 1

2 (s − 1 + η−1)y2]
× |y| exp[iy(x − αR cos ϕ + αI sin ϕ)]p(x, ϕ; η)

}
. (7.41)
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Obviously, when s=1−η−1, then Eq. (7.41) takes the form of Eq. (7.36),

P(α; s = 1 − η−1)

=
1

π2

∫
π

dϕ
∫

dy
∫

dx |y| exp[iy(x − 2αR cos ϕ + 2αI sin ϕ)]p(x, ϕ; η).

(7.42)

Accordingly, Eq. (7.35) takes the form

p(x, ϕ; η) =

1
2

∫
dy P

[1
2 x cos ϕ + y sin ϕ + i

(− 1
2 x sin ϕ + y cos ϕ

)
; s = 1 − η−1].

(7.43)

Thus, in Eq. (7.35) replacing p(x, ϕ) with p(x, ϕ; η), the inverse Radon trans-
formation yields the signal-mode phase-space function P(α; s = 1 − η−1) in
place of the Wigner function.

7.2
Density matrix in phase-rotated quadrature basis

Let us reconstruct the density-matrix elements in a phase-rotated quadrature
basis of chosen phase ϕ, 〈x, ϕ|�̂|x′, ϕ〉, from the phase-rotated quadrature dis-
tributions p(x̃, ϕ̃) for all phases ϕ̃ in a π interval. The most straightforward
way is to extend the expression (7.5) for |x〉〈x| to |x′〉〈x|. Recalling the com-
mutation relation (3.145), we may write, according to the position representa-
tion of the momentum operator in quantum mechanics,

∂

∂x
|x, ϕ〉 = − i

2
x̂
(

ϕ − 1
2 π

)|x, ϕ〉, (7.44)

from which it follows that

|x, ϕ〉 = exp
[
− i

2
(x − x′) x̂

(
ϕ − 1

2 π
)]|x′, ϕ〉

= D̂
[ 1

2 (x−x′)e−iϕ]|x′, ϕ〉. (7.45)

Hence we may write

|x′, ϕ〉〈x, ϕ| = D̂
[ 1

2 (x′ − x)e−iϕ]|x, ϕ〉〈x, ϕ|. (7.46)

Combining Eqs (7.5) and (7.46) and applying the relation (3.53), it is not diffi-
cult to prove that

|x′, ϕ〉〈x, ϕ| =
1

2π

∫
dy e−iy(x+x′)/2D̂

[( 1
2 (x′ − x) + iy

)
e−iϕ]

, (7.47)
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so that the density matrix in a phase-rotated quadrature basis can be given by
(x=x1−x2, x′=x1 +x2)

〈x1 − x2, ϕ|�̂|x1 + x2, ϕ〉 =
1

2π

∫
dy e−ix1yΨ(y, x2, ϕ), (7.48)

where the characteristic function Ψ(y, x2, ϕ) reads as

Ψ(y, x2, ϕ) = Tr
{

�̂D̂
[
(x2 + iy)e−iϕ]}

. (7.49)

Recalling Eq. (7.10), it can be related to the characteristic function of a phase-
rotated quadrature distribution,

Ψ(y, x2, ϕ) = Ψ(ỹ, ϕ̃), (7.50)

with

ỹ =
√

y2 + x2
2 , ϕ̃ = ϕ − arg(y − ix2). (7.51)

Thus, combining Eqs (7.48) and (7.50) and making use of Eq. (7.7), we ob-
tain the density-matrix elements from the phase-rotated quadrature distribu-
tions by means of a two-fold Fourier transformation [Kühn, Welsch and Vogel
(1994)]:

〈x1 − x2, ϕ|�̂|x1 + x2, ϕ〉 =
1

2π

∫
dy e−ix1y

∫
dx eiỹx p(x, ϕ̃). (7.52)

Note that Eq. (7.52) can be used to obtain the density matrix in different repre-
sentations, by varying the phase ϕ of the quadrature component defining the
basis. Furthermore, Eq. (7.52) can also be extended, in principle, to imperfect
detection, expressing Ψ(ỹ, ϕ̃) in terms of Ψ(ỹ, ϕ̃; η) according to Eq. (7.39). As
an illustration of the method, in Fig. 7.3 the reconstructed density matrices in
(a) the “position” basis, ϕ = 0, and (b) the “momentum” basis, ϕ=π/2, of a
squeezed vacuum state are shown.5 The phases ϕ = 0 and ϕ = π/2 coincide
with the phases of minimal and maximal field noise respectively.

Using Eq. (7.12), we rewrite Eq. (7.50) as

Ψ(y, x2, ϕ) = e−
1
2 sỹ2

Φ
(
iỹe−iϕ̃; s

)
= e−

1
2 sỹ2

Φ
[
(x2 + iy)e−iϕ; s

]
. (7.53)

Substituting this expression into Eq. (7.48) and using Eq. (4.92), we may ex-
press the density matrix in a phase-rotated quadrature basis in terms of an

5) The homodyne data were recorded by T. Coudreau, A.Z. Khoury
and E. Giacobino, using the experimental setup reported by Lam-
brecht, Coudreau, Steinberg and Giacobino (1996). In the experiment
the quadratures were measured at 48 phases and at each phase 7812
measurements were performed. The reconstruction is based on the
numerical algorithm by Zucchetti, Vogel, Tasche and Welsch (1996).
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Fig. 7.3 From measured phase-rotated quadrature distributions, recon-
structed (real) density matrix 〈x, ϕ|�̂|x′, ϕ〉 of a squeezed state in (a) the
“position” basis (ϕ=0) and (b) the “momentum” basis (ϕ=π/2).

s-parameterized phase-space function:

〈x1 − x2, ϕ|�̂|x1 + x2, ϕ〉
=

1
2π

∫
dy e−ix1y− 1

2 sỹ2
∫

d2α exp
[
(x2 + iy)e−iϕα∗ − c.c.

]
P(α; s),

(7.54)

which, on changing integration variables, can be rewritten as

〈x1 − x2, ϕ|�̂|x1 + x2, ϕ〉 =
1

2π

∫
dz

{
e−ix1z− 1

2 sz̃2

×
∫

dx
∫

dy e2i(xz−x2y)P[x cos ϕ + y sin ϕ + i(−x sin ϕ + y cos ϕ); s]
}

,

(7.55)

with ỹ= ỹ(y, x2) and z̃= z̃(z, x2) being defined according to Eq. (7.51). If s>0
(or Re s>0), then in Eq. (7.55) the integration over z can be performed sepa-
rately to reduce the three-fold integral transformation to a two-fold one. In
the limit as s→0 a δ function appears and thus the integration over x can also
be performed. In this way we find that the density-matrix elements can be ob-
tained from the Wigner function by a single Fourier transformation as follows
[Wigner (1932)]:

〈x1 − x2, ϕ|�̂|x1 + x2, ϕ〉
= 1

2

∫
dy e−2ix2yW

[ 1
2 x1 cos ϕ + y sin ϕ + i

(− 1
2 x1 sin ϕ + y cos ϕ

)]
,

(7.56)

which, when x2 =0, just reduces to Eq. (7.35).
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7.3
Density matrix in the number basis

If a phase-space function P(α; s) is known, then the density-matrix elements
in the number basis, 〈m|�̂|n〉, can be calculated, in principle, by applying
Eq. (4.85) and calculating the c-number function π〈m|δ̂(â − α;−s)|n〉 associ-
ated with the operator |n〉〈m| in s order. From Section 6.5.5 we know that
P(α; s) can be measured directly for s ≤ −1. Thus, the procedure outlined
could be used to infer 〈m|�̂|n〉 from the measured P(α; s). Since the result-
ing reconstruction formula is not suited for statistical sampling [according to
Eq. (7.2)] and the inaccuracies of the measured P(α; s) can give rise to an error
explosion in the reconstructed density-matrix elements, the method has been
of less experimental relevance. Instead of using integration techniques, one
could try to apply equivalent differentiation techniques. In particular, com-
bining Eq. (4.67) with Eqs (3.22) and (3.59), we easily derive

Q(α) = π−1e−|α|2 ∑
m,n

1√
m!n!

α∗mαn〈m|�̂|n〉, (7.57)

from which it follows that

〈m|�̂|n〉 =
π√
m!n!

∂m+n

∂α∗m∂αn e|α|
2
Q(α)

∣∣
α=α∗=0. (7.58)

Clearly, the inaccuracies in the measured Q function prevent one from carry-
ing out the derivatives with sufficient precision, in general. Therefore, much
effort has been made to obtain the density matrix in the number basis from
measurable data with sufficient precision and as directly as possible.

7.3.1
Sampling from quadrature components

It turns out that the density-matrix elements in the number basis can be in-
ferred from the measured phase-rotated quadrature distributions in a very
direct way. In the number basis Eq. (7.27) reads as

�mn = 〈m|�̂|n〉 =
∫

π
dϕ

∫
dx Kmn(x, ϕ)p(x, ϕ), (7.59)

where the kernel function (also called the sampling function) can be written
as

Kmn(x, ϕ) =
1
π

∫
dy |y|〈m| exp{iy[x̂(ϕ)− x]}|n〉. (7.60)

Recalling the relation (3.195) [together with Eq. (3.194)], we find that Kmn(x, ϕ)
takes the form of

Kmn(x, ϕ) = e−i(m−n)ϕ fmn(x), (7.61)
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where

fmn(x) =
1
π

∫
dy |y|〈m| exp[iy(x̂ − x)]|n〉 (7.62)

[x̂ ≡ x̂(0)]. Recalling the relation K̂(x, ϕ+π)= K̂(−x, ϕ), we see that

fmn(−x) = (−1)m−n fmn(x). (7.63)

In order to find an expression of fmn(x), which is more suitable for practical
applications than that in Eq. (7.62), let us express the phase-rotated quadrature
distributions in terms of the density-matrix elements in the number basis,

p(x, ϕ) = ∑
k,l
〈x, ϕ|k〉〈l|x, ϕ〉�kl. (7.64)

Recalling Eqs (3.193) and (3.199), we may rewrite Eq. (7.64) as

p(x, ϕ) = ∑
k,l

gkl(x)ei(k−l)ϕ�kl , (7.65)

where

gkl(x) = ψk(x)ψl(x) (7.66)

[ψk(x)= 〈k|x〉]. We now multiply Eq. (7.65) by fmn(x)e−i(m−n)ϕ and integrate
with respect to ϕ and x. Using the symmetry relation (7.63), we can easily
derive∫

π
dϕ

∫
dx p(x, ϕ) fmn(x)e−i(m−n)ϕ

= 1
2

∫
2π

dϕ
∫

dx p(x, ϕ) fmn(x)e−i(m−n)ϕ

= ∑
k,l

[
π

∫
dx gkl(x) fmn(x)

]
�kl , k − l = m − n. (7.67)

Comparing with Eq. (7.59) [together with Eq. (7.61)], we find that fmn(x) obeys
the integral equation

π
∫

dx gkl(x) fmn(x) = δkmδln , k − l = m − n. (7.68)

Thus, the sought function fmn(x) is orthonormal to the product of wave func-
tions ψk(x)ψl(x). Obviously, ψk(x) is the ordinary (i. e., regular) solution of
the harmonic-oscillator Schrödinger equation for the kth energy level,

[
d2

dx2 +
(

k + 1
2 − 1

4 x2
)]

φk(x) = 0 (7.69)
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Fig. 7.4 Examples of the kernel function π fmn(x) for sampling the
density-matrix elements �mn in the number basis from the phase-rotated
quadrature distributions according to Eq. (7.59) together with Eq. (7.61)
for m=n=4 (left figure) and m=1, n=4 (right figure). For comparison,
the product of the wave functions ψm(x)ψn(x)/

√
2 is shown (dashed

lines). [After Leonhardt (1997).]

[φk(x) = ψk(x)]. It is worth noting that the solution of the integral equation
(7.68) can be given in the form of the derivative of a product of regular and ir-
regular wave functions [Leonhardt, Munroe, Kiss, Richter and Raymer (1996);
Richter (1996a)],

fmn(x) =
d

dx
[ψm(x)χn(x)], (7.70)

where χn(x) is an irregular solution of the wave equation (7.69) [φn(x) =
χn(x)] which must be chosen such that

ψn(x)
dχn(x)

dx
− dψn(x)

dx
χn(x) =

2
π

(7.71)

(for a proof, see Appendix D). It should be pointed out that the ambiguities
of the kernel function leave enough room to choose the most convenient form
[for details, see Leonhardt (1997)]. Examples are shown in Fig. 7.4.

Equation (7.59) reveals that, according to Eq. (7.2), the density-matrix ele-
ments in the number basis can be sampled directly from the measured phase-
rotated quadrature statistics. Each density-matrix element �mn can be re-
garded as a statistical average of the bounded kernel function Kmn(x, ϕ).6 In
an experiment each outcome x of x̂(ϕ), with ϕ ∈ [0, π), contributes individ-
ually to �mn, so that �mn is gradually building up during the data collection.
That is to say, �mn can be sampled from a sufficiently large set of homodyne
data in real time, and the mean value obtained from different experiments
can be expected to be normal-Gaussian distributed around the true value, be-
cause of the central-limit theorem. Moreover, the sampling method can also

6) For a numerical implementation of Eq. (7.70), see Leonhardt,
Munroe, Kiss, Richter and Raymer (1996).
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Fig. 7.5 From the phase-rotated quadrature distributions according
to Eq. (7.59) reconstructed photon-number distribution of a squeezed
vacuum and the vacuum state (inset). Solid points refer to experimental
data, histograms to theory. [After Schiller, Breitenbach, Pereira, Müller
and Mlynek (1996).]

be used to estimate the statistical error. Experimentally, the method was first
successfully applied to the determination of the density matrix of squeezed
light generated by a continuous-wave optical parametric amplifier [Schiller,
Breitenbach, Pereira, Müller and Mlynek (1996)]. The reconstructed diagonal
density-matrix elements are shown in Fig. 7.5.

Since in a realistic experiment the quantum efficiency η is always less than
unity, insertion into Eq. (7.59) of the measured phase-rotated quadrature dis-
tributions p(x, ϕ; η) [in place of the exact distributions p(x, ϕ)] yields the den-
sity matrix of a noise-assisted state in general (cf. the last paragraph in Sec-
tion 7.1.2). If η >0.5 it is possible to compensate for detection losses by intro-
ducing a modified sampling function which depends on η such that perform-
ing the sampling algorithm on the real measured (i. e., the smeared) phase-
rotated quadrature distributions p(x, ϕ; η) yield the correct quantum state
[D’Ariano, Leonhardt and Paul (1995)]. Another approach to the problem of
loss compensation is that the sampling function is left unchanged and, at the
first stage, the density matrix of the quantum state which corresponds to the
measured distributions p(x, ϕ; η) is reconstructed. After that, at the second
stage, the true density matrix is calculated from the reconstructed one using
an inverse Bernoulli transformation [Kiss, Herzog and Leonhardt (1995)].

Since the density matrix in any basis contains the full information about
the quantum state of the system under consideration, all quantum-statistical
properties can be inferred from it. Let F̂ be an operator whose expectation
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value

〈F̂〉 = ∑
mn

Fnm�mn , (7.72)

is to be determined. One may be tempted to calculate it from the reconstructed
density matrix. However, an experimentally determined density matrix al-
ways suffers from various inaccuracies which can propagate (and increase) in
the calculation process. Therefore, it may be advantageous to determine di-
rectly the quantities of interest from the measured data, without reconstruct-
ing the whole quantum state. In particular, in Eq. (7.72) substituting the inte-
gral representation (7.59) for �mn, one can try to obtain an integral representa-
tion

〈F̂〉 =
∫

π
dϕ

∫
dx KF(x, ϕ)p(x, ϕ) (7.73)

suited to the direct sampling of 〈F̂〉, from the quadrature component distribu-
tions p(x, ϕ). It is worth noting that the kernel function KF(x, ϕ) is not defined
uniquely by the integral relation (7.73), but only up to a function Θ(x, ϕ) that
satisfies the integral equation

∫
π

dϕ
∫

dx Θ(x, ϕ)p(x, ϕ) = 0. (7.74)

Hence, if the integral kernel KF(x, ϕ) which is obtained from Eq. (7.72), to-
gether with Eq. (7.59), is unbounded for |x| → ∞ such that the x integral in
Eq. (7.73) does not exist for any normalizable state, it cannot be concluded
that 〈F̂〉 cannot be sampled from p(x, ϕ), since a different, bounded kernel
may exist. Obviously, the ambiguity mentioned is also true for the kernel
function Kmn(x, ϕ) in Eq. (7.59). In particular, applying normally-ordered mo-
ment expansion (Section 7.5), Kmn(x, ϕ) can be represented in the equivalent
form of Eq. (7.95), which is not necessarily suitable for statistical sampling.

7.3.2
Reconstruction from displaced number states

From Section 6.5.3 we know that in unbalanced homodyning the photon-
number distribution of the transmitted signal mode is, under certain condi-
tions, the displaced photon-number distribution of the signal mode, pm(α),
the displacement parameter α = |α|eiϕ being controlled by the local-oscillator
complex amplitude. Expanding the density operator in the number basis,
pm(α) can be related to the density matrix of the signal mode as

pm(α) = 〈m, α|�̂|m, α〉 = ∑
k,n

〈m, α|k〉〈n|m, α〉�kn , (7.75)
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where the expansion coefficients 〈n|m, α〉 can be taken from Eq. (3.101). Equa-
tion (7.75) can always be inverted in order to obtain �mn in terms of pk(α).
Combining Eqs (4.62) and (4.80) [together with Eq. (4.81)], we may write

�mn =
∞

∑
k=0

∫
d2α Kk

mn(α)pk(α), (7.76)

where

Kk
mn(α) =

2
(1 − s)

(
s + 1
s − 1

)k

〈m|δ̂(â − α;−s)|n〉. (7.77)

It can be shown that Kk
mn(α) is bounded for −1<s≤0, which offers the possi-

bility of direct sampling of �mn from the displaced number probability distri-
bution pm(α) [Mancini, Man’ko and Tombesi (1997)].

Since pm(α) as a function of α for chosen m already determines the quantum
state, it is clear that when m is allowed to be varying, then – in contrast to
Eq. (7.76) – pm(α) need not be known for all complex values of α in order
to reconstruct the density-matrix elements �kn from pm(α). In particular, it
is sufficient to know pm(α) for all values of m and all phases ϕ=arg (α), |α|
being fixed [Leibfried, Meekhof, King, Monroe, Itano and Wineland (1996),
Opatrný and Welsch (1997)]. For chosen |α| we can regard pm(α) as a function
of ϕ and introduce the Fourier coefficients

pk
m(|α|) =

1
2π

∫ 2π

0
dϕ eikϕ pm(α) (7.78)

(k = 0, 1, 2, . . .), which are related to the density-matrix elements whose row
and column indices differ by k. Substituting Eqs (7.75) into Eq. (7.78) and
using Eq. (3.101), we can easily derive

pk
m(|α|) =

∞

∑
n=0

Gk
mn(|α|)�n+k n , (7.79)

where

Gk
mn(|α|) = e−|α|2 m!√

n!(n + k)!
Ln−m

m (|α|2)Lk+n−m
m (|α|2)|α|2n+k−2m. (7.80)

Inverting Eq. (7.79) for each value of k yields the sought density-matrix el-
ements. Unfortunately, no analytical solution has been found. However,
Eq. (7.79) can be inverted numerically, setting �mn = 0 for m, n > nmax and
using, e. g., least-squares inversion. The method was first used to reconstruct
the density matrix of the center-of-mass motion of a trapped ion [Leibfried,
Meekhof, King, Monroe, Itano and Wineland (1996)]. Details on the measure-
ment techniques and an example of a reconstructed density matrix are given
in Section 13.5.2 (Fig. 13.11, p. 477).



256 7 Quantum-state reconstruction

7.4
Local reconstruction of phase-space functions

The displaced photon-number statistics pm(α) which are measurable in un-
balanced homodyning (Section 6.5.3) can be used for a point-wise reconstruc-
tion of s-parameterized phase-space functions P(α; s) [Wallentowitz and Vogel
(1996); Banaszek and Wódkiewicz (1996)]. From Eq. (4.53) together with (4.62)
it is easily seen that

P(α; s) =
2

π(1 − s)

∞

∑
m=0

(
s + 1
s − 1

)m

pm(α). (7.81)

Hence, in principle, all the phase-space functions P(α; s), with s< 1, can be ob-
tained from pm(α) for each phase-space point α in a very direct way, without
integral transformations. However, for unknown statistics pm(α) it is advan-
tageous, in practice, to require nonexploding coefficients, |(s+1)/(s−1)|≤1,
which are obtained for s≤ 0 only. In particular when s =−1, then Eq. (7.81)
reduces to the well-known result that Q(α)=π−1p0(α), with p0(α)= 〈α|�̂|α〉.
Further, choosing s=0 in Eq. (7.81), we arrive at the Wigner function,

W(α) =
2
π

∞

∑
m=0

(−1)m pm(α). (7.82)

Equation (7.82) reflects the fact that the Wigner function is proportional to the
expectation value of the displaced parity operator [cf. Eq. (4.64)].
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Fig. 7.6 The reconstructed Wigner function W(α) for a weak coher-
ent state with approximately one photon. [After Banaszek, Radzewicz,
Wódkiewicz and Krasiński (1999).]

Experimentally, the method was first applied to the reconstruction of the
Wigner function of the center-of-mass motion of a trapped ion [Leibfried,
Meekhof, King, Monroe, Itano and Wineland (1996)], see Section 13.5.2
(Fig. 13.10). For light, the method was demonstrated experimentally as well
[Banaszek, Radzewicz, Wódkiewicz and Krasiński (1999)], an example is
given in Fig. 7.6. The use of the method for light is hampered by the problem
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that it is difficult to discriminate adjacent photon numbers in photodetec-
tion needed for determining the Wigner function according to Eq. (7.82). To
determine the Wigner function by this method for more general light fields
a cascaded homodyne detection scheme has been proposed [Kis, Kiss, Jan-
szky, Adam, Wallentowitz and Vogel (1999)], which combines the unbalanced
scheme with balanced homodyning, allowing the determination of the desired
photon-number statistics of the displaced field.

7.5
Normally ordered moments

It is often sufficient to know some moments of the creation and annihila-
tion operators rather than the overall quantum state. By means of Eq. (4.96)
s-ordered moments can be expressed in terms of normally ordered moments
and vice versa, so that we may restrict our attention to normally ordered mo-
ments. We apply Eqs (3.19) and (3.20) and express the normally ordered mo-
ments in terms of the density-matrix elements in the number basis:

〈â†mân〉 =
∞

∑
k=0

〈k|�̂â†mân|k〉

=
∞

∑
k=n

√
k(k−1) · · · (k−n+1)

√
(k+1)(k+2) · · · (k+m−n) �k k+m−n

=
∞

∑
k=n

√
(k + m − n)!

(k − n)!
�k k+m−n . (7.83)

In Eq. (7.83) substituting for �k k+m−n the expression in Eq. (7.59), we expect
that 〈â†mân〉 can be expressed in terms of p(x, ϕ) as

〈â†mân〉 =
∫

π
dϕ

∫
dx Mmn(x, ϕ)p(x, ϕ). (7.84)

Indeed, it can be shown that a kernel function Mmn(x, ϕ) which solves
Eq. (7.84) together with Eq. (7.83) reads [Richter (1996b)]

Mmn(x, ϕ) = Mmn(x)ei(m−n)ϕ, (7.85)

where

Mmn(x) =
m!n!

π
√

2m+n(m + n)!
Hm+n

(
x/

√
2
)
. (7.86)
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Using Eq. (7.64) together with Eq. (3.199), we may write
∫

π
dϕ

∫
dx ei(m−n)ϕHm+n

(
x/

√
2
)

p(x, ϕ)

= ∑
k,l

(π2k+lk!l!)−1/2�kl Im+n kl
1
2

∫
2π

dϕ ei(m−n−l+k)ϕ

= ∑
k,l

(π2k+lk!l!)−1/2�kl Im+n klπδm−n l−k , (7.87)

where

Iklm =
∫

dx e−x2
Hk(x)Hl(x)Hm(x)

=
√

π 2nk!l!m!
(n − k)!(n − l)!(n − m)!

δk+l+m 2n , (7.88)

with n being a (non-negative) integer. Starting from the first line in Eq. (7.87)
we have used the symmetry relation (7.8) and the property of the Hermite
polynomials that Hn(−x)=(−1)nHn(x). Substitution of the expression (7.88)
into Eq. (7.87) and comparison of the result with Eq. (7.83) then shows the
validity of Eq. (7.84) together with Eqs (7.85) and (7.86). Equation (7.84) of-
fers the possibility of direct sampling of normally ordered moments from the
phase-rotated quadrature distributions.7

The extension of the method to the reconstruction of normally-ordered mo-
ments of multi-mode fields from the corresponding joint phase-rotated quad-
rature distributions is straightforward. Instead, they can also be inferred from
combined distributions, following the procedure outlined in the last para-
graph of Section 7.1.1. The method was first used to experimentally demon-
strate the determination of the ultrafast two-time photon number correlation
of a nanosecond optical pulse [McAlister and Raymer (1997)]. In the exper-
iment, two femtosecond local-oscillator pulses were used and phase-rotated
sum quadratures x̂(ϑ, ϕ1, ϕ2) [Eq. (7.32)] were measured. From these the nor-
malized second-order coherence function

g(2)(t1, t2) =
〈â†

1 â†
2 â1 â2〉

〈â†
1 â1〉〈â†

2 â2〉
(7.89)

was computed (Fig. 7.7).8

7) It should be noted that knowledge of p(x, ϕ) at all phases within
a π interval is not necessary to reconstruct a chosen 〈â†mân〉 and
therefore the ϕ integral in Eq. (7.84) can be replaced by a sum. It
was shown that 〈â†mân〉 can already be obtained from p(x, ϕ) at
N =m+n+1 different phases ϕk.

8) Here, â1 and â2 are the photon destruction operators of the non-
monochromatic modes defined by the local-oscillator pulses cen-
tered at times t1 and t2.
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Fig. 7.7 The second-order coherence, Eq. (7.89), experimentally de-
termined via balanced four-port homodyne detection (dots) and from
the measured optical spectrum (solid line). The value of t1 is set to oc-
cur near the maximum of the signal pulse. [After McAlister and Raymer
(1997).]

Let F̂ be an operator whose expectation value 〈F̂〉 possesses the normally-
ordered moment expansion

〈F̂〉 = ∑
mn

cmn〈â†mân〉. (7.90)

In order to relate 〈F̂〉 to p(x, ϕ), according to the sampling formula (7.73),
the kernel function KF(x, ϕ) may be calculated by substituting for 〈â†mân〉
in Eq. (7.90) the integral representation (7.84) [together with Eqs (7.85) and
(7.86)], i. e.,

KF(x, ϕ) = ∑
m,n

cmnMmn(x)ei(m−n). (7.91)

Recall that KF(x, ϕ) is only determined up to a function Θ(x, ϕ) that satisfies
the integral equation (7.74).

We identify the operator F̂ with the flip operator

Ânm = |n〉〈m| (7.92)

in the number basis. It can easily be proved correct, by using Eq. (3.59) and
calculating the c-number function Anm(α; 1) = 〈α|n〉〈m|α〉 of Ânm in normal
order, that Ânm can be written as9

Ânm =
1√

n!m!
: â†nâme−n̂ : . (7.93)

9) Note that for m=n Eq. (7.93) reduces to Eq. (4.60).
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Equation (7.93) implies that the density-matrix elements in the number basis
can be given in the form of the series (7.90),

�mn = 〈Ânm〉 = ∑
l

(−1)l

l!
√

n!m!
〈â†n+l âm+l〉, (7.94)

which reveals that, when the whole manifold of moments 〈â†mân〉 is known,
then the quantum state is also known in principle.10 Application of Eq. (7.91)
just yields the sampling formula (7.59), where the kernel function is given [up
to a function Θ(x, ϕ)] by

Kmn(x, ϕ) = e−i(m−n)ϕ ∑
l

(−1)l

l!
√

n!m!
Mn+l m+l(x). (7.95)

7.6
Canonical phase statistics

Direct sampling of quantities from the phase-rotated quadrature statistics may
be used advantageously when no other method for direct detection of the
quantities is available. A typical example is the canonical phase. Whereas the
photon number can be measured by direct photodetection, in principle, there
has been no apparatus for direct detection of the canonical phase. Therefore,
the question arises as to whether or not the phase statistics can be sampled
from the phase-rotated quadrature statistics.

Let Ψk be the exponential phase moments, i. e., the Fourier components of
the phase distribution p(φ),

p(φ) =
1

2π

∞

∑
k=−∞

e−ikφΨk , (7.96)

Ψk =
∫

2π
dφ eikφ p(φ), (7.97)

where p(φ)= 〈φ|�̂|φ〉, with |φ〉 being given by Eq. (3.237). It is not difficult to
prove that the substitution of this expression into Eq. (7.97) yields

Ψk = ∑
n

�n+k n = 〈V̂k〉 (7.98)

if k≥0, and Ψ−k =Ψ∗
k if k<0, with the operator V̂ being defined in Eq. (3.220).

The sampling function for �n+k n can be taken from Eq. (7.95) for m=n+k. By

10) Since the moments are not necessarily bounded, the expansion of
the density-matrix elements according to Eq. (7.94) does not neces-
sarily converge. The problem of non-convergence may be overcome
by analytic continuation of appropriately chosen generating func-
tions [for details, see Herzog (1996)].
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Fig. 7.8 Examples of the kernel function fk(x)=2Kk(x/
√

2) for sam-
pling the exponential moments of the canonical phase from the phase-
rotated quadrature distributions according to Eq. (7.99). [After Dakna,
Opatrný and Welsch (1998).]

summing the result over n, we then obtain the sampling function for the kth
exponential phase moment. Thus, we arrive at the result that [Dakna, Opatrný
and Welsch (1998)]

Ψk =
∫

π
dϕ

∫
dx e−ikϕ fk(x)p(x, ϕ), (7.99)

where

fk(x) = ∑
n,l

(−1)l

l!
√

n!(n + k)!
Mn+l n+l+k(x) + Θk(x). (7.100)

According to Eq. (7.74), we have introduced a function Θk(x) in order to
take into account the ambiguity of the kernel function. It should be chosen
so that fk(x) takes the simplest possible form best suited for sampling Ψk
from p(x, ϕ). In particular, Θk(x) can be an arbitrary polynomial of degree
k′=k−2n (n, integer).

To obtain insight into the structure of the kernel function, we note that
Eq. (7.99) applies to quantum and classical systems in a unified way and
bridges the gap between quantum and classical phase. It is not difficult to
prove that Eq. (7.35) can be rewritten as

p(x, ϕ) =
∫

d2α W(α)δ[x − 2|α| cos(ϕ + φα)]. (7.101)

Substitution of this expression into Eq. (7.99) yields (d2α=rdr dφ, φα 
→ φ)

Ψk =
∫

π
dϕ

∫ ∞

0
rdr

∫
2π

dφ e−ik(ϕ−φ) fk(2r cos ϕ)W
(
reiφ)

. (7.102)

Classically, the phase distribution is simply given by the radially integrated
Wigner function (i. e., the radially integrated classical phase-space probability
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squeezed state. [After Dakna, Breitenbach, Mlynek, Opatrný, Schiller
and Welsch (1998).]

distribution function),

p(φ) =
∫ ∞

0
rdr W

(
reiφ)

, (7.103)

so that from Eq. (7.97) it follows that

Ψk =
∫

2π
dφ

∫ ∞

0
rdr eikφW

(
reiφ)

. (7.104)

We compare Eq. (7.104) with (7.102) and find that the classical kernel function
fk(x, ϕ) observed for |x|→∞ satisfies the integral equation∫

π
dϕ e−ikϕ fk(2r cos ϕ) = 1 (7.105)

for all r. As can be verified by direct substitution, a solution of Eq. (7.105) is (k
>0)

fk(x) =




1
2 (−1)(k−1)/2k sign x if k odd,

π−1(−1)(k+2)/2k ln(x/
√

2) if k even.
(7.106)

Already from the classical kernel (7.106) it can be seen that ∑+∞
k=−∞ eik(ϕ−φ) fk(x)

does not exist, and hence the canonical phase distribution p(φ) itself cannot
be sampled from p(x, ϕ) without knowledge of the state.

Choosing Θk(x) in Eq. (7.100) such that fk(x) approaches the classical limit
in the form given by Eq. (7.105) ensures that Eq. (7.99) is suitable for statistical
sampling of the exponential phase moments from the phase-rotated quadra-
ture distributions. Examples of fk(x) are shown in Fig. 7.8. The figure reveals
that fk(x) rapidly approaches the classical limit [Eq. (7.106)] and differs from it
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only in a small interval around the origin, which defines the quantum regime.
Obviously, the extension of the interval is just of the order of magnitude of
the vacuum fluctuation. Recall that the quantum regime is realized when the
state under study has a substantial overlap with the vacuum state.

Figure 7.9 shows the application of the method to the experimental deter-
mination of the exponential phase moments of phase-squeezed light [Dakna,
Breitenbach, Mlynek, Opatrný, Schiller and Welsch (1998)]. The canonical
phase distribution can then be obtained by straightforward summation ac-
cording to Eq. (7.96), as shown in Fig. 7.10. It should be pointed out that sam-
pling of the first exponential phase moment and the photon-number variance
is already sufficient to verify fundamental phase-number uncertainties. The
method also applies to the determination of the cosine- and sine-phase statis-
tics associated with the Hermitian operators Ĉ [Eq. (3.246)] and Ŝ [Eq. (3.247)].
In particular, the mean values of the cosine phase and the sine phase, respec-
tively, are simply given by the first exponential phase moment according to
the relations

〈Ĉ〉 = 1
2 (Ψ1 + Ψ∗

1) (7.107)

and

〈Ŝ〉 = 1
2i (Ψ1 − Ψ∗

1). (7.108)

Generally, the moments 〈Ĉn〉 and 〈Ŝn〉 (n≥ 2) can be obtained from the expo-
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nential phase moments and vacuum-assisted density-matrix elements.11 Fi-
nally, the method can also be extended to multi-mode fields. In particular,
sampling of the two-mode exponential moments

Ψkl
12 = 〈V̂k

1 V̂l
2〉 (7.109)

may be suitable for determining the difference-phase statistics of the modes.
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8
Nonclassicality and entanglement of bosonic systems

From the point of view of classical optics it is theoretically possible that a radi-
ation field is free from any kind of noise. In practice, however, the production
of radiation always involves the generation of some noise. Moreover, from
Chapter 3, we know that the quantum nature of radiation is unavoidably con-
nected with noise. Hence any radiation field may be said to be noisy. As long
as the methods of classical statistics are sufficient to model the properties of a
given radiation field with little error, the field may be said to have a classical
counterpart with regard to these properties. Under certain circumstances the
quantum features can dominate the properties of the field so that a description
by methods of classical statistics fails. This implies that, with regard to certain
properties, a counterpart of the quantum state of the field in classical physics
does not exist. For this reason such states are called nonclassical.

For bosonic systems other than radiation, the situation is quite similar. In
Section 8.1 we provide some background for understanding the nonclassical
effects considered in Section 8.2. Since the early experiments showing ev-
idence of nonclassical states were performed with light, we focus on non-
classical light therein. As we shall see, the effects can be characterized by
inequalities which contradict classical statistics. Typical examples are the in-
equalities to characterize photon anti-bunching, sub-Poissonian photon sta-
tistics and squeezing. Extending this route, in Sections 8.3 and 8.4 we present
a unified concept of measurement-based nonclassicality criteria for bosonic
systems, either by means of observable characteristic functions (Section 8.3)
or measurable moments (Section 8.4) – quantities whose detection is studied
in Chapters 6 and 7. Entanglement of bipartite bosonic systems is considered
in Section 8.5, which provides a unified concept of measurement-based entan-
glement criteria with respect to the negativity of the partial transposition of
the system density operator.
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8.1
Quantum states with classical counterparts

From the theory of the photoelectric detection of light (Chapter 6) we know
that in standard photodetection experiments normally1 and time-ordered cor-
relation functions of the type

G(l,l)({ri, ti}) =
〈

◦◦
l

∏
i=1

Î(ri, ti) ◦◦

〉
, (8.1)

where

Î(r, t) = Ê(−)(r, t)Ê(+)(r, t), (8.2)

can be observed. Furthermore, normally and time-ordered correlation func-
tions of the more general type

G(m,n)
k1...km+n

(r1, t1, . . . , rm+n, tm+n)

=
〈[

T−
m

∏
i=1

Ê(−)
ki

(ri, ti)
][

T+

m+n

∏
j=m+1

Ê(+)
kj

(rj, tj)
]〉

(m �= n) (8.3)

can be recorded by homodyne correlation techniques (Section 6.5.7) or sam-
pled from the rotated-phase quadrature distributions measured in balanced
four-port homodyning (Section 7.5).

The corresponding classical correlation functions are obtained by replacing

the field operators with stochastic c-number variables (Ê(±)
k �→ E(±)

k ), for ex-
ample,

G(l,l)({ri, ti})cl =
〈 l

∏
i=1

I(ri, ti)
〉

cl
, (8.4)

〈· · · 〉cl indicates classical-statistical averaging. Clearly, in classical physics
the ordering prescriptions become superfluous. To perform the classical
averaging in Eq. (8.4), the lth order joint probability distribution function
pcl[{I(ri), ti}] for the intensity values I(ri) at times ti, i = 1, 2, . . . , l, is re-
quired:2

G(l,l)
cl ({ri, ti}) =

∫
dI(r1) I(r1) · · ·

∫
dI(rl) I(rl) pcl[{I(ri), ti}]. (8.5)

1) Recall that the normal-ordering prescription results from the fact
that photodetectors usually operate on the basis of light absorp-
tion. The observation of anti-normally ordered correlation functions
would require emission detectors [Mandel (1966)].

2) For methods of statistics see, e. g., van Kampen (1981) or Gardiner
(1983).
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Let us consider the normally ordered lth moment of the intensity at a chosen
space point r,

G(l,l)(r, t) = 〈: Î l(r, t) :〉, (8.6)

which in classical theory can be calculated by means of the marginal probabil-
ity distribution function pcl[I(r), t] as

G(l,l)
cl (r, t) =

∫
dI(r) pcl[I(r), t]Il(r). (8.7)

Performing a mode expansion (Section 2.2)3

E(+)(r) = ∑
λ

iωλAλ(r)αλ, E(−)(r) = [E(+)(r)]∗, (8.8)

we may regard the sample of complex mode amplitudes, {αλ}, as a sample of
stochastic variables with probability distribution pcl({αλ}, t). Hence Eq. (8.7)
may be rewritten as

G(l,l)
cl (r, t) =

∫
d2{αλ} pcl({αλ}, t)Il(r; {αλ}), (8.9)

where d2{αλ}=∏λ d2αλ, and the notation

I(r; {αλ}) = E(−)(r; {αλ})E(+)(r; {αλ}) ≡ E(−)(r)E(+)(r) (8.10)

indicates that E(±) in the form (8.8) depends on a set of random variables αλ.
The probability distribution of the mode amplitudes, pcl({αλ}, t), is of course
well behaved and positive semi-definite.

We now turn to the quantum mechanical moments as defined in Eq. (8.6).
To calculate them, it is advantageous to apply the concept of phase-space
functions (Chapter 4). In particular, in the Glauber–Sudarshan representation
(P representation) the density operator �̂ is [cf. Eq. (4.86)]

�̂ =
∫

d2{αλ} P({αλ}, t)|{αλ}〉〈{αλ}|, (8.11)

so that

G(l,l)(r, t) =
∫

d2{αλ} P({αλ}, t)Il(r; {αλ}). (8.12)

Here I(r; {αλ}) is again given by Eq. (8.10) with E(±)(r; {αλ}) from Eq. (8.8),
where E(+)(r; {αλ}) solves the eigenvalue equation

Ê(+)(r)|{αλ}〉 = E(+)(r; {αλ})|{αλ}〉. (8.13)

3) Recall that E=E⊥ in free space.
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Comparing the classical result (8.9) with the quantum-mechanical one (8.12),
we find that the latter can be obtained within the framework of classical noise
theory, provided that the chosen pcl({αλ}, t) satisfies the condition that

pcl({αλ}, t) = P({αλ}, t). (8.14)

This requires that the P function must exhibit all the properties of a classical
probability measure. Otherwise, there is no way to model the observed field
statistics by means of a classical probability distribution function pcl({αλ}, t).
For this reason, a radiation field with a distribution P({αλ}) which is not well
behaved in the sense of a classical probability distribution may be called, with
regard to the normally ordered moments considered, a nonclassical field [Tit-
ulaer and Glauber (1965); Mandel (1986)].

It should be emphasized that, even when the condition (8.14) is satisfied,
the radiation field considered remains a quantum field and can differ essen-
tially from the classical counterpart described by the probability distribution
pcl({αλ}, t). In particular, the vacuum noise as a pure quantum effect is always
present. The close analogy between the quantum mechanical and classical
descriptions has only been established with regard to normally ordered mo-
ments. Were one to consider other than normally ordered expectation values
and try to calculate them using the classical model with the pcl({αλ}, t) given
above, Eq. (8.14), the result would be wrong in general. As is well known,
different orderings give rise to different phase-space functions, and hence to
different classical models. However, since measurements with photodetectors
usually yield normally ordered quantities, the point of view taken above is of
practical relevance.

Clearly, the concept of a classical counterpart also applies to bosonic sys-
tems other than radiation. Matter systems of harmonic-oscillator type, such
as atoms moving in harmonic potentials, are typical examples. The expecta-
tion value of any system operator expressed in terms of the respective anni-
hilation and creation operators and given in its normally ordered form, i. e.,
Ô({âλ}, {â†

λ})≡ : Ô({âλ}, {â†
λ}) :, can be obtained, in principle, by using the

P representation (8.11):

〈Ô({âλ}, {â†
λ})〉 =

∫
d2{αλ} P({αλ})O({αλ}, {α∗λ}). (8.15)

If, according to Eq. (8.14), the P function can be viewed as being a probability
measure, the quantum state in which the system is prepared has a classical
counterpart. It should be pointed out that system observables are normally
defined in a form that is not normally ordered (Ô �=:Ô :). Replacing them with
their normally ordered forms (Ô �→: Ô :) corresponds to discarding the noise
effects in the ground state. In any case, the uncertainty product for the ground
state represents the minimum noise level needed to obey Heisenberg’s uncer-
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tainty principle. Thus the noise in the ground state is throughout a quantum
effect and has no classical counterpart.

To account for this situation, one may regard a state as being nonclassical if
it shows one of the following two features [Vogel (2000)]: First, the P function
is not a probability density and thus Eq. (8.14) is violated. Second, a state is
also nonclassical when its noise level is close to the ground-state noise, that is,
when for the interpretation of measured data, the recorded noise level does
not significantly exceed the minimum noise required according to Heisen-
berg’s uncertainty relations. This definition relates the normally ordering pre-
scription, which effectively eliminates the ground-state noise in representative
observables, to an additional assumption concerning the measurable noise ef-
fects. Note that instead of the second condition another one can be formu-
lated: A quantum state is nonclassical if the photon number is small [Mandel
(1986)]. The question may arise if there is some difference between these con-
ditions. Of course for a sufficiently small photon number we expect that the
noise of the quantum state cannot be much larger than the ground-state level.
However, the inverse is not true. Even the noise of a quantum state with a
large photon number may be at the ground-state noise level. This behavior is
well known for the coherent states. Thus the question may arise of whether
or not the coherent states show observable nonclassical signatures. Usually
the coherent states are considered to be those states which are closest to the
classical ones. In particular, it has been shown that the coherent states are the
only pure quantum states whose P function can be interpreted as a probability
density [Hillery (1985)]. Thus they have a classical counterpart with respect to
the first condition.

On the other hand, when one wishes to measure, e. g., the quadrature noise
of a coherent state, it turns out to be at the ultimate quantum limit set by
Heisenberg’s uncertainty relation. Thus the coherent state is of course non-
classical in the sense of the second condition, even if the photon number is
large. It is noteworthy in this context that, with respect to so-called weak
measurements4, another signature of nonclassicality can be considered. In-
stead of the normally ordered distributions, in such measurements the real
part of the standard-ordered phase-space distribution is appropriate to pre-
dict the observable values. This distribution may attain negative values for
both coherent states [Johansen (2004a)] and thermal states [Johansen and Luis
(2004)]. In the latter case the occurrence of significant negative values of the
phase-space distribution is limited to mean thermal photon numbers smaller
than one. For the coherent states, however, the negative values survive even
for large photon numbers. This seems to support the second condition for
nonclassicality discussed above.

4) For the underlying measurement principle we refer the reader to
Johansen (2004).
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For many applications the first condition is of more practical relevance than
the second one, hence we will concentrate on the properties of the P function.
Since all pure quantum states – except the coherent ones – are nonclassical in
this sense, it is of great importance to formulate the theory to include statistical
mixtures of quantum states. In addition, since the P function may be highly
singular, it is necessary to relate the nonclassicality conditions to observable
quantities.

8.2
Nonclassical light

The development of laser techniques has allowed one to perform precise ex-
periments demonstrating the nonclassical character of light. In particular, res-
onance fluorescence of a single atom created for the first time the possibility
of observing photon antibunching and sub-Poissonian photon statistics. Later
on, quadrature squeezing was demonstrated for the first time by four-wave
mixing. Various methods for generating nonclassical light have already been
established. Hence it would exceed the scope of this section to consider all of
them. In the following we will consider some of the early experiments.

8.2.1
Photon anti-bunching

As is well known, the second-order (normally and time-ordered) intensity cor-
relation function

G(2,2)(r, t + τ, r, t) = 〈 ◦◦ Î(r, t + τ) Î(r, t) ◦◦ 〉
= 〈Ê(−)

k1
(r, t)Ê(−)

k2
(r, t + τ)Ê(+)

k2
(r, t + τ)Ê(+)

k1
(r, t)〉

(8.16)

can be determined from a photocounting-correlation measurement (Sec-
tion 6.1). In practice, the measurement can be performed in an experiment of
Hanbury Brown–Twiss type as shown schematically in Fig. 8.1. The radiation
field under study is decomposed by a beam splitter into two parts of equal
mean intensity, and the coincidences of the light in the two output channels
are detected.

From the point of view of classical optics, Eq. (8.16) would take the form

G(2,2)
cl (t + τ, t) = 〈I(t + τ)I(t)〉cl (8.17)

(I =E(−)E(+)). Here and in the following, we drop the spatial argument r for
the sake of notational convenience. Introducing the joint probability distribu-
tion function pcl(I1, t1, I2, t2) for the two intensities I1 and I2 at times t1 and t2
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S
BS

PD1

PD2

A1

A2TD C

Fig. 8.1 Scheme of an experiment of Hanbury Brown–Twiss type for
measuring the intensity correlation (S, light source; BS, beam splitter;
PD1, PD2, photodetectors; A1, A2, amplifiers; TD, delay-time control;
C, correlator).

respectively, we may write

G(2,2)
cl (t + τ, t) =

∫
dI

∫
dI′ I I′pcl(I, t + τ, I′, t). (8.18)

Applying the Schwarz inequality yields∫
dI

∫
dI′ I I′pcl(I, t + τ, I′, t)

≤
[∫

dI I2 pcl(I, t + τ)
] 1

2
[∫

dI′ I′2 pcl(I′, t)
] 1

2

, (8.19)

where pcl(I, t) is the marginal probability distribution function. Let us now
consider the intensity correlation function under steady-state conditions:

G(2)(τ) = lim
t→∞

G(2,2)(t + τ, t). (8.20)

In the steady-state regime we obviously have

pcl(I) = lim
t→∞

pcl(I, t) = lim
t→∞

pcl(I, t + τ), (8.21)

and the inequality (8.19) may be written as

G(2)
cl (τ) ≤ G(2)

cl (0). (8.22)

This result reveals that in classical optics the second-order intensity correla-
tion function of a steady-state radiation field has a nonpositive initial slope.
In other words, the probability of observing equal-time coincidences is greater
than that of observing time-delayed coincidences. We see that when a station-
ary radiation field satisfies

G(2)(τ) ≤ G(2)(0), (8.23)
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a classical counterpart which also satisfies this condition can be found. The
radiation-field property introduced by the inequality (8.23) is called photon
bunching. It is obvious that the observation of more equal-time coincidences
than time-delayed coincidences implies that the photons to be detected5 show
a tendency to arrive in bunches.

It is now straightforward to define a nonclassical property by the require-
ment that

G(2)(τ) > G(2)(0). (8.24)

Since this inequality is violated by any classical light field, it is obvious that
a light field is far from being classical when the steady-state intensity corre-
lation function (as a function of the delay time τ) has a positive initial slope.
The joint probability of observing two counts in the two detection channels si-
multaneously, is smaller than the probability in the case of a finite time delay.
This effect is called photon anti-bunching, because one could say that, within
the photon concept of light, the photons have a tendency to arrive separated
from each other. The experimental demonstration of photon anti-bunching
may therefore be regarded as being a very direct proof of the photon nature of
light. It is straightforward to prove that for an (effectively free) field prepared
in a coherent state, the equation

G(2)(τ)coh = G(2)(0)coh (8.25)

holds. Hence a coherent field just marks the boundary between (classical)
bunching and (nonclassical) anti-bunching.

The resonance fluorescence from a single two-level atom (Chapter 11) is a
typical example which demonstrates photon anti-bunching [Carmichael and
Walls (1976); Kimble and Mandel (1976)]. It is quite simple to understand
the appearance of photon anti-bunching in resonance fluorescence. Let us
assume that a two-level atom that is (continuously) irradiated by a laser beam,
whose frequency is tuned to the atomic transition frequency is, at a certain
time, in its ground state. Owing to the interaction with the laser field, the
atom undergoes a transition from the ground state to the excited one. The
excited atom can emit a fluorescence photon, which may be observed in a
direction different from that of the exciting laser beam. Since the emission of
a photon is connected with a transition of the atom into the ground state, two
photons cannot be emitted simultaneously, which implies that for zero delay
the intensity correlation function (8.16) is expected to tend to zero:

lim
τ→0

G(2,2)(t + τ, t) = 〈: Î2(t) :〉 = 0. (8.26)

5) For the relation between the counting and the photon-number distri-
butions, see Section 6.2.
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Clearly, in the further course of time the atom can again be excited and return
to the ground state through the emission of a photon. Consequently, the joint
probability of emitting a photon at time t and a photon at time t+τ is expected
to increase with increasing delay τ. In other words, the intensity correlation
function (8.16) is expected to have a positive initial slope,6 which is just the
criterion for photon anti-bunching, Eq. (8.24).

Indeed, photon anti-bunching was first measured in resonance fluorescence
[Kimble, Dagenais and Mandel (1977)]. In the experimental scheme (Fig. 8.1)
for the light source, an atomic beam was used whose density was small
enough to ensure that, at most, one atom was involved in resonance fluores-
cence. In particular, when the mean number of atoms in the interaction vol-
ume is less than unity, the fluorescence from a single atom is, apart from back-
ground scattering, the dominant contribution to the observed signal. Later,
the effect of photon anti-bunching in resonance fluorescence was observed us-
ing a single ion in a Paul trap [Diedrich and Walther (1987); Schubert, Siemers,
Blatt, Neuhauser and Toschek (1992)].

8.2.2
Sub-Poissonian light

Let us consider the mean number of counts and the variance of counts as given
by Eqs (6.54) and (6.61), respectively. The classical version of Eq. (6.61) is

[∆n(t, ∆t)]2 = n(t, ∆t) + ξ2〈[∆I(t, ∆t)]2〉cl. (8.27)

Here 〈[∆I(t, ∆t)]2〉cl is an ordinary variance, which cannot be negative,

〈[∆I(t, ∆t)]2〉cl ≥ 0, (8.28)

and hence the following classical inequality is deduced:

[∆n(t, ∆t)]2 ≥ n(t, ∆t). (8.29)

The equality sign in Eq. (8.29) corresponds to the lowest noise level in classi-
cal photocounting, the so-called shot-noise level. It is attained in the limit of
a nonfluctuating classical field being detected. Indeed, in this case, the photo-
counting distribution (6.44) reduces to a Poissonian:

Pm(t, ∆t) =
1

m!
[Γ(t, ∆t)]me−Γ(t,∆t), (8.30)

Γ(t, ∆t) = ξ
∫ t+∆t

t
dτ I(τ). (8.31)

6) For details, see Section 11.2.2.
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For a quantized radiation field the second term in Eq. (6.61) is not necessar-
ily non-negative, because of the operator ordering. Thus in quantum optics
the classically established inequalities (8.28) and (8.29) may be violated, and
the variance of the counts can become smaller than the mean value of counts:

〈 ◦◦ [∆ Î(t, ∆t)]2 ◦◦ 〉 < 0, (8.32)

[∆n(t, ∆t)]2 < n(t, ∆t). (8.33)

In other words, if the condition (8.33) is satisfied, the photocounting distribu-
tion is narrower than a Poissonian one, which implies in particular that the
noise of the counts is reduced below the shot-noise level. From the above it
is clear that light which gives rise to sub-Poissonian counting statistics – also
called sub-Poissonian light – is nonclassical. In this context we recall that, as
shown in Section 6.2.3, sub-Poissonian counting statistics are associated with
sub-Poissonian photon-number statistics of the light to be detected.

For a free field in a coherent state we have

〈: [∆ Î(t, ∆t)]2 :〉coh = 0, (8.34)

so that Eq. (6.61) reduces to

[∆n(t, ∆t)]2 = n(t, ∆t). (8.35)

We see that a field prepared in a coherent state just gives rise to a Poissonian
counting statistics, which implies that the noise in photocounting is given by
the shot noise. In this sense, a radiation field in a coherent state corresponds
to a noise-free classical field.

In a short-time measurement, Eq. (6.63) is valid and the condition for sub-
Poissonian light is

〈: [∆ Î(t)]2 :〉 < 0. (8.36)

Applying the relation

〈: [∆ Î(t)]2 :〉 = 〈: Î2(t) :〉 − 〈 Î(t)〉2, (8.37)

the condition (8.36) can be rewritten as

〈: Î2(t) :〉 < 〈 Î(t)〉2, (8.38)

which for a steady-state radiation field agrees with the limit τ→∞ of the con-
dition (8.24) for photon anti-bunching. In this sense the nonclassical proper-
ties of photon anti-bunching and sub-Poissonian statistics appear to be closely
related to each other. We would like to note that the condition (8.36) may be
given, on using the P representation, in the form∫

d2{αλ} P({αλ}, t)[∆I({αλ})]2 < 0 (8.39)
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(cf. Section 8.1). Since [∆I({αλ})]2 is always non-negative, this inequality can
only be satisfied when the P function attains negative values. As expected, in
the case of sub-Poissonian light P({αλ}) cannot be positive semi-definite, and
a classical-statistical description would fail.

The sub-Poissonian effect was first demonstrated in resonance fluorescence
[Short and Mandel (1983)], by using the same light source as in the anti-
bunching experiment outlined in Section 8.2.1. For a finite detection-time in-
terval ∆t the condition for sub-Poissonian light, Eq. (8.32), reads

∫ t+∆t

t
dτ

∫ t+∆t

t
dτ′ [〈 ◦◦ Î(τ) Î(τ′) ◦◦ 〉 − 〈 Î(τ)〉〈 Î(τ′)〉

]
< 0. (8.40)

Since the experiment was performed under steady-state conditions, the in-
tensity correlation function G(2,2)(τ, τ′)=〈 ◦◦ Î(τ) Î(τ′) ◦◦ 〉 depends only on the
time difference: G(2,2)(τ, τ′)=G(2)(τ−τ′). Introducing the sum and difference
times, we may perform the integration over τ + τ′ to simplify the condition
(8.40) as follows:

∫ ∆t

0
dτ [G(2)(τ)− 〈 Î〉2](∆t − τ) < 0. (8.41)

For sufficiently small ∆t this condition is fulfilled, in the case of resonance fluo-
rescence from a two-level atom (Section 11.2.2), due to the fact that G(2)(0)=0.
For an arbitrary measurement time ∆t the temporal evolution of G(2)(τ) dur-
ing the measurement (0≤τ≤∆t) becomes important. If the inequality

G(2)(τ) < 〈 Î〉2 ≡ G(2)(∞) (0 ≤ τ < ∞) (8.42)

is satisfied, the light is sub-Poissonian for any measurement time. In reso-
nance fluorescence from a single two-level atom, this condition is fulfilled for
a weak driving field (Section 11.2.2). In more general cases of strong driv-
ing fields the intensity correlation function may be oscillatory and there is no
one-to-one correspondence between the effects of photon anti-bunching and
sub-Poissonian statistics, in general.

The first experimental demonstration of sub-Poissonian light was followed
by a number of further experiments. For example, in a Franck–Hertz ex-
periment [Teich and Saleh (1985)] a regular electron beam was created by
making use of Coulomb repulsion. This beam excites a sample of mercury
atoms which subsequently produces Franck–Hertz light, whose photon sta-
tistics partly reveal the sub-Poissonian nature of the exciting electron beam.
Based on spontaneous parametric down-conversion it became possible to re-
alize a localized single photon state [Hong and Mandel (1986)]. The idler pho-
ton of the spontaneously created photon pair was used to trigger an optical
shutter in the signal channel, such that the signal field incident on a photode-
tector in the selected time interval is, with a high probability, prepared in a



276 8 Nonclassicality and entanglement of bosonic systems

single photon state. A laser was shown to produce sub-Poissonian light when
the pump fluctuations are suppressed below the shot-noise level [Machida,
Yamamoto and Itaya (1987); Machida and Yamamoto (1989)].

8.2.3
Squeezed light

As shown in Section 3.3, the noise of an appropriately chosen field-strength
quantity

F̂(r) = ∑
λ

[
F(r)âλ + F∗(r)â†

λ

]
, (8.43)

such as for example the electric field strength, of a radiation field prepared in
a squeezed coherent state can be reduced, depending upon the phase,7 below
the vacuum level, i. e.,

〈[∆F̂(r, t)]2〉 < 〈[∆F̂(r, t)]2〉vac , (8.44)

which can be rewritten as

〈: [∆F̂(r, t)]2 :〉 < 0 (8.45)

[cf. Eq. (3.170)]. We recall that, as a consequence of the noise reduction be-
low the vacuum level for a certain phase value, noise enhancement appears
when the phase is shifted by a value of ±π/2. In particular for a plane-
wave field propagating in the positive x direction the noise reduction (and
the π/2-shifted noise enhancement) is π periodical in ωt−kx.

The inequality (8.45) can be used as a definition of squeezed light, and is
independent of the particular choice of the state of the field. Clearly, squeezing
is a nonclassical effect, as can be seen by going over to a classical description:

〈: [∆F̂(r, t)]2 :〉 �→ 〈[∆F(r, t)]2〉cl > 0. (8.46)

The normally ordered field variance reduces to an ordinary variance, which
cannot be negative. Note that the boundary between classical and nonclassical
behavior is again given by a radiation field prepared in a coherent state. It is
easily proved that, in this case,

〈: [∆F̂(r, t)]2 :〉coh = 0. (8.47)

In terms of the P representation, the squeezing condition (8.45) becomes∫
d2{αλ} P({αλ}, t)[∆F(r; {αλ})]2 < 0, (8.48)

7) Here, by “phase” an ordinary c-number phase parameter is under-
stood; cf., e. g., Eq. (3.152).
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which shows that (because [∆F(r; {αλ})]2 ≥ 0) for squeezed light, a classical-
statistical model with a positive semi-definite probability distribution function
would fail.

The definition of squeezing as given by the inequality (8.45) is based on the
normally ordered second-order moment of the field quantity F̂ (second-order
squeezing). This inequality can be extended to normally ordered higher-order
moments in order to introduce higher-order squeezing. From arguments anal-
ogous to those given above it is obvious that a radiation field satisfying a con-
dition of the form

〈: [∆F̂(r, t)]2n :〉 < 0 (8.49)

(n>0, integer) is nonclassical.
Next let us consider the expectation value of the operator exponential

exp[∆F̂(r)z]. We put it in normal order, on using Eq. (C.26), to obtain

〈exp[∆F̂(r, t)z]〉 = 〈: exp[∆F̂(r, t)z] :〉 exp
{ 1

2 z2〈[∆F̂(r, t)]2〉vac
}

. (8.50)

By power-series expansion and comparison of the expansion coefficients of
z2n (n=1, 2, 3, . . .), we deduce that

〈[∆F̂(r)]2n〉 − (2n)!
2nn!

〈[∆F̂(r)]2〉n
vac

=
(2n)!

2n(n − 1)!
〈: [∆F̂(r)]2 :〉〈[∆F̂(r)]2〉n−1

vac + . . . (8.51)

Taking the inequality (8.49) into account, we see from Eq. (8.51) that

〈[∆F̂(r)]2n〉 − (2n)!
2nn!

〈[∆F̂(r)]2〉n
vac < 0 (8.52)

is a condition which can be satisfied by nonclassical light. Recalling that the
field-strength probability distribution of the vacuum field is a Gaussian with
zero mean, we may rewrite the inequality (8.52) to obtain

〈[∆F̂(r, t)]2n〉 < 〈[∆F̂(r, t)]2n〉vac , (8.53)

which is a generalization of the (second-order) squeezing condition (8.44) in
the sense of a condition for higher-order squeezing (n ≥ 2) [Hong and Mandel
(1985)].

It should be noted that, for a field with a Gaussian field-strength distribu-
tion, second-order squeezing is always accompanied by higher-order squeez-
ing. In general, the latter depends sensitively on the shape of the field-strength
distribution rather than simply on its width as is the case for second-order
squeezing. Since for higher-order squeezing, higher-order moments of the
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field strength become important, even small changes in the wings of the field-
strength distribution may significantly influence the effect of higher-order
squeezing [Vogel (1990)].

When we are looking for mechanisms which can be used to generate
squeezed light, it may be helpful to recall the structure of the unitary squeeze
operator introduced in Section 3.3:

Ŝ(ξ) = exp
[ 1

2 (ξ∗ â2 − ξ â†2)
]

(8.54)

in the single-mode case [cf. Eq. (3.102)] and

Ŝ(ξ12) = exp(ξ∗ â1 â2 − ξ â†
1 â†

2) (8.55)

in the two-mode case [cf. Eq. (3.174)]. Applying Ŝ(ξ) to a (single-mode) co-
herent state yields a single-mode squeezed (coherent) state. Accordingly, a
two-mode squeezed state is obtained by applying Ŝ(ξ12) to a (two-mode) co-
herent state. One may therefore expect that squeezed light can be produced
in an optical process governed by an effective interaction Hamiltonian of the
type

Hint(eff) = h̄(λâ†2 + λ∗ â2) (8.56)

(degenerate case) and

Hint(eff) = h̄(λ12â†
1 â†

2 + λ∗
12â1 â2) (8.57)

(nondegenerate case). The unitary time evolution operator would correspond
to a squeeze operator and hence a field initially prepared in the vacuum state
or a coherent state should be squeezed in the further course of time.

Clearly, an optical process governed by an interaction Hamiltonian of the
type (8.56) or (8.57) cannot actually be found. The simultaneous generation
of two c-number-coupled photons can only be regarded as an approximation
to a realistic process, in which the creation of the two photons is unavoid-
ably connected with the destruction of other photons or atomic excitations. In
this sense, the structure of the squeeze operator can only give a general ori-
entation. Moreover, squeezing is not necessarily connected with the special
squeezed states introduced by a squeeze operator of the type given above.

In Section 2.5.3 we have introduced effective interaction Hamiltonians for
nonlinear processes that do not (explicitly) depend on atomic variables. For
example, let us consider the process of four-wave mixing, which, in analogy
with Eq. (2.264), is governed by the effective Hamiltonian

Ĥint(eff) = h̄κ(4)â1 â2 â†
3 â†

4 + H.c.. (8.58)

The elementary process is seen to be the creation (destruction) of two photons
in the modes 3 and 4 and the simultaneous destruction (creation) of two pho-
tons in the modes 1 and 2. If the modes 1 and 2 represent strong coherent
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Fig. 8.2 Experimental scheme for squeezed-
light generation by four-wave mixing. A ring
dye laser pumps a Na atomic beam at the
pump cavity (mirrors PM1, PM2) resonance
frequency. The pumped Na atoms generate
four-wave mixing gain in the squeezing cav-
ity (mirrors SM1, SM2). The squeezed cavity
noise is detected by a balanced homodyne

detector (detectors D1, D2) and observed on
a spectrum analyzer SA. The classical four-
wave-mixing gain is measured by opening the
shutter S and injecting, into the squeezing cav-
ity, a beam that is frequency-shifted from the
pump by 3ωSC (ωSC is the mode-spacing fre-
quency of the cavity). [After Slusher, Hollberg,
Yurke, Mertz and Valley (1985).]

pump fields, then one may expect the replacement of the operators â1 and â2
with c numbers α1 and α2 to be a suitable approximation:

Ĥint(eff) 
 h̄κ(4)α1α2â†
3 â†

4 + H.c.. (8.59)

As early as 1979, the process of (degenerate, i. e., â3 = â4 = â) four-wave mixing
was proposed to be a hopeful candidate for producing squeezed light [Yuen
and Shapiro (1979)].

For the first time, squeezed light was experimentally realized by nonde-
generate four-wave mixing, the nonlinear medium being sodium atoms in an
optical cavity [Slusher, Hollberg, Yurke, Mertz and Valley (1985)]. The scheme
of the experimental apparatus is shown in Fig. 8.2. The nondegenerate pro-
cess in an optical cavity was used in order to enhance the four-wave mix-
ing gain and to restrict the frequency spectrum to a low-noise region. A c.w.
single-mode ring dye laser was used to pump a beam of sodium atoms at a
frequency tuned above the hyperfine components in the D2 resonance of Na
at 589 nm. The pump was focused in the Na beam and enhanced in a confocal
build-up cavity (formed by mirrors PM1 and PM2 in Fig. 8.2). The squeezed
light was generated in a confocal cavity (formed by mirrors SM1 and SM2 in
Fig. 8.2) by a linear combination of the conjugate pairs of photons generated
by the four-wave-mixing process. Using a single-ended cavity avoids addi-
tional vacuum noise entering the cavity, and highly correlated photon pairs
can be produced at frequencies which are symmetrically shifted with respect
to the pump frequency ωL:

ω3,4 = ωL ± nωSC, (8.60)

where n is an integer and ωSC is the mode-spacing frequency of the cavity.
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Fig. 8.3 Scheme of the apparatus for
squeezed-light generation by degenerate
parametric down-conversion (M, M′, mirrors
of the OPO cavity; P, polarizer; BS, beam split-
ter; LO, local oscillator; D1, D2, photodiodes;
SA, spectrum analyzer). The lithium niobate
crystal has dual-band anti-reflection coatings
to minimize loss at ω and 2ω. The pump at 2ω

is obtained by frequency-doubling from ω to
2ω with a crystal of Ba2NaNb5O15 inside the
cavity of a frequency-stabilized neodymium-
doped yttrium aluminium garnet laser, whose
emission also acts as the local oscillator in ho-
modyne detection. [After Wu, Kimble, Hall and
Wu (1986).]

In the experiment the reflectivities were 0.995 for SM1 and 0.98 for SM2, and
the measured photon pairs were shifted by ±3ωSC, since at these frequencies
the spontaneous emission noise in the tails of the homogeneous line shape
of the sodium atoms is sufficiently weak to observe squeezing. To measure
the cavity four-wave-mixing power gain in the classical limit, a portion of
the pump beam was shifted by 3ωSC and coupled into the squeezing cavity
by the opening of the shutter S in Fig. 8.2. Radiation from the SM2 output
mirror was detected by balanced homodyne detection (Section 6.5.4), with an
unshifted portion of the pump beam used as the local oscillator LO in Fig. 8.2.
A 7% reduction of the noise level for homodyne detection below the vacuum
(shot-noise) level was measured, which corresponds, under the experimental
conditions, to nearly 20% squeezing [for improved results see Slusher, Yurke,
Grangier, La Porta, Walls and Reid (1987)].
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Substantial squeezing was produced by means of an optical parametric os-
cillator (OPO) [Wu, Kimble, Hall and Wu (1986); Wu, Xiao and Kimble (1987)].
In the experiments, a scheme as shown in Fig. 8.3 was used with a triply reso-
nant cavity and the pump mode (frequency ωl=2ω) and the nearly degenerate
signal and idler fields (frequencies ωs ≈ ωi ≈ ω) being simultaneously reso-
nant. Squeezing was generated below the oscillation threshold of the OPO.
A Nd:YAG ring laser with a nonlinear crystal inside the cavity was used to
generate both the pump (frequency 2ω) and the local oscillator (frequency ω),
which were orthogonally polarized with respect to each other. The two beams
were separated from each other by a polarizer, and the pump beam was di-
rected onto the OPO cavity. One mirror of this cavity was fractionally trans-
parent for the frequency 2ω, and the other mirror, used as the output port for
the produced squeezed light, was fractionally transparent for the frequency ω.
After superimposing the local oscillator, the squeezing was measured in a bal-
anced homodyne detection scheme. Correcting for the efficiencies, the field
noise was found to be squeezed to 80−90% of the vacuum level.

Squeezed light, with a reduction of the noise in one quadrature below the
vacuum noise level, has been widely considered to be of interest for appli-
cations such as the improvement of the sensitivity of measurements. An im-
provement in the performance of an interferometer by use of squeezed light
was first demonstrated experimentally by a Mach–Zehnder interferometer for
the detection of the phase modulation in the arms of the interferometer [Xiao,
Wu and Kimble (1987)]. In this experiment an improvement in the signal-
to-noise ratio of 3 dB relative to the shot-noise limit was achieved. In an-
other experiment, squeezed light was used for improving the sensitivity in
polarization measurements, with a polarization interferometer analogous to a
Mach–Zehnder interferometer [Grangier, Slusher, Yurke and La Porta (1987)].
Squeezed light was also used to improve the sensitivity in intensity measure-
ments [Xiao, Wu and Kimble (1988)] and in spectroscopy [Polzik, Carri and
Kimble (1992)].

8.3
Nonclassical characteristic functions

The nonclassical effects considered so far are typically related to second-order
moments and correlation functions of special observables. For a complete
characterization of the nonclassical properties of a system, however, the quan-
tum state as a whole should be considered. To do so, we will use the charac-
teristic function of the Glauber–Sudarshan P function, which can be expressed
in terms of the characteristic functions of the observable quadrature distribu-
tions. For the sake of transparency we will first restrict our attention to single-
mode systems. The extension to multi-mode systems is straightforward but
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rather involved. As we know, entanglement is a nonclassical effect observed
in multi-mode systems. We will deal with two-mode entanglement in Sec-
tion 8.5 and present observable criteria for it.

8.3.1
The Bochner theorem

We are interested in a reformulation of the nonclassicality condition

P(α) �= pcl(α), (8.61)

that is the failure of the P function to show the properties of a probability den-
sity. Since P(α) may become highly singular, see, e. g., the situation for the
number state in Eq. (4.117), another form of the condition is required which
can be used in experiments. Such a form can be found [Vogel (2000); Richter
and Vogel (2002)] on the basis of an old theorem formulated by Bochner (1933),
which provides the following conditions for a continuous function to be the
Fourier transform of a probability density, i. e., a (classical) characteristic func-
tion: A continuous function Φ(α) which obeys the conditions Φ(0) = 1 and
Φ(α)= Φ∗(−α) is the characteristic function of a probability density iff Φ(α)
is non-negative. That is, for arbitrary complex numbers αi and ξi the condition

n

∑
i,j=1

Φ(αi − αj)ξ∗j ξi ≥ 0 (8.62)

must be fulfilled for any integer n.
When we identify Φ(α) with the Fourier transform of the P function [cf.

Eq. (4.92)],8

Φ(α) =
∫

d2β P(β) exp(αβ∗ − α∗β), (8.63)

a violation of the requirements according to the Bochner theorem is equivalent
to the failure of the P function to be a probability density. Hence we may
conclude that a quantum state is nonclassical iff a violation of the Bochner
condition (8.62) can be found for appropriately chosen values of the “vector”
components αi and ξi for some value of n:

n

∑
i,j=1

Φ(αi − αj)ξ∗j ξi < 0. (8.64)

The nonclassicality condition (8.64) is still not useful for practical applica-
tions, and it requires some further effort to formulate nonclassicality criteria

8) For convenience, throughout this chapter we use the notation
Φ(α) ≡ Φ(α; s = 1).
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in a form applicable to measured data. First, the characteristic function Φ(α)
is not directly accessible. Second, it is not very useful for handling the high-
dimensional problem, which is covered in the Bochner theorem, in the form
given by the inequality (8.64). The first problem can be resolved by relating
the characteristic function Φ(α) to the characteristic function Ψ(y, ϕ) of the
observable quadrature distribution p(x, ϕ), as defined by Eq. (7.7), via

Ψ(y, ϕ) = e−
1
2 y2

Φ
(
iye−iϕ)

(8.65)

[cf. Eq. (7.12) for s = 1]. To resolve the second problem, the condition (8.64)
can be used to derive conditions that are expressed in terms of Φ(α), or equiv-
alently, in terms of Ψ(y, ϕ). Alternatively, nonclassicality conditions in terms
of measurable moments can be derived.

8.3.2
First-order nonclassicality

Let us first analyze the inequality (8.64) for the simplest case n=2, leading to
the condition for first-order nonclassicality.9 Determining the extreme values
of the function in the inequality (8.64) (for n=2) with respect to the occurring
phase difference and the ratio |ξ1|/|ξ2|, we derive the condition

|Φ(α)| > 1, (8.66)

which must be fulfilled in order to obtain nonclassicality of first order. Making
use of Eq. (8.65), we may express the condition in terms of the characteristic
function of the quadrature distribution as

|Ψ(y, ϕ)| > Ψgr(y, ϕ), (8.67)

where we have made use of the fact that the characteristic function Ψgr(y, ϕ)
of the ground-state quadrature distribution reads

Ψgr(y, ϕ) = e−
1
2 y2

. (8.68)

Hence a quantum state is nonclassical (of first order) if the absolute value of
its characteristic function of the observable quadrature distribution exceeds
the characteristic function in the ground or vacuum state [Vogel (2000)]. From
the derivation it is obvious that the condition (8.67) is only a sufficient one.
It is worth noting that this very simple condition already covers a number
of conditions specific to different states, such as for example number states,
quadrature squeezed states and even or odd coherent states. In Fig. 8.4(a) the
effect of first-order nonclassicality is illustrated for a Fock state and an even
coherent state.
9) Note that for n=1 the inequality (8.64) cannot be fulfilled since

Φ(0)=1 and |ξ1 |2≥0. Hence we identify the number k=n−1 with
the order of nonclassicality.
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Fig. 8.4 The absolute value of the characteristic function |Ψ(y, ϕ)| (a)
and the quadrature distribution p(x, ϕ) (b) are shown for different quan-
tum states: the number state |n=4〉 (full line), the even coherent state
|α〉+∼ (|α〉+ | − α〉) for α=2 and ϕ=π/2 (dashed line), and the ground
state |0〉 (dotted line).

Let us consider the effects of first-order nonclassicality from the viewpoint
of the quadrature distribution p(x, ϕ). For the examples mentioned above the
absolute value of the characteristic function, |Ψ(y, ϕ)|, clearly decays more
slowly than the ground-state value. Fourier transforming back to the quad-
rature distribution, one expects structures in p(x, ϕ) that are narrower than
those typical of the ground state distribution. This is illustrated in Fig. 8.4(b).
The first-order-nonclassicality condition may be regarded, in a sense, as being
a generalization of the quadrature-squeezing condition. Whereas the latter
describes the narrowing of the whole quadrature distribution, the former al-
ready applies whenever the quadrature distribution exhibits narrower struc-
tures as in the ground state, even when it as a whole is much broader than the
ground-state distribution.

Experimentally, the first-order-nonclassicality condition was first used for
demonstrating the nonclassical character of a radiation quantum state

�̂η = η|1〉〈1|+ (1 − η)|0〉〈0| (0 < η ≤ 1) (8.69)

[Lvovsky and Shapiro (2002)]. It is easy to verify that the Wigner function of
such a (mixed) state may become negative, which is frequently considered as
a (sufficient) condition for nonclassicality. However, negative values of the
Wigner function do not appear when the contribution to the state (8.69) of the
single-photon state |1〉 becomes too small, that is if η ≤ 0.5. On the contrary,
the condition (8.67) is fulfilled for any value of η.
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8.3.3
Higher-order nonclassicality

Let us now return to the inequality (8.64) and analyze it for values of n > 2.
For this purpose we first write the Bochner condition (8.62) in a matrix form,
understanding Φ(αi−αj) as the n×n matrix Φij≡Φ(αi−αj):

n

∑
i,j=1

Φijξi ξ∗j ≥ 0. (8.70)

The symmetry property Φ(α)=Φ∗(−α), which now reads as Φji=Φ∗
ij, ensures

that the left-hand side of the inequality represents a Hermitian form. Now we
make use of the following theorem of linear algebra [Zhang (1999)]: An n×n
complex matrix is positive semi-definite iff the determinant

Dk =

∣∣∣∣∣∣∣∣
1 Φ12 · · · Φ1k

Φ∗
12 1 · · · Φ2k

. . . . . . . . . . . . . . . . . . . . .
Φ∗

1k Φ∗
2k · · · 1

∣∣∣∣∣∣∣∣
(8.71)

of each of its principal submatrices is non-negative. Hence the inequality
(8.70) is valid, iff for any order k (k=2, . . . , n) the condition

Dk ≥ 0 (8.72)

is fulfilled.
Recalling the inequality (8.64), we are now able to formulate the following

necessary and sufficient nonclassicality condition: A quantum state is non-
classical iff there exist values αi (i= 1, . . . , k) for which the inequality

Dk < 0 (k = 2, . . . , ∞) (8.73)

holds at least for one of the determinants Dk [Richter and Vogel (2002)]. In fact
this determinant criterion implies an infinite hierarchy of conditions of non-
classicality. In practice, however, one would usually start with the condition
for k=2 (first-order nonclassicality). Whenever it is fulfilled, the higher-order
conditions may be of little importance. Note that D2 < 0 agrees with the
condition (8.66) or its equivalent form (8.67).

If a quantum state does not show first-order nonclassicality, it can still be
nonclassical with respect to higher orders. In particular, for k = 3, the condi-
tion (8.73) [together with Eq. (8.71)] reads

|Φ(α1)|2 + |Φ(α2)|2 + |Φ(α1 + α2)|2 − 2Re[Φ(α1)Φ(α2)Φ∗(α1 + α2)] > 1,

(8.74)
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Fig. 8.5 (a) P function of �̂th+ for n̄th = 0.7. (b) Absolute value
|Φ| of the characteristic function of the state �̂th+ for n̄th =0.3
(full line), 0.7 (dashed line), 1.1 (dash-dotted line). The dotted
line marks the boundary between classical behavior and first-
order nonclassical behavior according to the criterion (8.66).
[After Shchukin, Richter and Vogel (2004).]

where the notation has been changed: α1 − α2 �→ α1, α1 − α3 �→ α2. By us-
ing Eq. (8.65) this condition can also be expressed in terms of the character-
istic function of the quadrature distributions, Ψ(y, ϕ). It is worth noting that
in each order the condition (8.73) can be fully expressed in terms of Ψ(y, ϕ),
which can be inferred from the data measured by homodyne detection (Sec-
tion 6.5.4).

An example of a state which does not obey the first-order nonclassicality
criterion is the so-called one-photon added thermal state [Shchukin, Richter
and Vogel (2004)]. It is defined by �̂th+ = N â† �̂thâ, where �̂th is a thermal
state of mean photon number n̄th (N , normalization constant) and reads in
the number basis as

�̂th+ =
1

(1 + n̄th)2

∞

∑
m=1

(
n̄th

1 + n̄th

)m−1

m|m〉〈m|. (8.75)

The characteristic function can be proved to be

Φ(β) = L1[(1 + n̄th)|β|2]e−n̄thβ2
(8.76)

[Li(x), Laguerre polynomial], from which it follows that the P function is well
behaved:

P(α) = − 1
πn̄2

th
L1[(1 + 1/n̄th)|α|2]e−|α|2/n̄th . (8.77)

It attains negative values around the origin of the phase space for any value
of n̄th; see the example in Fig. 8.5(a). First-order nonclassicality, however, is
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only observed for sufficiently small values of n̄th, such as for example n̄th=0.3,
as can be seen from Fig. 8.5(b). For larger values of n̄th the nonclassicality is
obviously of higher order [for details, see Shchukin, Richter and Vogel (2004)].

8.4
Nonclassical moments

From Section 8.2 we already know that observable moments play an impor-
tant role in the study of nonclassical systems. It is therefore desirable to for-
mulate very general nonclassicality criteria in terms of observable moments
which are equivalent to the criteria introduced in Section 8.3 on the basis of the
characteristic functions. This can again be achieved by means of the Bochner
theorem, but in a somewhat modified form.

8.4.1
Reformulation of the Bochner condition

Let f̂ = f̂ (â, â†) be an operator function that can be represented in normal order
as

f̂ =
∫

d2α f (α) : D̂(−α) :, (8.78)

where

f (α) =
1

π2

∫
d2β eαβ∗−α∗β f (β), (8.79)

with f (β)≡ f (β; s=1) being the c-number function associated with f̂ in nor-
mal order [Eq. (4.78) together with Eqs. (4.51) and (4.77) for s = 1], recall
that : D̂(α) : = D̂(α; s = 1) = eαâ†

e−α∗ â. Hence we may write, on recalling that
Φ(α)≡Φ(α;s=1)=〈: D̂(α) :〉 [Eq. (4.90) for s=1], the expectation value 〈: f̂ † f̂ :〉
as

〈: f̂ † f̂ :〉 =
∫

d2α
∫

d2β Φ(α − β) f ∗(α) f (β), (8.80)

Now we can make contact with the Bochner theorem (8.62) in the continu-
ous form [see, e. g., Kawata (1972)]: The function Φ(α) is the characteristic
function of a probability distribution on the complex plane iff for any smooth
function f (α) with compact support the inequality

∫
d2α

∫
d2β Φ(α − β) f ∗(α) f (β) ≥ 0 (8.81)

holds, which, under the assumptions made, is equivalent to

〈: f̂ † f̂ :〉 ≥ 0. (8.82)
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From the above it is clear that a quantum state can be said to be nonclassical
(in the sense that the P function fails to be a probability distribution) if the
Bochner condition in the form (8.82) is violated, i. e., iff there exists an operator
f̂ with

〈: f̂ † f̂ :〉 < 0 (8.83)

[Shchukin, Richter and Vogel (2005); Korbicz, Cirac, Wehr and Lewenstein
(2005)]. Note that the class of operators f̂ can be restricted to those whose
normally ordered form (8.78) exists.

8.4.2

Criteria based on moments

As we will see, the condition (8.83) enables us to formulate nonclassicality
conditions in terms of the normally ordered moments 〈â†nâm〉 of the annihila-
tion and creation operators. For this purpose let us first consider a (normally
ordered) polynomial function

f̂ (â, â†) =
K

∑
k=0

L

∑
l=0

ckl â
†kâl (8.84)

and require the conditions for the quadratic form

〈: f̂ † f̂ :〉 =
K

∑
n,k=0

L

∑
m,l=0

c∗klcnm〈â†n+l âm+k〉 (8.85)

to be non-negative (the coefficients cnm are considered as independent vari-
ables). Introducing the matrix



1 〈â〉 〈â†〉 〈â2〉 〈â† â〉 〈â†2〉 . . .
〈â†〉 〈â† â〉 〈â†2〉 〈â† â2〉 〈â†2â〉 〈â†3〉 . . .
〈â〉 〈â2〉 〈â† â〉 〈â3〉 〈â† â2〉 〈â†2â〉 . . .
〈â†2〉 〈â†2â〉 〈â†3〉 〈â†2â2〉 〈â†3â〉 〈â†4〉 . . .
〈â† â〉 〈â† â2〉 〈â†2â〉 〈â† â3〉 〈â†2â2〉 〈â†3â〉 . . .
〈â2〉 〈â3〉 〈â† â2〉 〈â4〉 〈â† â3〉 〈â†2â2〉 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




(8.86)

and employing Silverster’s criterion, the required necessary and sufficient
conditions are

dk ≥ 0, (8.87)

where dk, k = (k1, . . . , kn), are the principal minors with rows and columns
k1 < · · · < kn. The leading principal minors are simply denoted by dn.
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The conditions (8.87) can be used analogously in the limiting case of infinite
(convergent) series,

f̂ =
∞

∑
k,l=0

ckl â
†kâl , (8.88)

〈: f̂ † f̂ :〉 =
∞

∑
n,k,m,l=0

c∗klcnm〈â†n+l âm+k〉, (8.89)

where f̂ belongs to the class of operators considered in Section 8.4.1. Hence
the conditions (8.87) and (8.82) are equivalent to each other. On this basis we
may formulate the following nonclassicality criterion:10 A quantum state is
nonclassical iff, at least for one k, the condition

dk < 0 (8.90)

holds true [Shchukin and Vogel (2005a)]. The leading principal minor n=2 is
excluded from consideration, since d2 = 〈â† â〉−〈â†〉〈â〉 is simply the incoher-
ent part of the photon number, which is always non-negative. Note that the
moments in the matrix (8.86) can be determined experimentally (Sections 6.5.7
and 7.5).

The negativity of any principal minor dk defines a sufficient condition
for nonclassicality. To give an example, let us consider amplitude-squared
squeezing [Hillery (1987)]:

〈: (∆X̂ϕ)2 :〉 < 0 (8.91)

(for appropriately chosen phase ϕ), where

X̂ϕ = â2eiϕ + â†2e−iϕ. (8.92)

The condition (8.91) can be expressed in terms of a third-order principal mi-
nor:

d(1,4,6) =

∣∣∣∣∣∣
1 〈â2〉 〈â†2〉

〈â†2〉 〈â†2â2〉 〈â†4〉
〈â2〉 〈â4〉 〈â†2â2〉

∣∣∣∣∣∣ < 0, (8.93)

which more explicitly reads

d(1,4,6) = 1
4 〈: (∆X̂ϕ)2 :〉min〈: (∆X̂ϕ)2 :〉max < 0. (8.94)

10) For formulations of the criterion in terms of other moments, includ-
ing normally ordered moments of two noncommuting quadratures,
see Shchukin, Richter and Vogel (2005); Shchukin and Vogel (2005a).
For some special cases see also Agarwal (1993); Klyshko (1996).



290 8 Nonclassicality and entanglement of bosonic systems

Here min (max) refers to the minimum (maximum) of the normally ordered
variance with respect to its dependence on ϕ. Since the maximum cannot
become negative, this condition directly analyzes the effect with respect to the
optimized choice of the phase.11

8.5
Entanglement

After the experimental demonstration of the nonclassical effects considered in
Section 8.2, attention has been focused on the realization of quantum states
displaying observable quantum interference, with special emphasis on entan-
glement. Quantum interference effects occur when the quantum state of a
physical system can be considered as being composed of two (or more) differ-
ent states, e. g.,

|Ψ〉 = N (|ψ〉+ |χ〉) (8.95)

(N , normalization constant; |ψ〉 �= |χ〉). For any Hermitian operator x̂ with
eigenstates |x〉 the probability distribution pΨ(x) = |〈x|Ψ〉|2 of finding an
eigenvalue x for the system being in the state |Ψ〉 reads

pΨ(x) = 1
2{pψ(x) + pχ(x) + 2Re [ψ(x)χ∗(x)]}. (8.96)

Besides the probability distributions for the system being in the states |ψ〉 and
|χ〉, pψ(x) = |〈x|ψ〉|2 and pχ(x) = |〈x|χ〉|2, there occurs an interference term
composed of the product of the two probability amplitudes ψ(x)= 〈x|ψ〉 and
χ∗(x) = 〈χ|x〉 – quantities that are unknown in classical probability theory.
Hence the interference term obviously represents a pure quantum effect, the
strength of which increases with the separation of the states.

8.5.1
Separable and nonseparable quantum states

Let us consider a system that consists of two sub-systems, say the sub-systems
1 and 2. In the simplest case when the subsystems prepared in the pure states
|ψ1〉 and |χ2〉 are completely uncorrelated, then the composed system is pre-
pared in the product state

|Ψ〉 = |ψ1〉 ⊗ |χ2〉, (8.97)

which is an example of a separable state. In this case the expectation values of
products of quantities of the two subsystems factorize. Now let |ψ1〉 and |χ2〉
11) For further details the reader is referred to

Shchukin and Vogel (2005a).
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be superposition states,

|ψ1〉 = N1
(
|ψ(a)

1 〉 + |ψ(b)
1 〉

)
, (8.98)

|χ2〉 = N2
(
|χ(c)

2 〉 + |χ(d)
2 〉

)
(8.99)

(|ψ(a)
1 〉 �= |ψ(b)

1 〉, |χ(c)
1 〉 �= |χ(d)

1 〉) and consider, e. g., the system state

|Ψ〉 = N
(
|ψ(a)

1 〉 ⊗ |χ(c)
2 〉 + |ψ(b)

1 〉 ⊗ |χ(d)
2 〉

)
, (8.100)

which cannot be rewritten in a factorized (separable) form of the type (8.97).
The state |Ψ〉, which describes a quantum-mechanically correlated bipartite
system, is an example of an entangled state. Another typical example is the
two-mode squeezed vacuum state (3.173).

The counterintuitive nature of entangled states was already realized in the
early days of quantum mechanics. It becomes most evident when one tries
to transfer the properties of an entangled state to macroscopic objects. The
standard example is Schrödinger’s cat [Schrödinger (1935)]. In his original
Gedanken experiment Schrödinger considered a cat which is confined within
a box together with a small amount of radioactive material. When a detector
registers a radioactive decay it triggers a mechanism which kills the cat. Thus
the system can be expected to be in an entangled state of the type

|Ψcat〉 = 1√
2
(|decay〉|cat dead〉+ |no decay〉|cat alive〉). (8.101)

That is, if the detector has registered a decay the cat is dead, whereas the
cat is still alive when the detector has not registered a decay. As long as we
do not perform a measurement, say by opening the box, the cat is in a cu-
rious quantum superposition of being (simultaneously) dead and alive. Ex-
perimental realizations of mesoscopic versions of such entangled states have
been achieved by using the atom–field interaction in a cavity (Chapter 12) and
the vibronic coupling of trapped atoms (Chapter 13). Another example of the
debate on the consequences of entanglement is the Einstein–Podolsky–Rosen
paradox [Einstein, Podolsky and Rosen (1935)], which has stimulated a series
of discussions on fundamental physical and philosophical aspects, including
completeness of quantum theory, physical reality and locality.12

During the last years entangled states have received much attention in the
framework of the rapidly developing field of quantum information. In partic-
ular, entanglement has been considered as a basic prerequisite for implement-
ing quantum computation [see, e. g., Ekert and Josza (1996)] and quantum
communication [see, e. g., Bennett and Wiesner (1992) and Bennett, Brassard,
Crépeau, Jozsa, Peres and Wootters (1993)]. In this context, Shor’s factoring

12) For more details see, e. g., Bell (1997).
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algorithm [Shor (1994)] and Grover’s search algorithm [Grover (1997)] are the
most prominent examples in quantum computation, were it is believed that
the use of entangled states can lead to a substantial decrease in computational
resources.

For a more detailed analysis of entanglement, we focus on bipartite systems
– the simplest case in which entanglement may occur. In particular, we con-
sider systems composed of subsystems of equal type, the dimension of the
Hilbert space of each of them is allowed to be infinite. We are mainly inter-
ested in systems like two harmonic-oscillator modes, with special emphasis
on two radiation modes or two modes of the quantized motion of trapped
atoms (Chapter 13). Note that in the context of quantum information process-
ing Hilbert spaces of finite dimensions are frequently considered, for example,
two-dimensional spaces for qubits.

A generally accepted definition of entanglement must of course include
mixed states, which cannot be described by state vectors [as in the example
in Eq. (8.100)] but necessarily require a description in terms of density oper-
ators. Let us therefore consider a bipartite system prepared in an arbitrary
state described by the density operator �̂. The state is called separable if it is a
convex combination of factorizable states [Werner (1989)], i. e.,

�̂ =
∞

∑
n=0

pn �̂
(n)
1 ⊗ �̂

(n)
2 , (8.102)

where the density operators �̂
(n)
1 and �̂

(n)
2 , respectively, characterize quantum

states of the subsystems 1 and 2, and the pn are ordinary probabilities:

pn ≥ 0,
∞

∑
n=0

pn = 1. (8.103)

A state is called entangled if it is not separable.13 Although the separability
condition (8.102) looks rather simple, it turns out to be a complex problem
to distinguish separable quantum states from inseparable ones. In particular,
there has been no experimental implementation of the general separability
condition.

8.5.2
Partial transposition and entanglement criteria

A partial answer to the problem of finding a tractable entanglement criterion
is given by the Peres–Horodecki condition – a sufficient criterion applicable

13) At this point the question of a quantitative measure of the strength
of entanglement may arise. There are different approaches to the
problem [for a review, see, e. g., Plenio and Vedral (1998)]. In the
case of pure states, the entropic measure E=S1 =S2 is generally ac-
cepted to be such a measure, where Si is the von Neumann entropy
of the ith subsystem.
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to a broad class of states [Peres (1996); Horodecki, Horodecki and Horodecki
(1996); Horodecki (1997)]. It is not difficult to verify that full transposition of
an arbitrary density operator gives an operator that is again a density operator.
In the case of a bipartite system one may also consider the partially transposed
density operator, i. e., the operator which is obtained by partially transposing
the density operator with respect to one of the subsystems. In contrast to
full transposition, partial transposition does not necessarily map a quantum
state onto a quantum state. However, it turns out that the partially transposed
density operator of a separable state is again a density operator:14

�̂PT =
∞

∑
n=0

pn�̂
(n)
1 ⊗ �̂

(n)T
2 . (8.104)

This property of a separable quantum state allows one to use the failure of the
partial transposition of the density operator to again have the properties of a
density operator as a sufficient condition for entanglement.

This condition implies that a state is entangled when the partial transposi-
tion of the density operator fails to be non-negative. Before going into details,
let us consider an arbitrary non-negative Hermitian operator Â, that is

〈ψ|Â|ψ〉 = Tr (Â|ψ〉〈ψ|) ≥ 0 (8.105)

holds for any (normalizable) quantum state |ψ〉. The non-negative operator
|ψ〉〈ψ| can be written as

|ψ〉〈ψ| = f̂ † f̂ , (8.106)

where f̂ may be given in the form

f̂ = |ϕ〉〈ψ|, (8.107)

with |ϕ〉 being an arbitrary (normalizable) state of the system. Let â1 and â2
be the annihilation operators of the first and the second mode, respectively, of
a two-mode bosonic system. In this case, f̂ can be regarded as an operator-
valued function of â1, â†

1 and â2, â†
2 [ f̂ = f̂ (â1, â†

1, â2, â†
2)]. Since the expectation

value of |ϕ〉〈ψ| for arbitrary coherent states exists, it is clear that the normally
ordered form of f̂ exists either. Hence we conclude that a Hermitian operator
Â is non-negative iff for any such operator f̂ the inequality

Tr (Â f̂ † f̂ ) ≥ 0 (8.108)

14) Note that, since �̂
(n)T
2 is a density operator for all n, �̂PT is also a

density operator, because of the expansion (8.104). Of course, this
also remains valid if the transposition is performed with respect to
the subsystem 1.
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is fulfilled. Recalling the Peres–Horodecki condition, we may therefore say
that, for a separable two-mode state, the inequality

Tr (�̂PT f̂ † f̂ ) ≥ 0 (8.109)

holds true for any (two-mode) operator f̂ to be considered [Shchukin and Vo-
gel (2005b)].

8.5.2.1 Negativity of the partial transposition in terms of moments

Let us expand the normally ordered form of f̂ = f̂ (â1, â†
1, â2, â†

2),

f̂ =
∞

∑
n,m,k,l=0

cnmkl â
†n
1 âm

1 â†k
2 âl

2 , (8.110)

so that the inequality (8.109) takes the form

∞

∑
n,m,k,l=0
p,q,r,s=0

c∗pqrscnmkl Mpqrs,nmkl ≥ 0, (8.111)

where

Mpqrs,nmkl = Tr (�̂PTâ†q
1 âp

1 â†n
1 âm

1 â†s
2 âr

2 â†k
2 âl

2). (8.112)

To relate the Mpqrs,nmkl to measurable quantities, we first perform explicitly
the partial transposition, leading to the moments

Mpqrs,nmkl = 〈â†q
1 âp

1 â†n
1 âm

1 â†l
2 âk

2 â†r
2 âs

2〉. (8.113)

These moments can then be expressed in terms of linear combinations of nor-
mally ordered moments by applying the relation (4.96) (for s=−1, s′=1):

âp â†n =
min(p,n)

∑
k=0

p!n!
k!(p − k)!(n − k)!

â†n−kâp−k. (8.114)

The left hand side of the inequality (8.111) is a quadratic form with respect
to the coefficients cnmkl . Silvester’s criterion states that this inequality is ful-
filled for all cnmkl, iff all the principal minors attributed to the quadratic form
are non-negative. In this context it may be convenient to relate the multi-index
combination (n, m, k, l) to a single index and number the Mpqrs,nmkl by two in-
dices like an ordinary matrix, Mpqrs,nmkl �→ Mij. To define the ordinal number
of a multi-index combination u=(n, m, k, l), we apply the following ordering
prescription:

u < u′ ↔
{
|u| < |u′| or

|u| = |u′| and u <′ u′ (8.115)
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[u′ = (n′, m′, k′, l′)], where |u|= n + m + k+ l and u <′ u′ means that the first
nonzero difference k′ − k, l′ − l, n′ − n, m′ −m is positive. According to this
prescription, the ordered sequence of moments begins as follows:

1, 〈â1〉, 〈â†
1〉, 〈â2〉, 〈â†

2〉, 〈â2
1〉, 〈â†

1 â1〉, 〈â†2
1 〉,〈â1â2〉,

〈â†
1 â2〉,〈â2

2〉, 〈â1â†
2〉, 〈â†

1 â†
2〉, 〈â†

2 â2〉, 〈â†2
2 〉, . . . . (8.116)

Introducing the matrix




M11 M12 . . . M1N
M21 M22 . . . M2N
. . . . . . . . . . . . . . . . . . . . . . . . . .
MN1 MN2 . . . MNN




=




1 〈â1〉 〈â†
1〉 〈â†

2〉 〈â2〉 . . .
〈â†

1〉 〈â†
1 â1〉 〈â†2

1 〉 〈â†
1 â†

2〉 〈â†
1 â2〉 . . .

〈â1〉 〈â2
1〉 〈â1 â†

1〉 〈â1â†
2〉 〈â1â2〉 . . .

〈â2〉 〈â1â2〉 〈â†
1 â2〉 〈â†

2 â2〉 〈â2
2〉 . . .

〈â†
2〉 〈â1 â†

2〉 〈â†
1 â†

2〉 〈â†2
2 〉 〈â2 â†

2〉 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




,

(8.117)

the following necessary and sufficient condition for the negativity of the par-
tially transposed density operator of a two-mode bosonic system can be given
in terms of the principal minors:

∃k : dk < 0 (8.118)

[Shchukin and Vogel (2005b); Miranowicz and Piani (2006)]. This represents
a very general, sufficient condition for entanglement in terms of measurable
quantities.

8.5.2.2 Special entanglement conditions

From the above it follows that each individual inequality dk < 0 can be re-
garded as a special entanglement condition. Moreover, by appropriately iden-
tifying some of the coefficients cnmkl in Eq. (8.110), the inequality (8.111) can be
used in an analogous way to derive other types of entanglement conditions,
which may be more useful than the condition (8.118). In this way, a number
of sufficient entanglement conditions can be established.

For example, let us restrict our attention to moments up to the second order
and consider the condition

d5 < 0, (8.119)
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which agrees with the one given by Simon (2000). Straightforward calculation
shows that d5 can be rewritten as

d5 = det A1 det A2 +
( 1

4 + det C
)2 − Tr(A1 JCJA2 JCT J)

− 1
4 (det A1 + det A2), (8.120)

where matrices Ai (i=1, 2), C and J are defined by15

Ai =
(

〈(∆x̂i)2〉 1
2 〈[∆x̂i, ∆ p̂i]+〉

1
2 〈[∆x̂i, ∆ p̂i]+〉 〈(∆ p̂i)2〉

)
, (8.121)

C =
(
〈∆x̂1∆x̂2〉 〈∆x̂1∆ p̂2〉
〈∆ p̂1∆x̂2〉 〈∆ p̂1∆ p̂2〉

)
, (8.122)

J =


 0 1

−1 0


 , (8.123)

with x̂i =(âi + â†
i )/

√
2 and p̂i = i(â†

i − âi)/
√

2.
Another example16 is the condition

d(1,2,4) < 0, (8.124)

with

d(1,2,4) =

∣∣∣∣∣∣
1 〈â1〉 〈â†

2〉
〈â†

1〉 〈â†
1 â1〉 〈â†

1 â†
2〉

〈â2〉 〈â1 â2〉 〈â†
2 â2〉

∣∣∣∣∣∣ (8.125)

where the corresponding principal minor corresponds to the operator
f̂ =c1 +c2 â1 +c3 â2 in Eq. (8.110). The condition (8.124), which can be rewritten
as

〈∆â†
1∆â1〉〈∆â†

2∆â2〉 < |〈∆â1∆â2〉|2, (8.126)

can be related to the following condition given by Duan, Giedke, Cirac and
Zoller (2000):

〈(∆û)2〉+ 〈(∆v̂)2〉 − (r2 + r−2) < 0, (8.127)

where

û = |r|x̂1 + r−1 x̂2, v̂ = |r| p̂1 − r−1 p̂2 , (8.128)

15) [Â, B̂]+ denotes the anti-commutator.
16) For further examples, see Shchukin and Vogel (2005b).
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with r being an arbitrary (nonzero) real parameter. Expressing the operators
û and v̂ in terms of linear combinations of the creation and annihilation op-
erators, substituting them into the inequality (8.127), and minimizing the left-
hand side with respect to r, we arrive at

〈∆â†
1∆â1〉〈∆â†

2∆â2〉 < (Re 〈∆â1∆â2〉)2. (8.129)

We see that the condition (8.127) is a weaker form of the condition (8.126).
Of course, the method can also be used to formulate new entanglement con-

ditions which are specific to particular problems. Choosing, for example,

f̂ = c1 â†n
1 âm

1 â†k
2 âl

2 + c2â†p
1 âq

1 â†r
2 âs

2 (8.130)

in Eq. (8.110), we may consider the condition

〈â†m
1 ân

1 â†n
1 âm

1 â†l
2 âk

2 â†k
2 âl

2〉〈â†q
1 âp

1 â†p
1 âq

1 â†s
2 âr

2 â†r
2 âs

2〉 < |〈â†m
1 ân

1 â†p
1 âq â†s

2 âr
2 â†k

2 âl
2〉|2.

(8.131)

This type of condition offers a simple way of formulating conditions in terms
of higher-order moments, which are of particular interest in characterizing
non-Gaussian states.
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9
Leaky optical cavities

Resonator-like devices play an important role in modern optics and rapid
progress in the fields of laser physics and nonlinear and quantum optics1

would be unthinkable without their use. Optical cavities are typically in-
volved in the generation and/or amplification of light by atomic sources. The
sources are placed inside the resonator-like cavity, which is in contact with
the environment via appropriately chosen (fractionally transparent) walls, so
that the radiation field inside the cavity (referred to as the internal field) may
be partially transmitted to free space. In this manner, the field generated or
amplified inside the cavity may contribute to the radiation field outside (re-
ferred to as the external field), which is the desired one in many applications.
On the other hand, the dynamics of the light–matter interaction inside the res-
onator is influenced by that part of the external radiation field which passes
through the fractionally transparent walls and therefore contributes to the in-
ternal radiation field. This is also true when the incoming radiation field is
in the vacuum state. In this case the quantum fluctuations of the (incoming)
vacuum act on the radiation field inside the cavity. In these and related situa-
tions a consistent quantum-physical description of the radiation field requires
consideration of both the lossy resonator-like cavity and the active medium.
In the hypothetical case of a lossless resonator the situation is quite simple. In
practice, however, the losses of the resonator cannot be ignored. The radiation
field of interest is usually the output radiation field, which simply represents
the losses of the internal radiation field.

One approach to the problem of obtaining a quantum description of the ac-
tion of a leaky optical cavity with output coupling is based on the familiar
formalism of quantum noise theory (Chapter 5), in which the explicit nature
of the input from a heat bath, and the output into it, is taken into account [see,
e. g., Collett and Gardiner (1984); Collett and Walls (1985); Gardiner and Col-
lett (1985); Yamamoto and Imoto (1986); Carmichael (1987); Gardiner (1989)].
The starting point is the conventional picture of a “small” system containing a

1) Quantum optics in cavities [frequently called cavity quantum elec-
trodynamics (cavity QED)] has been a very rapidly developing and
growing field of quantum optics, see, e. g., the review by Meystre
(1992).
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given radiation-field mode of the idealized (lossless) cavity, which is linearly
coupled to a “large” (harmonic-oscillator) reservoir, and which may also un-
derlie certain intra-cavity interactions. Physically, the reservoir is regarded as
representing the radiation-field modes outside the resonator-like cavity, which
are assumed to be coupled to the internal radiation-field mode owing to the
fractional transparency of one or both mirrors. Accordingly, the input from
the reservoir and the output into it are identified with the incoming and out-
going radiation fields, respectively. By assuming the reservoir spectrum to
be flat and the reservoir–system coupling constant to be independent of fre-
quency, the behavior of the internal-mode operators may then be calculated
by quantum Langevin-equation methods. In the resulting Langevin equations
the Langevin force operators are related to the input into the cavity from the
reservoir. Analogously, time-reversed Langevin equations may be derived in
which the Langevin forces are related to the output into the reservoir from
the cavity. With the use of causality and boundary conditions, the relation-
ship between correlation functions of the output and those of the system and
the input may be developed. In this way, it becomes possible to calculate the
output statistics, provided that the input statistics is known and that the sys-
tem correlation functions can be evaluated. The advantage of this extended
damping theory over the commonly used one is that, apart from the fact that
it allows for the possibility that the input may be other than a vacuum or ther-
mal input, it contains a prescription for calculating the properties of the light
emitted from the cavity.

Clearly, the true situation is described by the existence of a (continuous)
multi-mode radiation field, whose mode structure is more or less modified
(in comparison with the free-space case) owing to the presence of the frac-
tionally transparent (dielectric) walls of the cavity [Lang and Scully (1973);
Ujihara (1975, 1977, 1978, 1979, 1984); Guedes, Penaforte and Baseia (1989);
Guedes and Baseia (1990); Feng (1991); De Martini, Marocco, Mataloni, Cres-
centini and Loudon (1991); Khosravi and Loudon (1991); Knöll, Vogel and
Welsch (1991a,b); Knöll and Welsch (1992); Dutra and Nienhuis (2000); Vivi-
escas and Hackenbroich (2003)]. This multi-mode (space-time-dependent) ra-
diation field interacts with certain kinds of atomic sources which usually form
the active medium within the resonator. In performing an appropriate mode
expansion of the radiation field, one can show that in some approximation the
introduction of two kinds of photonic operators (namely system and reservoir
operators) and the appropriate relations between them comes out naturally
and need not be postulated. The equivalence of the two approaches can be
used also to take into account the effect on the cavity field of unwanted losses
such as absorption losses, by simply supplementing the Langevin equations
with damping and noise terms that are attributed to the additional dissipative
channels [Viviescas and Hackenbroich (2003); Khanbekyan, Knöll, Semenov,
Vogel and Welsch (2004)].
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Provided that absorption losses can be disregarded in the frequency interval
under consideration, the formalism of field quantization in a dielectric with
real, space-dependent refractive index (Section 2.4.1) applies [Knöll, Vogel and
Welsch (1991b); Knöll and Welsch (1992)]. By starting from an expansion of the
radiation field in terms of a continuous set of modes extended over the whole
universe (Sections 9.1 and 9.2), the formalism naturally yields a description of
the radiation field inside the cavity in terms of quantum Langevin equations
(Section 9.3), which may be extended to include in the theory unwanted losses
such as scattering and absorption losses (Section 9.7). In relating the radiation
field outside the cavity to that inside it (Section 9.4), the time-dependent com-
mutation relations (Section 9.5) are needed to handle the quantum Langevin
equations and the input-output relations (Sections 9.6 and 9.8).

9.1
Radiation-field modes

Let us begin with the calculation of the mode continuum of the radiation
field. For the sake of clarity we consider a one-dimensional cavity of length L,
bounded by a perfectly reflecting plane mirror at x =0 and a fractionally trans-
parent plane mirror at x = L (Fig. 9.1). We further assume that the radiation
field is polarized in the z direction.

M1 M2

S PD

x

Fig. 9.1 Scheme of a one-dimensional cavity bounded by a perfectly
reflecting mirror M1 and a fractionally transparent (multi-slab dielectric)
mirror M2 (S, atomic sources; PD, photodetector).

9.1.1
Solution of the Helmholtz equation

To gain insight into the mode structure of the radiation field, let us first con-
sider the simple case where the fractionally transparent mirror is a dielectric
plate of thickness d and refractive index n, which for simplicity is assumed to
be a positive constant number. In this case the mode functions A(k, x) obey
the Helmholtz equation

∂2 A(k, x)
∂x2 + n2(x)k2 A(k, x) = 0, k2 =

ω2

c2 , (9.1)
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[cf. Eq. (2.195)], where

n(x) =

{
1 if 0 < x < L, L + d < x,

n if L ≤ x ≤ L + d.
(9.2)

The boundary conditions at the surfaces of discontinuity are

A(k, 0) = 0, (9.3)

lim
ε→0

[A(k, L + ε) − A(k, L − ε)] = 0, (9.4)

lim
ε→0

[A(k, L + d + ε) − A(k, L + d − ε)] = 0, (9.5)

lim
ε→0

[
∂A(k, x)

∂x

∣∣∣∣
x=L+ε

− ∂A(k, x)
∂x

∣∣∣∣
x=L−ε

]
= 0, (9.6)

lim
ε→0

[
∂A(k, x)

∂x

∣∣∣∣
x=L+d+ε

− ∂A(k, x)
∂x

∣∣∣∣
x=L+d−ε

]
= 0. (9.7)

The solution of Eq. (9.1) together with Eqs (9.2)–(9.7) is elementary and
straightforward. The result may be written as

A(k, x) =
(

h̄
4πAε0ω

)1/2




T(ω)
(

eikx − e−ikx
)

if 0 ≤ x ≤ L,

T(ω)
T∗(ω)

eikx − e−ikx if L + d ≤ x,
(9.8)

where k > 0 and A is the mirror area. Note that the functions A(k, x) are nor-
malized according to the condition (2.196) with |cλ|2 =2ωλε0/h̄. The spectral
response function of the cavity field T(ω) is

T(ω) =
t(ω)

1 + r(ω) exp(2ilω/c)
, l = L + d. (9.9)

It is expressed in terms of the spectral transmission and reflection response
functions of the right-hand mirror, t(ω) and r(ω), respectively. In the case
of the simple dielectric plate considered here, t(ω) and r(ω) are calculated as
[Eqs (6.130)–(6.132) with T(ω) �→ t(ω) and R(ω) �→ r(ω) therein]

t(ω) =
(1 − r2) exp[i(n − 1)dω/c]

1 − r2 exp(2indω/c)
= t∗(−ω), (9.10)

r(ω) = r
exp(2indω/c)− 1

1 − r2 exp(2indω/c)
e−iωd/c = r∗(−ω), (9.11)

where

r2 =
(

n − 1
n + 1

)2

, (9.12)

and t(ω) and r(ω) satisfy the conditions (6.133) and (6.134).
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At this point we note that the validity of Eq. (9.9) is more general than that of
Eqs (9.10) and (9.11), which only hold when the right-hand mirror is modeled
by a dielectric plate of positive constant refractive index. Therefore, in what
follows, we do not return to Eqs (9.10) and (9.11). Clearly, both the frequency
dependences of t(ω) and r(ω) and the mode structure of the radiation field
inside the right-hand wall are determined by the mirror actually used in a res-
onator device. To ensure high reflectivity and to sufficiently reduce internal
losses, such a mirror is in general a complicated dielectric multi-slab configu-
ration. Assuming the thickness of the mirror to be small compared with the
length of the cavity, so that L≈L+d= l, we may disregard the mode structure
inside the mirror and regard Eq. (9.8) [together with Eq. (9.9) and appropri-
ately chosen t(ω)] as complete [Ley and Loudon (1987)]. It should be noted
that the following useful relations may be derived:

T∗(ω) = T(−ω), (9.13)

T(ω)
T∗(ω)

= t(ω)T(ω)− r(ω) e−2ilω/c. (9.14)

9.1.2

Cavity-response function

In the case of a proper high-quality2 resonator we may assume that (within the
bandwidth of the radiation under study) the spectral transmission and reflec-
tion functions t(ω) and r(ω), respectively, are slowly varying with frequency.
Let us (for a moment) suppose that they are constant, that is, t(ω)≡ t=const
and r(ω)≡ r=const. In this case, the poles of T(ω) (as a function of ω in the
whole complex plane) are determined by the solutions of

1 + r e2ilΩn/c = 0. (9.15)

Writing r as

r = |r| eiφr , (9.16)

from Eq. (9.15) we find

Ωm = ωm − 1
2 iΓ, (9.17)

ωm = m
πc
l

+ δω (m integer), (9.18)

2) The quality of a resonator is usually described in terms of the quality
factor Q=ω/Γ, where ω is the mid-frequency of the line to which
the resonator is tuned and Γ characterizes the width of the line.
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δω =
c
2l

(π − φr), (9.19)

Γ = − c
l

ln |r|. (9.20)

In the case where the transmittance is sufficiently weak (|t|2 � 1) we may
simplify Eq. (9.20) as follows:

Γ = − c
l

ln(1 − |t|2) 1
2 � c

2l
|t|2, (9.21)

which allows a simple and intuitive interpretation. Imagine that a photon
enters the cavity and leaves it after a time of flight

τfl = 2l/c (9.22)

with probability |t|2. Hence, provided that times smaller than the time of flight
are not resolved, Γ�|t|2c/2l= |t|2/τfl is just the transition probability per unit
time for the photon passing from inside to outside the cavity. As we shall
see later, this interpretation is closely related to the damped-mode concept to
be developed. Clearly, when |t|2�1, the “damping rate” Γ is small compared
with the separation of frequency ∆ω=ωm+1−ωm=πc/l; that is, Γ�∆ω. Note
that the frequencies ωm, apart from the frequency shift δω, coincide with the
well-known eigenfrequencies of the radiation field inside the ideal-resonator
cavity (t=0). From Eqs (9.9) and (9.15) the behavior of T(ω) in the vicinity of
a given pole Ωm can readily be derived. The result is

T(ω) � ic
2l

t
ω − Ωm

=
c
2l

t
1
2 Γ − i(ω − ωm)

, (9.23)

which reveals that for sufficiently small Γ (Γ�∆ω) the spectral response func-
tion of the cavity field becomes effective in discriminating against values of
ω not equal to ωm. In what follows we confine ourselves to the case of small
transmission coefficients (|t|2�1, or equivalently Γ�∆ω).

We now specify the assumption that the spectral transmission response
function t(ω) is slowly varying with frequency. For this purpose, we assume
that the variation of t(ω) may be disregarded as long as the variation of fre-
quency remains small compared with Γ(ω)=−c ln |r(ω)|/l� c|t(ω)|2/2l. In
this case the (analytically continued) function T(ω) may be expected to exhibit
a pole structure similar to that discussed above:

Ωm = ωm − 1
2 iΓm , (9.24)

ωm = m
πc
l

+ δωm (m integer), (9.25)

Γm = − c
l

ln |r(Ωm)| � c
2l

|t(Ωm)|2 � c
2l

|t(ωm)|2, (9.26)
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δωm =
c
2l

[π − φr(Ωm)], (9.27)

T(ω) =
ic
2l

t(Ωm)
ω − Ωm

(ω ≈ Ωm). (9.28)

Defining the Fourier transform of T(ω) as

T(τ) =
∫ dω

2π
T(ω) e−iωτ (9.29)

and using the pole structure of T(ω), we may represent T(τ) in the form

T(τ) = Θ(τ) ∑
m

Tm e−iΩmτ, (9.30)

where

Tm =
c
2l

t(Ωm) � c
2l

t(ωm) (9.31)

[Θ(τ), unit step function]. Note that the relation

T(−τ) =
∫ dω

2π
T∗(ω) e−iωτ = Θ(−τ) ∑

m
T∗

m e−iΩ∗
mτ (9.32)

holds, because of Eq. (9.13). Accordingly, we define the Fourier transform of
the function

G(ω) = |T(ω)|2 (9.33)

as

G(τ) =
∫ dω

2π
G(ω) e−iωτ (9.34)

leading to

G(τ) =
c
2l ∑

m
exp

(
−iωmτ − 1

2 Γm|τ|
)

, (9.35)

where the approximation Γm =c|t(ωm)|2/2l has been used [cf. Eq. (9.26)].

9.2
Source-quantity representation

Let us consider the operator of the canonical momentum of the radiation field,
Π̂(x, t), which (in the Heisenberg picture) may be represented, by means of
mode expansion according to Eq. (2.70), in the form

Π̂(x, t) = Π̂(+)(x, t) + Π̂(−)(x, t), (9.36)
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Π̂(+)(x, t) = −ε0

∫ ∞

0
dk iωA(k, x)â(k, t), (9.37)

Π̂(−)(x, t) =
[
Π̂(+)(x, t)

]†, (9.38)

with the mode functions given by Eq. (9.8). To study the field outside the
cavity (external field), it will be useful to decompose it into incoming and
outgoing fields (x> l):

Π̂(+)(x, t) = Π̂(+)
in (x, t) + Π̂(+)

out (x, t), (9.39)

where

Π̂(+)
in(out)(x, t) = −ε0

∫ ∞

0
dk iωAin(out)(k, x)â(k, t), (9.40)

Ain(k, x) = −
(

h̄
4πAε0ω

)1
2

e−ikx, (9.41)

Aout(k, x) =
(

h̄
4πAε0ω

)1
2 T(ω)

T∗(ω)
eikx. (9.42)

Note that

A(k, x) = Ain(k, x) + Aout(k, x). (9.43)

The information about the field incident on the cavity (incoming field) is con-

tained in Π̂(±)
in (x, t), whereas Π̂(±)

out (x, t) describes the outgoing field available
for further applications.

Recalling the pole structure of T(ω), it is convenient to subdivide the k axis
into intervals and introduce multi-mode fields with the aim of expressing the
operator of the canonical momentum field as given in Eq. (9.37) in terms of
(slowly varying) amplitude operators. The field inside the cavity (internal
field) is written as (0<x<L)

Π̂(+)(x, t) = ∑
n

Π̂(+)
n (x, t) e−iωnt, (9.44)

Π̂(+)
n (x, t) = −ε0

∫
[n]

dk iωA(k, x) eiωntâ(k, t). (9.45)

In Eq. (9.45) the [n] notation means integration over the nth interval kn, kn +
∆kn, where

kn =
[
ωn − 1

2 (ωn − ωn−1)
]
/c, (9.46)

∆kn = (ωn+1 − ωn−1)/(2c), (9.47)

where the ωn (ωn>0) are the real parts of the zeros of the denominator of T(ω)
[cf. Eq. (9.25)]. When the radiation field outside the cavity is decomposed into
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an incoming and an outgoing part as in Eqs (9.39)–(9.42), the (slowly varying)
amplitude operators can be defined as (x> l)

Π̂(+)
n in(x, t) = −ε0

∫
[n]

dk iωAin(k, x) eiωn(t+x/c)â(k, t), (9.48)

Π̂(+)
n out(x, t) = −ε0

∫
[n]

dk iωAout(k, x) eiωn(t−x/c)â(k, t), (9.49)

where Ain(k, x) and Aout(k, x) are given by Eqs (9.41) and (9.42), respectively.
From Eqs (9.39) and (9.40), together with Eqs (9.48) and (9.49), we easily see
that Eq. (9.39) may be rewritten in the form of

Π̂(+)(x, t) = ∑
n

[
Π̂(+)

n in(x, t) e−iωn(t+x/c) + Π̂(+)
n out(x, t) e−iωn(t−x/c)

]
. (9.50)

Introducing the source-quantity representation according to Eqs (2.272)–

(2.274), we may represent Π̂(+)
n (x, t) as (0<x<L)

Π̂(+)
n (x, t) = Π̂(+)

n free(x, t) + Π̂(+)
n s (x, t), (9.51)

where

− 1
ε0

Π̂(+)
n free(x, t) =

∫
[n]

dk iωA(k, x)eiωnt âfree(k, t), (9.52)

− 1
ε0

Π̂(+)
n s (x, t) = A

∫
dt′

∫
dx′ Θ(t − t′)K(+)

n (x, t; x′, t′)eiωnt′ P̂(x′, t′),

(9.53)

and [cf. Eq. (2.277)]

K(+)
n (x, t; x′, t′) =

i
h̄

∫
[n]

dk ω2A(k, x)A∗(k, x′)e−i(ω−ωn)(t−t′). (9.54)

Accordingly, the source-quantity representation of Π̂(+)
n in(out)(x, t) outside

the cavity [Eqs (9.48) and (9.49)] is then (x> l)3

Π̂(+)
n in(out)(x, t) = Π̂(+)

n in(out) free(x, t) + Π̂(+)
n in(out) s(x, t), (9.55)

where

− 1
ε0

Π̂(+)
n in free(x, t) =

∫
[n]

dk iωAin(k, x)eiωn(t+x/c)âfree(k, t), (9.56)

3) Note that outside the cavity the canonical momentum field can be
regarded as being the electric field, when the (relevant) sources are
inside the cavity.
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− 1
ε0

Π̂(+)
n out free(x, t) =

∫
[n]

dk iωAout(k, x)eiωn(t−x/c)âfree(k, t), (9.57)

− 1
ε0

Π̂(+)
n in(out) s(x, t)

= A
∫

dt′
∫

dx′ Θ(t − t′)K(+)
n in(out)(x, t; x′, t′)eiωnt′ P̂(x′, t′), (9.58)

K(+)
n in (x, t; x′, t′)

=
i
h̄

∫
[n]

dk ω2Ain(k, x)A(k, x′)∗ exp[−i(ω − ωn)(t − t′) + iωnx/c],

(9.59)

K(+)
n out(x, t; x′, t′)

=
i
h̄

∫
[n]

dk ω2Aout(k, x)A(k, x′)∗ exp[−i(ω − ωn)(t − t′) − iωnx/c].

(9.60)

9.3
Internal field

Let us introduce some simplifications to the general expressions for the in-
ternal field. The main approximation consists in a coarse-grained averaging
which implies that the time of flight of a photon through the cavity is assumed
to be small compared with the time resolution of interest. On the basis of this
concept, nonmonochromatic cavity modes can be introduced and the associ-
ated photon operators are found to obey quantum Langevin equations.

9.3.1
Coarse-grained averaging

We start from the free-field operator Π̂(+)
n free(x, t) in the form (9.52). Using

Eqs (9.8) and (9.29), and recalling the relation

âfree(k, t) = e−iω(t−τ)âfree(k, τ), (9.61)

we may rewrite Eq. (9.52) to obtain (x<L� l)

− 1
ε0

Π̂(+)
n free(x, t) =

∫
dt′ T(t + x/c − t′)eiωn(t−t′)Ê (+)

n in free(t′)

−
∫

dt′ T(t − x/c − t′)eiωn(t−t′)Ê (+)
n in free(t′), (9.62)
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where

Ê (+)
n in free(t) = −i

(
h̄

4πAε0

)1
2 ∫

[n]
dk

√
ω eiωntâfree(k, t) (9.63)

is just the incoming free electric field (of center frequency ωn), as can easily
be seen by comparing Eq. (9.56) [together with Eq. (9.8) (x > L + d = l)] with
Eq. (9.63):

−ε−1
0 Π̂(+)

n in free(x, t) = Ê (+)
n in free(t + x/c) (x > l). (9.64)

Clearly, the incoming free field satisfies the homogeneous Maxwell equations
and depends, as a function of t and x, only on the combination t+x/c.

In Eq. (9.62), which is exact, the first term on the right-hand side describes
the transmitted part of the incoming field. The reflection at the totally reflect-
ing (left-hand) mirror gives rise to the second term. Obviously there is a delay
between these two parts of the radiation, the delay time being of the order
of magnitude of the time of flight of a photon through the cavity. A global
description of the dynamics of the radiation field inside the cavity (instead of
the local description inherent in the Maxwell equations) can only be approxi-
mately valid, and of course implies some loss of information on the details of
the radiation–matter dynamics inside the cavity.

We now specify the approximation scheme to be used below. The main
assumptions may be summarized as follows.

1. We confine ourselves to resolving times ∆τ large compared with the time
of flight τfl of a photon through the cavity:

τfl � ∆τ, (9.65)

which means that, in the sense of some kind of coarse-grained averag-
ing, time-of-flight effects due to the nonvanishing length of the cavity
may be disregarded.

2. Further, we assume that (in the relevant spectral range) the transmission
of the fractionally transparent (right-hand) mirror is sufficiently small:

|t(ω)|2 � 1. (9.66)

From Eqs (9.22) and (9.26) we know that the inequality (9.66) is equivalent to

τfl � Γ−1
m . (9.67)

Hence, since the resolving time ∆τ may of course be small compared with Γ−1
m

(we assume that this condition is satisfied in order to resolve processes within
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a time scale Γ−1
m with sufficient accuracy), the coarse-graining condition (9.65)

and the condition of small transmission (9.66) [in the form of (9.67)] can be
combined to give

τfl � ∆τ � Γ−1
m (9.68)

or, taking into account that τfl ∼ (∆ω)−1 =(ωm+1−ωm)−1 [cf. Eqs (9.22) and
(9.25)],

(∆ω)−1 � ∆τ � Γ−1
m . (9.69)

These conditions enable us to ignore terms of order of magnitude τflΓm. Thus,
using Eqs (9.30) and (9.31), we may rewrite Eq. (9.62) as (0<x< l)

− 1
ε0

Π̂(+)
n free(x, t) =

∫
dt′ T(t + x/c − t′)eiωn(t−t′)Ê (+)

n in free(t′)

−
∫

dt′ T(t − x/c − t′)eiωn(t−t′)Ê (+)
n in free(t′)

� Tn

∫
dt′ Θ(t − t′ + x/c)e−iΩn(t−t′+x/c)eiωn(t−t′)Ê (+)

n in free(t′)

− Tn

∫
dt′ Θ(t − t′ − x/c)e−iΩn(t−t′−x/c)eiωn(t−t′)Ê (+)

n in free(t′)

� Tn

∫
dt′ Θ(t − t′) e−iωnx/ce−Γn(t−t′)/2Ê (+)

n in free(t′)

− Tn

∫
dt′ Θ(t − t′)e(iωnx/c)e−Γn(t−t′)/2Ê (+)

n in free(t′)

= −i
c
l

t(ωn) sin
(

ωn
x
c

) ∫
dt′ Θ(t − t′) e−Γn(t−t′)/2Ê (+)

n in free(t′).

(9.70)

Let us now consider the source-field part, defined by Eq. (9.53) together
with Eq. (9.54). Combining Eqs (9.54) and (9.8), (9.33) and (9.34) yields
(0<{x, x′}<L� l)

K(+)
n (x, t; x′, t′)

=
iωn

2Acε0

∫
dτ ∆n(τ)eiωn(τ+t−t′){G

[
τ + t − t′ − (x − x′)/c

]
+ G

[
τ + t − t′ + (x − x′)/c

]
− G

[
τ + t − t′ − (x + x′)/c

]
− G

[
τ + t − t′ + (x + x′)/c

]}
, (9.71)

where

∆n(τ) =
∫

[n]

dω

2π

ω

ωn
ei(ω−ωn)τ, (9.72)

which in our approximation scheme may be regarded as behaving like a δ

function:

∆n(τ) � δ(τ). (9.73)
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Substituting the results (9.71) and (9.73) into Eq. (9.53) for K(+)
n (x, t; x′, t′) and

using Eq. (9.35), we derive (0<x< l)

− 1
ε0

Π̂(+)
n s (x, t) = A

∫
dt′

∫
dx′ Θ(t − t′)K(+)

n (x, t; x′, t′)eiωnt′ P̂(x′, t′)

� iωn

2cε0

∫
dt′

∫
dx′ Θ(t − t′)

{
G[t−t′−(x−x′)]+G[t−t′+(x−x′)/c]

− G[t−t′−(x+x′)/c]−G[t−t′+(x+x′)/c]bigr}eiωn(t−t′)P̂(+)
n (x′, t′)

� iωn

4lε0

∫
dt′

∫
dx′ Θ(t − t′)

[
eiωn(x−x′)/c + e−iωn(x−x′)/c

− eiωn(x+x′)/c − e−iωn(x+x′)/c]e−Γn|t−t′|/2P̂(+)
n (x′, t′)

=
iωn

lε0
sin

(
ωn

x
c

)∫
dt′

∫
dx′ Θ(t−t′) sin

(
ωn

x′

c

)
e−Γn|t−t′|/2P̂(+)

n (x′, t′).

(9.74)

In this equation the notation

P̂(+)
n (x, t) = eiωnt P̂(x, t) (9.75)

is used, which indicates that P̂(+)
n (x, t) effectively represents the slowly vary-

ing amplitude of the (positive-frequency part of the) dipole density.

9.3.2

Nonmonochromatic modes and Langevin equations

Introducing the standing-wave mode functions

An(x) =
(

h̄
lAε0ωn

)1
2

sin(ωnx/c) (0 < x < l) (9.76)

and combining Eqs (9.51), (9.70) and (9.74) yields

−ε−1
0 Π̂(+)

n (x, t)e−iωnt = iωnAn(x)ân(t), (9.77)

where

ân(t) =
1
h̄
A
∫

dt′
∫

dx′ Θ(t − t′)e−iωn(t−t′)e−Γn(t−t′)/2ωnAn(x′)P̂(x′, t′)

+
( c

2l

)1
2

t(ωn)
∫

dt′ Θ(t − t′)e−iωn(t−t′)e−Γn(t−t′)/2b̂n(t′), (9.78)

b̂n(t) = −
(

2Aε0c
h̄ωn

)1
2
Ê (+)

n in free(t)e−iωnt. (9.79)
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From Eq. (9.78) the operators ân are easily seen to obey the differential equa-
tions

˙̂an = −
(

iωn+ 1
2 Γn

)
ân +

1
h̄
A
∫

dx′ ωnAn(x′)P̂(x′) +
( c

2l

)1
2

t(ωn)b̂n(t).

(9.80)

These equations of motion for the multi-mode photon annihilation and cre-
ation operators ân and â†

n, respectively, are of the type of quantum Langevin
equations. The operators f̂n(t)=

√
c/2l t(ωn)b̂n(t) are the (random-operator)

Langevin noise sources and the terms −(Γn/2)ân give the drift motions (re-
call that

√
c/2l|t(ωn)| =

√
Γn). The interpretation of f̂n(t) as proper noise

generators of course requires that 〈 f̂n(t)〉= 0. Clearly, Eq. (9.80) is also valid
when 〈 f̂n(t)〉 �=0. Effectively, the approximate representation of the operators

Π̂(+)
n (x, t) in Eq. (9.77) together with Eqs (9.76) and (9.78) (or (9.80)) corre-

sponds to a description of the intra-cavity field in terms of damped (standing-
wave) modes, which (from the point of view of the multi-mode description
used) may be regarded as nonmonochromatic cavity modes.

From Eq. (9.79) we know that the (random-operator) Langevin noise sources
are determined by the free-field part of the radiation incident on the cavity.
Intuitively, it is plausible (see also Section 9.4.1) that the sources inside the
cavity do not contribute to the field incident from outside onto the cavity, so
that the incoming field is represented by the free-field part only. In Eq. (9.79),

Ê (+)
n in free(t) may therefore be replaced by the corresponding operator of the full

incoming field. It should be emphasized that this substitution remains valid
even when the incident (far-)field is attributed to sources.

As we will see in Section 9.5.1, the operators ân and â†
n satisfy bosonic com-

mutation relations. Thus, the interaction term in Eq. (9.80) may be replaced
by the commutator [ân, Ĥint]/ih̄, where Ĥint is the standard interaction Hamil-
tonian according to Eq. (2.265) where the operator of the canonical momentum
field is expressed in terms of the operators ân and â†

n, namely

Π̂(x) = −ε0 ∑
n

iωn An(x) ân + H.c. (9.81)

[cf. Eqs (9.44) and (9.77)]. Since in the equations of motion for the atomic
source-quantity operators of the active medium the interaction terms may also
be expressed in terms of commutators of the corresponding atomic operators
and Ĥint, with Π̂ in the form (9.81), a coupled system of (nonlinear) equa-
tions of motion for the photonic operators ân and â†

n and the atomic source-
quantity operators is obtained. Clearly, using photonic Langevin equations
of the type given in Eq. (9.80) makes little sense if the radiation-matter in-
teraction is strong enough so that the characteristic interaction times become
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comparable with the time of flight of a photon through the cavity, because in
coarse-graining approximation these times are not resolvable.

In close analogy with the approach described above, time-reversed Langevin
equations may be derived. Instead of using the retarded source-quantity rep-
resentation for the intra-cavity field we can also use the advanced solution,
which can be obtained from Eqs (9.51)–(9.54) replacing Θ(t− t′) by −Θ(t′ − t)
in the time integral in Eq. (9.53). Further manipulations, very similar to those
shown above, again yield Eqs (9.76)–(9.77), but now the operators ân obey the
advanced quantum Langevin equations

˙̂an = −
(

iωn− 1
2 Γn

)
ân +

1
h̄
A
∫

dx′ ωnAn(x′)P̂(x′) +
( c

2l

)1
2

t∗(ωn)b̂[a]
n (t),

(9.82)

where

b̂[a]
n (t) = −

(
2Aε0c
h̄ωn

)1
2
Ê (+)

n out free(t)e−iωnt, (9.83)

Ê (+)
n out free(t) = i

(
h̄

4πAε0

)1
2 ∫

[n]
dk ω1/2eiωnt T(ω)

T∗(ω)
âfree(k, t). (9.84)

Outside the cavity the field may again be written in the form (9.50). In partic-
ular, it may easily be proved that

−ε−1
0 Π̂(+)

n out free(x, t) = Ê (+)
n out free(t − x/c) (x > l). (9.85)

Whereas in the usual (retarded) Langevin equations (9.80) the noise operators
are determined by the incoming radiation field, in the time-reversed Langevin
equations (9.82) the noise operators obviously result from the outgoing radia-
tion field.

In order to handle the quantum Langevin equations (9.80) [or the advanced
equations (9.82)], it remains to derive the commutation relations for the oper-
ators that appear. In particular, it must be shown that the (nonmonochromatic
mode) operators ân and â†

n satisfy, in the approximations made, the bosonic
commutation relations for equal times, so that they really represent photon
annihilation and creation operators. Before dealing with the commutation re-
lations in detail (Section 9.5), let us first study the field outside the cavity with
the aim of relating it to the intra-cavity field.

9.4
External field

To treat the field outside the cavity, we apply the approximation scheme used
in Section 9.3. After deriving appropriate free-field and source-field operators,
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we formulate the input-output relations required to relate the outgoing field
to be observed to both the internal and the incoming field.

9.4.1
Source-quantity representation

The free-field part of the incoming radiation is given by Eq. (9.64) together
with Eq. (9.63). Using Eq. (9.14) and recalling Eq. (9.61), we can easily see that
the free-field part of the outgoing radiation as defined by Eq. (9.64) [together
with Eq. (9.42)] may be rewritten as (x> l)

− 1
ε0

Π̂(+)
n out free(x, t) = i

(
h̄

4πAε0

)1
2

×
∫

[n]
dk ω1/2

{
t(ω)T(ω) exp

[
iωn

(
t − x

c

)]
âfree

(
k, t − x

c

)

− r(ω)e−2ilωn/c exp
[

iωn

(
t − x − 2l

c

)]
âfree

(
k, t − x − 2l

c

)}
.

(9.86)

Since t(ω) and r(ω) have been assumed to be slowly varying with ω, in the
ω integrals in Eq. (9.86), t(ω) and r(ω) may be taken at ωn [t(ω), r(ω) �→
t(ωn), r(ωn)]. Further, expressing T(ω) in the first term in Eq. (9.86) by its

Fourier transform T(τ) [see Eq. (9.30)], we may represent Π̂(+)
n out free(x, t) in the

form

− 1
ε0

Π̂(+)
n out free(x, t) = r(ωn)e−2ilωn/cÊ (+)

n in free[t − (x − 2l)/c]

− t(ωn)
∫

dt′ T(t − x/c − t′) exp[iωn(t − x/c − t′)]Ê (+)
n in free(t′), (9.87)

where Ê (+)
n in free(t) is given by Eq. (9.63) [cf. also Eq. (9.64)]. Applying Eqs (9.30)

and (9.31) together with the approximation scheme outlined in Section 9.3, we
may simplify Eq. (9.87) to obtain

− 1
ε0

Π̂(+)
n out free(x, t) � t(ωn)

t∗(ωn)
Ê (+)

n in free(t − x/c)

− c
2l

t2(ωn)
∫

dt′ Θ(t − x/c − t′)e−Γn(t−x/c−t′)/2Ê (+)
n in free(t′). (9.88)

Note that in Eq. (9.88) the relation

r(ωn) e−2ilωn/c � t(ωn)
t∗(ωn)

(9.89)

has been used [cf. Eqs (6.134) and (9.15)]. As expected, the incoming (free) field
is partly reflected at the input port of the resonator [first term in Eq. (9.88)] and
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partly transmitted to build up an intra-cavity (free) field, a fraction of which
is of course transmitted to the outside of the cavity [second term in Eq. (9.88)].

To calculate the source-field part of the incoming radiation [Eq. (9.58) to-
gether with Eq. (9.59)], we note that, by means of Eqs (9.8), (9.41), (9.32) and

(9.72), the propagation function K(+)
n in (x, t; x′, t′), Eq. (9.59), may be represented

as (x′< l<x)

K(+)
n in (x, t; x′, t′) = − iωn

2Acε0

∫
dτ ∆n(τ) exp[iωn(τ + t + x/c − t′)]

× {T[−(τ + t − t′ + (x + x′)/c)]− T[−(τ + t − t′ + (x − x′)/c)]}

� − iωn

2Acε0
exp[iωn(t + x/c − t′)]

× {T[−(t − t′ + (x + x′)/c)]− T[−(t − t′ + (x − x′)/c)]}. (9.90)

Recalling that T(t)∼Θ(t) [see Eq. (9.30)], we find from Eq. (9.90) that

Θ(t − t′) K(+)
n in (x, t; x′, t′) = 0. (9.91)

Hence combining Eqs (9.53) and (9.91), we arrive at the result that, as ex-

pected, Π̂(+)
n in s(x, t) vanishes:

Π̂(+)
n in s(x, t) = 0 (x > l). (9.92)

From Eqs (9.64) and (9.92) we then find that Π̂(+)
n in(x, t) [see Eq. (9.55)] may be

represented in the form

−ε−1
0 Π̂(+)

n in(x, t) = Ê (+)
n in free(t + x/c) (x > l). (9.93)

Finally, let us consider the source-field part of the outgoing radiation
[Eq. (9.58) together with Eq. (9.60)]. We combine Eqs (9.60), (9.8) (0<x′<L� l),

(9.42), (9.29) and (9.72) to represent K(+)
n out(x, t; x′, t′) in the form (x′< l<x)

K(+)
n out(x, t; x′, t′) =

iωn

2Acε0

∫
dτ ∆n(τ) exp[iωn(τ + t − x/c − t′)]

× {T[τ + t − t′ − (x − x′)/c]− T[τ + t − t′ − (x + x′)/c]}

� iωn

2Acε0
exp[iωn(t − x/c − t′)]

× {T[t − t′ − (x − x′)/c]− T[t − t′ − (x + x′)/c]}. (9.94)

Substituting into Eq. (9.58) for K(+)
n out(x, t; x′, t′) the result (9.94), using

Eqs (9.30) and (9.31) and applying the approximation scheme under con-
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sideration yields the following representation of Π̂(+)
n out s(x, t) (x> l):

− 1
ε0

Π̂(+)
n out s(x, t) =

iωn

2cε0

∫
dt′

∫
dx′ Θ(t − t′) exp[iωn(t − x/c − t′)]

× {T[t − t′ − (x − x′)/c] − T[t − t′ − (x + x′)/c]}P̂(+)
n (x′, t′)

� iωn

4lε0
t(ωn)

∫
dt′

∫
dx′ Θ(t − x/c − t′)

×
(
e−iωnx′/c − eiωnx′/c) exp

[
− 1

2 Γn(t − x/c − t′)
]

P̂(+)
n (x′, t′)

=
ωn

2lε0
t(ωn)

∫
dt′

∫
dx′ Θ(t − x/c − t′) sin(ωnx′/c)

× exp
[
− 1

2 Γn(t−x/c−t′)
]

P̂(+)
n (x′, t′). (9.95)

9.4.2
Input-output relations

We now substitute into Eq. (9.55) for Π̂(+)
n out free(x, t) and Π̂(+)

n out s(x, t) the results
of Eqs (9.88) and (9.95), respectively. Using Eq. (9.78) together with Eqs (9.76)
and (9.79) enables us to express the sum of the two integrals in terms of the
(nonmonochromatic) photon annihilation operator ân(t − x/c). Introducing
slowly varying operators, ˆ̃an(t) = ân(t)eiωnt, we obtain the following input-
output relations (x> l):

− 1
ε0

Π̂(+)
n out(x, t) =

(
h̄ωn

4lAε0

)1
2

t(ωn) ˆ̃an(t−x/c)

+
t(ωn)
t∗(ωn)

Ê (+)
n in free(t−x/c).

(9.96)

Since the sources are assumed to be localized inside the cavity, Π̂(+)
n in(x, t),

Eq. (9.93), and Π̂(+)
n out(x, t), Eq. (9.96), depend as functions of x and t on the

combinations t + x/c and t−x/c, respectively, because the field outside the
cavity satisfies the homogeneous Maxwell equations. Combining Eqs (9.50),
(9.93) and (9.96), we finally arrive at the result that, outside the cavity (x> l),

− 1
ε0

Π̂(+)(x, t) = ∑
n

{
Ê (+)

n in free(t + x/c) exp[−iωn(t + x/c)]

+
[(

h̄ωn

4lAε0

)1
2
t(ωn)ân(t−x/c) +

t(ωn)
t∗(ωn)

Ê (+)
n in free(t−x/c)

]
exp[−iωn(t−x/c)]

}
,

(9.97)

where the photon operators ân (â†
n) obey the quantum Langevin equations

(9.80) [together with Eq. (9.79)].
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We recall that starting from the advanced source-quantity representation of
the field operators yields, for the intra-cavity-radiation field, the time-reversed
quantum Langevin equations (9.82). With regard to the radiation field outside
the cavity, we note that using the advanced source-quantity representation, in
a similar way to that leading to Eqs (9.93) and (9.96), we now obtain (x> l)

−ε−1
0 Π̂(+)

n out(x, t) = Ê (+)
n out free(t − x/c) (9.98)

and

− 1
ε0

Π̂(+)
n in(x, t) = −

(
h̄ωn

4lAε0

)1
2
t∗(ωn) ˆ̃an(t+x/c) +

t∗(ωn)
t(ωn)

Ê (+)
n out free(t+x/c).

(9.99)

It should be pointed out that the input-output relations (9.96) or (9.99) may
also be obtained by combining the retarded and advanced Langevin equa-
tions. This is of interest with regard to quantum noise theories, where time
reversal is a way to define, under certain circumstances, outgoing fields.4 Sub-
tracting the retarded and advanced Langevin equations (9.80) and (9.82) from
each other and taking into account Eqs (9.26), (9.79), (9.93) and (9.83), (9.98)
yields Eq. (9.96). Similarly, Eq. (9.99) can be found.

9.5
Commutation relations

The Langevin-equation approach to the determination of the radiation field
inside and outside of a resonator-like cavity as developed in Sections 9.3 and
9.4 may also be used in classical optics. In this case all the quantities intro-
duced are, of course, c numbers. Operating with the Langevin equations in
quantum optics requires knowledge about a series of commutation relations.
This knowledge is needed not only to solve the quantum Langevin equations,
but also to calculate correlation functions of the field escaping from the cavity.

We shall first give some general commutation rules, which we then use to
derive the commutators for the various kinds of field operators.

The basic commutation relations may be summarized as follows:

[â(k, t), â(k′, t)] = 0 = [â†(k, t), â†(k′, t)], (9.100)

[â(k, t), â†(k′, t)] = δ(k − k′), (9.101)

4) Recall that, since propagation of radiation is included in a field-
theoretical description, the definition of the incoming and outgoing
field rests on propagation directions, without the need for a time-
reversed formulation of the theory.
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[âfree(k, t), âfree(k′, t′)] = 0 = [â†
free(k, t), â†

free(k′, t′)], (9.102)

[âfree(k, t), â†
free(k′, t′)] = δ(k − k′) e−iω(t−t′). (9.103)

Moreover, if F̂(j)(x, t) and Ĝ(j)(x, t) (j =+,−) are field operators of the form

F̂(+)(x, t) =
∫

dk F(+)(k, x)â(k, t), F̂(−)(x, t) = [F̂(+)(x, t)]† (9.104)

[F(+)(k, x)=F(k, x), F(−)(k, x)=F∗(k, x)], then from Eq. (2.313), we know that
the commutator of F̂(j1)(x1, t1) and Ĝ(j2)(x2, t2) at different times may be ex-
pressed in terms of free-field and source-quantity commutators as

[F̂(j1)(x1, t1), Ĝ(j2)(x2, t2)]

= [F̂(j1)
free (x1, t1), Ĝ(j2)

free(x2, t2)] + ∆̂(j1,j2)
(F,G) (x1, t1; x2, t2), (9.105)

where

[F̂(j1)
free (x1, t1), Ĝ(j2)

free(x2, t2)] =
h̄
i

K(j1,j2)
(F,G) (x1, t1; x2, t2), (9.106)

∆̂(j1,j2)
(F,G) (x1, t1; x2, t2) = D̂(j1,j2)

(F,G) (x1, t1; x2, t2)− D̂(j2,j1)
(G,F) (x2, t2; x1, t1), (9.107)

D̂(j1,j2)
(F,G) (x1, t1; x2, t2)

= −
∫

dt′1

∫
dx′1

∫
dt′2

∫
dx′2 K(j1)

(F) (x1, t1; x′1, t′1)K(j2)
(G)(x2, t2; x′2, t′2)

× Θ(t2 − t′2)Θ(t′2 − t′1)Θ(t′1 − t1)[P̂(x′1, t′1), P̂(x′2, t′2)], (9.108)

K(j1,j2)
(F,G) (x1, t1; x2, t2)

= j1
(
1 − δj1 j2

) i
h̄

∫
dk F(j1)(x1, k)G(j2)(x2, k) e−j1iω(t1−t2). (9.109)

9.5.1
Internal field

We first study the commutation relations for the operators ân and â†
m at equal

times. Using Eq. (9.77), we may write

ε−2
0 [Π̂(+)

n (x, t), Π̂(+)
m (x′, t)]

ε−2
0 [Π̂(+)

n (x, t), Π̂(−)
m (x′, t)]


 = ωnωm An(x)Am(x′)

{−[ân(t), âm(t)],

[ân(t), â†
m(t)].

(9.110)

Since the commutator [Π̂(+)
n (x, t), Π̂(+)

m (x′, t)] vanishes identically [cf. Eqs (9.45)
and (9.100)], we can easily see that for any values of n and m the commutator
[ân(t), âm(t)] must vanish too. We therefore find that

[ân(t), âm(t)] = 0 = [â†
n(t), â†

m(t)]. (9.111)
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The commutator [Π̂(+)
n (x, t), Π̂(−)

m (x′, t)] in the second line on the left-hand
side of Eq. (9.110) is calculated by means of Eqs (9.45) (0<{x, x′}<L� l) and
(9.101):

1
ε2

0
[Π̂(+)

n (x, t), Π̂(−)
m (x′, t)] =

h̄
iωn

δnm

(
ωn+i

∂

∂t

)
K(+)

n (x, t; x′, t′)
∣∣∣∣
t′=t

,

(9.112)

where K(+)
n (x, t; x′, t′) is defined in Eq. (9.54). Using K(+)

n (x, t; x′, t′) in the
form5

K(+)
n (x, t; x′, t′) � iω2

n
h̄

An(x)An(x′) exp
(
− 1

2 Γn|t − t′|
)

, (9.113)

we may simplify Eq. (9.112) to obtain

ε−2
0 [Π̂(+)

n (x, t), Π̂(−)
m (x′, t)] � ω2

n An(x)An(x′)δnm . (9.114)

Hence, comparing the second line of Eq. (9.110) and Eq. (9.114), we may ap-
proximately set

[ân(t), â†
m(t)] = δnm . (9.115)

Equations (9.111) and (9.115) show that the operators ân and â†
n are indeed (ap-

proximate) bosonic operators, which may be regarded as photon annihilation
and creation operators in the usual sense.

Next, let us determine the commutation relations for the (noise) operators
b̂n and b̂†

n at different times. Since the operators b̂n1(t1) and b̂†
n2

(t2) are pro-

portional to the incoming free-field operators Ê (+)
n1 in free(t1) and Ê (−)

n2 in free(t2),
respectively [see Eqs (9.79) and (9.63)], we immediately see from Eq. (9.102)
that

[b̂n1(t1), b̂n2(t2)] = 0 = [b̂†
n1

(t1), b̂†
n2

(t2)]. (9.116)

To calculate [b̂n1(t1), b̂†
n2

(t2)], we apply Eqs (9.79), (9.63), (9.103) and (9.72),

which, in the approximation scheme used here, lead to [ˆ̃bn(t)= b̂n(t)eiωnt]

[ ˆ̃bn1(t1), ˆ̃b†
n2

(t2)
]

= δn1n2

(
1 +

i
ωn1

∂

∂t1

)
∆∗

n1
(t1 − t2)

= δn1n2 δ(t1 − t2). (9.117)

Going back to the incoming-field operators Π̂(±)
n in(x, t) (x > l), and recalling

that they are free-field operators [see Eq. (9.93)], from Eqs (9.116) and (9.117)

5) This result is found by comparing the first and the last versions of
Eq. (9.74) and applying Eq. (9.76).
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together with Eq. (9.79) we obtain (xi > l)

1
ε2

0
[Π̂(+)

n1 in(x1, t1), Π̂(±)
n2 in(x2, t2)] =




0,

h̄ωn1

2ε0cA δn1n2 δ[t1−t2+(x1−x2)/c].

(9.118)

In order to obtain the commutation relations for the intra-cavity-field oper-
ators ân and â†

n and the (noise) operators b̂n and b̂†
n at different times, we note

that combining Eqs (9.77), (9.93) and (9.79) yields (x1 < l<x2)

1
ε2

0
[Π̂(±)

n1 (x1, t1), Π̂(+)
n2 in(x2, t2)]

= ∓iωn1 An1(x1)
(

h̄ωn2

2ε0cA

)1
2




[ ˆ̃an1(t1), ˆ̃bn2(t2 + x2/c)],

[ ˆ̃a†
n1

(t1), ˆ̃bn2(t2 + x2/c)].
(9.119)

Using Eqs (9.45) and (9.48) and applying Eqs (9.104)–(9.109) [with the alloca-

tions F̂(±)(x1, t1) �→ Π̂(±)
n1 (x1, t1)e∓iωn1t1 , Ĝ(±)(x2, t2) �→ Π̂(+)

n2 in(x2, t2)eiωn2(t2+x2/c)]

we obtain the source-quantity representation of the commutator [Π̂(±)
n1 (x1, t1), Π̂(+)

n2 in(x2, t2)]
as

1
ε2

0
[Π̂(±)

n1 (x1, t1), Π̂(+)
n2 in(x2, t2)] =

1
ε2

0
[Π̂(±)

n1 free(x1, t1), Π̂(+)
n2 in free(x2, t2)]

+ ∆̂(±,+)
n1,n2 in(x1, t1; x2, t2), (9.120)

where (x1 < l<x2)

1
ε2

0
[Π̂(±)

n1 free(x1, t1), Π̂(+)
n2 in free(x2, t2)]

=




0,

− h̄
iωn1

δn1n2

(
ωn1 + i

∂

∂t2

)
K(+)

n1 in(x2, t2; x1, t1),
(9.121)

∆̂(±,+)
n1,n2 in(x1, t1; x2, t2)

= −
∫

dt′1

∫
dx′1

∫
dt′2

∫
dx′2 exp(±iωn1 t′1 + iωn2t′2)

× K(±)
n1 (x1, t1; x′1, t′1)K(+)

n2 in(x2, t2; x′2, t′2)

×
{

Θ(t2 − t′2)Θ(t′2 − t′1)Θ(t′1 − t1)[P̂(x′1, t′1), P̂(x′2, t′2)]

− Θ(t1 − t′1)Θ(t′1 − t′2)Θ(t′2 − t2)[P̂(x′2, t′2), P̂(x′1, t′1)]
}

,
(9.122)
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the propagation functions K(±)
n (x, t; x′, t′) and K(+)

n in (x, t; x′, t′) being de-

fined according to Eqs (9.54) and (9.59), respectively. Using K(+)
n in (x, t; x′, t′)

(x′< l<x), in the (approximate) form given in Eq. (9.90) together with
Eq. (9.30), and taking into account that in the approximation scheme used

here K(+)
n in (x, t; x′, t′) is proportional to Θ[−(t+x/c− t′)], we readily see from

Eq. (9.121) that

[Π̂(−)
n1 free(x1, t1), Π̂(+)

n2 in free(x2, t2)] = 0 if t1 < t2 + x2/c. (9.123)

Further, in the integral term of Eq. (9.122) the three Θ functions together with
the Θ function Θ[−(t2 + x2/c − t′2)] arising from the propagation function

K(+)
n2 in(x2, t2; x′2, t′2) reveal that under the condition t1 < t2 + x2/c the time-

delayed commutator terms ∆̂(±,+)
n1,n2 in(x1, t1; x2, t2) also vanish; that is,

∆̂(±,+)
n1,n2 in(x1, t1; x2, t2) = 0 if t1 < t2 + x2/c. (9.124)

Hence we arrive at the result that

[Π̂(±)
n1 (x1, t1), Π̂(+)

n2 in(x2, t2)] = 0 if t1 < t2 + x2/c, (9.125)

and from Eqs (9.119) and (9.125) we conclude that

[ân1(t1), b̂n2(t2)] = 0 = [â†
n1

(t1), b̂n2(t2)] if t1 < t2. (9.126)

These commutation relations are, of course, consistent with the quantum
Langevin equations [Eq. (9.80) together with Eq. (9.79)]. In the language of
quantum noise theory, the “dynamic-system” operators ân and â†

n are said not
to be influenced by the reservoir operators b̂n and b̂†

n in the future.

9.5.2
External field

We briefly outline the determination of the time-dependent commutation
relations for the outgoing field. We again apply Eqs (9.104)–(9.109) [with

the allocations F̂(±)(x1, t1) �→ Π̂(±)
n1 out(x1, t1)e∓iωn1(t1−x1/c), Ĝ(±)(x2, t2) �→

Π̂(+)
n2 out(x2, t2)e−iωn2(t2−x2/c)] to express [analogously to Eq. (9.120)] the com-

mutators [Π̂(±)
n1 out(x1, t1), Π̂(+)

n2 out(x2, t2)] (xi > l) in terms of free-field and
source-quantity commutators as

1
ε2

0
[Π̂(±)

n1 out(x1, t1), Π̂(+)
n2 out(x2, t2)] =

1
ε2

0
[Π̂(±)

n1 out free(x1, t1), Π̂(+)
n2 out free(x2, t2)]

+ ∆̂(±,+)
n1 out,n2 out(x1, t1; x2, t2). (9.127)
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In Eq. (9.127) the time-delayed commutator terms ∆̂(±,+)
n1 out,n2 out(x1, t1; x2, t2)

may easily be found from Eq. (9.122) with the propagation functions K(±)
n1 out(x1, t1; x′1, t′1)

and K(+)
n2 out(x2, t2; x′2, t′2) instead of K(±)

n1 (x1, t1; x′1, t′1) and K(+)
n2 in(x2, t2; x′2, t′2),

respectively. Note that in the approximation scheme used here K(±)
ni out(xi, ti; x′1, t′i)

∼Θ(ti − xi/c− t′i), i=1, 2 [cf. Eq. (9.94) together with Eq. (9.30)]. The two Θ
functions Θ(t1 − x1/c − t′1) and Θ(t2 − x1/c − t′2) together with the three Θ
functions shown explicitly in Eq. (9.122) give rise to time conditions that ob-
viously cannot be satisfied simultaneously. Hence the time-delayed terms

∆̂(±,+)
n1 out,n2 out(x1, t1; x2, t2) do not contribute to the commutators sought, and

Eq. (9.127) simplifies to

[Π̂(±)
n1 out(x1, t1), Π̂(+)

n2 out(x2, t2)] = [Π̂(±)
n1 out free(x1, t1), Π̂(+)

n2 out free(x2, t2)].

(9.128)

The calculation of the remaining free-field commutators is straightforward.
Using Eqs (9.57) [together with Eq. (9.42)], (9.102) and (9.103) and making
the approximation (9.117), we obtain, analogously to the result found for the
incoming field [cf. Eq. (9.118)], (xi > l)

1
ε2

0
[Π̂(+)

n1 out(x1,t1), Π̂(±)
n2 out(x2,t2)] =




0,

h̄ωn1

2ε0cA δn1n2 δ[t1−t2 − (x1−x2)/c],

(9.129)

It is worth noting that although both the incoming and the outgoing radi-
ation fields may be regarded as effectively free fields [they obey the homoge-
neous Maxwell equations and the free-field commutation relations (9.118) and
(9.129)], the overall field outside the cavity (i. e., the sum of incoming and out-
going fields), which also obeys the homogeneous Maxwell equations, cannot
be regarded, in general, as an effectively free field, because time-delayed terms
can contribute to the commutators between incoming and outgoing fields at

different times, [Π̂(±)
n1 out(x1, t1), Π̂(+)

n2 in(x2, t2)]. Clearly, a light signal can travel
from one space point (outside the cavity) to another space (outside the cavity)
through the sources if both the incoming and the outgoing fields are involved.

From intuitive arguments the commutators [Π̂(±)
n1 out(x1, t1), Π̂(+)

n2 in(x2, t2)] may
be expected to vanish provided that t1−x1/c< t2 +x2/c:

[Π̂(±)
n1 out(x1, t1), Π̂(+)

n2 in(x2, t2)] = 0 if t1 − x1/c < t2 + x2/c, (9.130)

which may again be proved by applying Eqs (9.104)–(9.109) with the corre-
sponding allocations. Since the calculations may be performed analogously
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to those made to obtain, for example, the commutation relations (9.125), we
omit them here.

It should be pointed out that the results, in the approximations made, are
closely related to the corresponding results obtained from quantum noise
theory [see, e. g., Gardiner (1991)]. This correspondence includes the quan-
tum Langevin equations given in Section 9.3, the input-output relations given
in Section 9.4, and the time-dependent commutation relations (see also Sec-
tion 9.7). Further manipulations of the quantum Langevin equations in prac-
tical applications may therefore be based on standard methods of quantum
noise theory, such as the formalism of master equations and the quantum re-
gression theorem (Chapter 5). However, when the conditions for the applica-
tion of quantum noise theory (essentially consisting in a time coarse-grained
assumption) are not satisfied, as in the case of low-Q cavities, the general
field-theoretical concept (which does not require a coarse-graining approxi-
mation) can of course be applied.

9.6
Field correlation functions

In the following we confine our attention to the field outside the cavity, so that
we may regard −Π̂(x)/ε0 as the operator of the electric field strength,

−ε−1
0 Π̂(x) = Ê(x) (x > l), (9.131)

provided that the (relevant) sources are inside the cavity. The commutation
relations for the radiation-field operators at different times now enable us to
express normally and time-ordered observable field correlation functions of
the type

G(m,n)({xi, ti, xj, tj}) =
〈[

T−
m

∏
i=1

Ê(−)(xi, ti)
][

T+

m+n

∏
j=m+1

Ê(+)(xj, tj)
]〉

(9.132)

({xi, xj}> l) in terms of correlation functions of the outgoing radiation field or
in terms of the intra-cavity field and/or the incoming field.

We decompose Ê(+)(x, t) into the incoming and outgoing parts

Ê(+)
in (x, t) = ∑

n
Ê(+)

n in (x, t) exp[−iωn(t + x/c)] (9.133)

and

Ê(+)
out (x, t) = ∑

n
Ê(+)

n out(x, t) exp[−iωn(t − x/c)], (9.134)

respectively [cf. Eqs (9.39) and (9.50)]. Because of the commutation relations

(9.130), in the resulting time-ordered products of operators Ê(+)
n in and Ê(+)

m out
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(Ê(−)
n in and Ê(−)

m out) these operators may obviously be rearranged in such a way

that Ê(+)
n in (Ê(−)

n in ) are on the right (left) of Ê(+)
m out (Ê(−)

m out). Hence if at the observa-
tion points the incoming radiation field may be assumed to be in the vacuum
state, that is

〈Ê(−)
n in (x, t) · · · 〉 = 0 = 〈· · · Ê(+)

n in (x, t)〉, (9.135)

G(m,n)({xi, ti, xj, tj}) may be expressed in terms of correlation functions of the
outgoing field, such as

G(m,n)
{ni,nj}({xi, ti, xj, tj}) =

〈[ m

∏
i=1

Ê(−)
ni out(xi, ti)

][ m+n

∏
j=m+1

Ê(+)
nj out(xj, tj)

]〉
(9.136)

({xi, xj}> l), via

G(m,n)({xi, ti, xj, tj}) = ∑
{ni,nj}

G(m,n)
{ni,nj}({xi, ti, xj, tj})

× exp
[ m

∑
i=1

iωni(ti − xi/c) −
m+n

∑
j=m+1

iωnj(tj − xj/c)
]

. (9.137)

Note that [in contrast to Eq. (9.132)] the time-ordering symbols T± may be

omitted in Eq. (9.136), because the operators Ê(+)
n out (and the operators Ê(−)

n out)
behave like the (commuting) free-field operators [cf. the commutation rela-
tions (9.129)].

The conditions (9.135) are of course satisfied if the incoming radiation field
is in the vacuum state. In many situations of practical interest, resonator-
like devices are used with the aim of light generation and/or amplification
depending on various (real) input radiation fields, and the properties of the
output radiation are desired to be observed. Clearly, in these cases the obser-
vational scheme should be prepared in such a way that the conditions (9.135)
are satisfied at the observation points to avoid detection of the input field.

To indicate explicitly that in Eq. (9.136) the operators Ê(±)
n out(x, t) depend on

t and x in the combination t−x/c [cf. Eq. (9.96)], it is convenient to introduce
the notation

Ê(±)
n out(x, t) ≡ Ê (±)

n out(t − x/c). (9.138)

Since Ê(+)
n out (and Ê(−)

n out) are commuting quantities [cf. the commutation rela-
tions (9.129], the right-hand side of Eq. (9.136) remains unchanged if we sub-
stitute for the operator products the time-ordered products according to
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G(m,n)
{ni,nj}({xi, ti, xj, tj}) =

〈[
T (r)
−

m

∏
i=1

Ê (−)
ni out(t(r)

i )
][

T (r)
+

m+n

∏
j=m+1

Ê (+)
nj out(t(r)

j )
]〉

(9.139)

({xi, xj}> l), where T (r)
± indicates time ordering with regard to the retarded

times t(r)≡ t−x/c.
The advantage of the field correlation function in the form (9.137) together

with Eq. (9.139) becomes clear when we try to express the measured quanti-
ties in terms of correlation functions of internal and incoming fields. For this

reason, we substitute for Ê (+)
n out(t(r)) the result (9.96) [together with Eq. (9.79)]:

Ê (+)
n out(t(r)) =

(
h̄ωn

4lAε0

)1
2
[

t(ωn) ˆ̃an(t(r))− t(ωn)
t∗(ωn)

(
2l
c

)1/2
ˆ̃bn(t(r))

]
. (9.140)

Taking into account that [ânk(t(r)
k ), b̂nl (t(r)

l )]=0 if t(r)
k < t(r)

l [see Eq. (9.126)], in
the resulting time-ordered products of operators ânk and b̂nl (â†

nk
and b̂†

nl
) these

operators may be rearranged with b̂nl (b̂†
nl

) to the right (left) of ânk (â†
nk

). In this
way, we derive

G(m,n)
{ni,nj}({xi, ti, xj, tj}) =

〈[
O(r)

−
m

∏
i=1

Ê (−)
ni out(t(r)

i )
][

O(r)
+

m+n

∏
j=m+1

Ê (+)
nj out(t(r)

j )
]〉

(9.141)

({xi, xj} > l), where (similar to the O± symbols defined in Section 2.8) the

O(r)
± symbols indicate the following ordering prescriptions:

(i) decomposition of the operators Ê (±)
n out according to Eq. (9.140);

(ii) ordering of the (quantum noise) operators b̂n (b̂†
n) and the (intra-cavity-

field photon) operators ân (â†
n), with b̂n (b̂†

n) to the right (left) of ân (â†
n);

(iii) T (r)
+ (T (r)

− ) ordering of the operators ân(t(r)) [â†
n(t(r))].6

The disentangled form (9.141) may be applied directly to practical calcula-
tions. In particular, in the case of incoming vacuum noise,

〈b̂†
n(t(r)) · · · 〉 = 0 = 〈· · · b̂n(t(r))〉, (9.142)

6) Note that b̂n(t(r)) [b̂†
n(t(r))] are commuting quantities; see Eq. (9.116).
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Eq. (9.141) is simply

G(m,n)
{ni,nj}({xi, ti, xj, tj}) =

〈[
T (r)
−

m

∏
i=1

(
h̄ωni

4lAε0

)1
2

t∗(ωni) ˆ̃a†
ni

(t(r)
i )

]

×
[
T (r)

+

m+n

∏
j=m+1

(
h̄ωnj

4lAε0

)1
2

t(ωnj) ˆ̃anj(t(r)
j )

]〉

(9.143)

({xi, xj} > l). Equation (9.143) reveals that the correlation functions of the
electric-field strength of the radiation field outside the cavity (i. e., behind the
fractionally transparent right-hand mirror) may be directly related to the cor-
relation functions of the intra-cavity-field photon operators, the original time
ordering now applying, with regard to the retarded times, to the intra-cavity-
field photon operators.

If the incoming radiation field may be regarded as being, for example, in a
coherent state,

〈 ˆ̃b†
n(t(r)) · · · 〉 = β̃∗

n(t(r))〈· · · 〉, 〈· · · ˆ̃bn(t(r))〉 = 〈· · · 〉β̃n(t(r)), (9.144)

with the βn(t(r)) being c-number functions, Eq. (9.141) becomes ({xi, xj}> l)

G(m,n)
{ni,nj}({xi, ti, xj, tj})

=
〈[

T (r)
−

m

∏
i=1

(
h̄ωni

4lAε0

)1
2
(

t∗(ωni) ˆ̃a†
ni

(t(r)
i )− t∗(ωni)

t(ωni)

(
2l
c

)1
2

β̃∗
ni

(t(r)
i )

)]

×
[
T (r)

+

m+n

∏
j=m+1

(
h̄ωnj

4lAε0

)1
2(

t(ωnj) ˆ̃anj(t(r)
j )−

t(ωnj)
t∗(ωnj)

(
2l
c

)1
2

β̃nj(t(r)
j )

)]〉
.

(9.145)

The situation for an arbitrary state of the incoming field can also be consid-
ered using Eq. (9.141). In this case there appear, in addition to the correla-
tion functions of the intra-cavity-field operators, correlation functions of the
incoming-field operators.

It should be pointed out that in Eq. (9.140) the second term (proportional
to t/t∗) arises from the reflected part of the incoming radiation field. If the
incoming radiation field is not in the vacuum state and if it is required that the
reflected part of this incoming (real) field should not contribute to the pho-
todetection signal, the detection scheme must be chosen in such a way that
the reflected radiation does not fall on the photodetectors. Clearly, in this case
the conditions (9.142) are also satisfied and Eq. (9.143) applies, independently
of whether or not the incoming radiation field represents the vacuum field.
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Therefore, the properties solely of the radiation field generated and/or am-
plified inside the resonator-like cavity are observed. An example is a cavity
with two fractionally transparent mirrors. In this case7 one of the mirrors may
be used as input port (for real input radiation) and the other as output port
(with incoming vacuum). With regard to the output port, Eq. (9.143) applies.
Obviously, the internal-field Langevin equations must then be complemented
by the fluctuation and drift-motion terms related to the second fractionally
transparent mirror.

9.7
Unwanted losses

In the derivation of the quantum Langevin equations (9.80) it is assumed that
the cavity field only suffers from the required (radiative) losses due to the
input-output coupling. There are of course also unwanted losses such as scat-
tering and absorption losses, which are unavoidably connected with any ma-
terial system. Though in the case of a proper (high-Q) cavity both the required
and the unwanted losses are small, the unwanted losses can be of the same
order of magnitude as the required ones. Since the main obstacle to the pro-
cessing of nonclassical quantum states are decoherence effects associated with
unwanted losses, the greatest care should be given to them.

As we know, the mode decomposition used in Sections 9.1 and 9.2 fails in
the case of absorbing matter, and instead the Green function formalism devel-
oped in Section 2.4.2 may be applied. A first answer to the question of the
effect of unwanted losses can be obtained from quantum noise theories. Ac-
cording to Section 5.3.1, quantum Langevin equations of the type (9.80) can
be obtained within the framework of Markovian damping theory, by starting
from the Hamiltonian

Ĥ = Ĥ0 + Ĥint + Ĥ′
int, (9.146)

where

Ĥ0 = ∑
n

h̄ωnâ†
nân + ∑

n

∫
[n]

dω h̄ω b̂†(ω)b̂(ω) (9.147)

7) The extension of the theory to a one-
dimensional resonator with two frac-
tionally transparent mirrors is straight-
forward. The extension of the theory to
three-dimensional cavities is more ex-
tensive, because of the calculation of

three-dimensional mode structures [for
the mode structure for certain cases of
micro-droplets and micro-cavities, see,
e. g., Lai, Leung and Young (1990); De
Martini, Marocco, Mataloni, Crescentini
and Loudon (1991)].
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is the Hamiltonian of the cavity field and the field outside the cavity, which,
for a moment, are thought of as being isolated from each other,

Ĥint = i ∑
n

∫
dx An(x)P̂(x)ân + H.c. (9.148)

is the interaction energy between the cavity field and the active sources inside
the cavity, and

Ĥ′
int = h̄

( c
2l

)
∑
n

∫
[n]

dω t∗(ω)b̂†(ω)ân + H.c. (9.149)

is the interaction energy between the cavity field and the field outside the
cavity, which is regarded as a dissipative system.

The equivalence between the quantum-noise theoretical approach and –
within the approximation scheme used – the quantum-field theoretical ap-
proach to the problem of a leaky optical cavity may suggest that the effect of
unwanted losses can be described by complementing the Hamiltonian (9.146)
with additional interaction energies of the type

Ĥ′′
int = h̄

( c
2l

)
∑
σ

∑
n

∫
[n]

dω λ∗
σ(ω)ĉ†

σ(ω)ân + H.c., (9.150)

where σ labels the additional dissipative channels. It is straightforward to
prove that the application of Markovian damping theory leads to the quantum
Langevin equations

˙̂an =−
(

iωn + 1
2 γn

)
ân +

1
h̄
A
∫

dx′ ωnAn(x′)P̂(x′)

+
( c

2l

)1
2

t(ωn)b̂n(t) +
( c

2l

)1
2 ∑

σ

λσ(ωn)ĉσ(t), (9.151)

where

γn = Γn + Γ′
n . (9.152)

Here the damping rate Γn is attributed to the input-output coupling and de-
fined according to Eq. (9.26), and

Γ′
n = ∑

σ

Γnσ (9.153)

with

Γnσ =
c
2l

|λσ(ωn)|2 (9.154)

is the total damping rate that describes the unwanted losses. Hence the quan-
tum Langevin equations (9.80) must be simply complemented with additional
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damping and noise terms to take into account the effect on the cavity field of
unwanted losses.

It is also not difficult to prove that the input-output relations (9.96) remain

unchanged, i. e., [2Acε0(h̄ωn)−1Ê (+)
n in free �→ b̂n, −2Ac(h̄ωn)−1Π̂(+)

n out �→ b̂n out]

b̂n out(t) =
( c

2l

)1
2

t(ωn)ân(t) + r(ωn)b̂n(t), (9.155)

where

r(ωn) = − t(ωn)
t∗(ωn)

. (9.156)

Clearly, the interaction energy (9.150) implies that only unwanted losses
which primarily result from those unwanted losses, from which the cavity
modes suffer, are considered. In particular, the effect of absorption losses in-
side the coupling mirror on the outgoing field, via reflection of the incoming
field, is disregarded. As long as the input port is unused, this drawback does
not play a role and may be ignored. In this case all the relations between
the correlation function as given in Section 9.6 remain correspondingly valid
even if the intracavity field is allowed to suffer from unwanted losses and
the generalized quantum Langevin equations (9.151) are used. If, in cases
of the input port being used, unwanted losses of the incoming field in the
coupling mirror must be taken into account with respect to the reflected field,
additional considerations are necessary.

9.8
Quantum-state extraction

From Section 9.6 we know that if the operator input-output relations are
known, the correlation functions of the outgoing field can be expressed in
terms of correlation functions of the cavity field and the incoming field. In this
context the question of the calculation of the outgoing-field quantum state, as
a whole, arises. Let us suppose, e. g., that during the passage of atoms through
the cavity, the nth cavity mode is prepared in some quantum state and assume
that the preparation time is sufficiently short compared with the decay time
Γ−1

n , so that the two time scales are clearly distinguishable. In this case we
may assume that at some time t0 (when the atoms leave the cavity) the cavity
mode is prepared in a given quantum state and its evolution in the further
course of time (i. e., for times t≥ t0) can be treated as free-field evolution.

To calculate the quantum state of the outgoing field in the frequency interval
[n], we begin with its characteristic functional

Φn out[β(ω), t] =
〈

exp
[∫

[n]
dω β(ω)b̂†

n out(ω, t)− H.c.
]〉

(9.157)
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in symmetric order [cf. Eq. (4.90) for s = 0]. Assuming that the input port is
unused, we may apply Eq. (9.155) [together with Eq. (9.156)], which implies
that, on the relevant time scale ∆t�∆ω−1,

b̂n out(ω, t) =
( c

2l

)1
2

t(ωn)
1√
2π

∫ t+∆t

t0

dt′ e−iω(t−t′) ân(t′)

+ r(ωn)b̂n(ω, t0)e−iω(t−t0). (9.158)

Indeed, substitution of b̂n out(ω, t) into

b̂n out(t) =
∫
[n]

dω b̂n out(ω, t) (9.159)

just leads to Eq. (9.155). For times t≥ t0, from Eq. (9.151) it follows that

ân(t) = e−(iωn+ 1
2 Γn)(t−t0) ân(t0)

+
( c

2l

) 1
2
∫ t

t0

dt′ e−(iωn+ 1
2 Γn)(t−t′)

[
t(ωn)b̂n(t′) + ∑

σ

λσ(ωn)ĉσ(t′)
]
,

(9.160)

and the combination of Eqs (9.158) and (9.160) yields

b̂nout(ω, t) = F∗
n (ω, t)ân(t0) + B̂n(ω, t), (9.161)

where (Ωn =ωn− iΓn/2)

Fn(ω, t) =
i√
2π

( c
2l

)1
2
t∗(ωn)eiω(t−t0) exp [−i(ω−Ω∗

n)(t+∆t−t0)]− 1
ω − Ω∗

n
,

(9.162)

B̂n(ω, t) =
∫

[n]
dω′ [G∗

n(ω, ω′, t)b̂n(ω′, t0) + ∑
σ

G∗
nσ(ω, ω′, t)ĉσ(ω′, t0)

]
,

(9.163)

Gn(ω, ω′, t) = t∗(ωn)t∗(ωn)υn(ω, ω′, t) + r∗(ωn)eiω′(t−t0)δ(ω − ω′),
(9.164)

Gnσ(ω, ω′, t) = t∗(ωn)λ∗
σ(ωn)υn(ω, ω′, t), (9.165)

υn(ω, ω′, t) =
1

2π

c
2l

e−iω∆t

ω′ − ω

×
[

eiω(t+∆t−t0) − eiΩ∗
n(t+∆t−t0)

ω − Ω∗
n

− eiω′(t+∆t−t0) − eiΩ∗
n(t+∆t−t0)

ω′ − Ω∗
n

]
. (9.166)



9.8 Quantum-state extraction 331

To further evaluate the characteristic functional (9.157), it is convenient to
introduce a unitary, explicitly time-dependent transformation according to

b̂n out(ω, t) = ∑
i

φ∗
i (ω, t)b̂(i)

n out(t), (9.167)

b̂(i)
n out(t) =

∫
[n]

dω φi(ω, t)b̂n out(ω, t), (9.168)

where, for chosen t, the nonmonochromatic mode functions φi(ω, t) are a com-
plete set of square integrable orthonormal functions:∫

[n]
dω φi(ω, t)φ∗

j (ω, t) = δij , (9.169)

∑
i

φi(ω, t)φ∗
i (ω′, t) = δ(ω − ω′). (9.170)

Needless to say that the commutation relation[
b̂(i)

n out(t), b̂(j)†
n out(t)

]
= δij (9.171)

holds.
Let b̂(1)

n out(t) be the operator associated with the (nonmonochromatic) out-
going mode which is attributed to the (nonmonochromatic) cavity mode. Re-
calling Eq. (9.161), it is obvious to set, within the approximation scheme used,

φ1(ω, t) =
Fn(ω, t)√

ηn(t)
, (9.172)

where

ηn(t) =
∫

[n]
dω |Fn(ω, t)|2, (9.173)

so that, for chosen n, Eq. (9.168) takes the form

b̂(i)
n out(t) =




√
ηn(t) ân(t0) + B̂(i)

n (t) if i = 1,

B̂(i)
n (t) otherwise,

(9.174)

where

B̂(i)
n (t) =

∫
[n]

dω φi(ω, t)B̂n(ω, t). (9.175)

Introducing the operators b̂(i)
n out(t) according to Eq. (9.167) in the charac-

teristic functional (9.157) and taking into account the commutation relation
(9.171), we see that the operator exponential factorizes as

exp
[∫

[n]
dω β(ω)b̂†

n out(ω, t)− H.c.
]

= ∏
i

exp
[
βib̂

(i)†
n out(t)− H.c.

]
, (9.176)
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where

βi = βi(t) =
∫
[n]

dω φi(ω, t)β(ω). (9.177)

Since only b̂(1)
n out(t) is attributed to the cavity mode [see Eq. (9.174)], we may

assume that the characteristic function factorizes as well, with

Φ(1)
n out(β1, t) =

〈
exp

[
β1b̂(1)†

n out(t)− H.c.
]〉

(9.178)

being the characteristic function of the relevant outgoing mode. Using
Eq. (9.174) and noting that the commutation relation[

ân(t0), B̂(1)†
n (t)

]
= 0 (9.179)

holds, we may rewrite Eq. (9.178) as

Φ(1)
n out(β1, t) =

〈
exp

[
β1

√
ηn(t) â†

n(t0) − H.c.
]

exp
[
β1B̂(1)†

n (t)− H.c.
]〉

.

(9.180)

Noting that, according to Eq. (9.175) together with Eq. (9.163), B̂(1)
n (t) is a func-

tional of b̂n(ω, t0) and ĉσ(ω, t0) and assuming that the density operator (at the
initial time t0) factorizes with respect to the cavity field and the residual sys-
tem, we obtain

Φ(1)
n out(β1, t) =

〈
exp

[
β1

√
ηn(t) â†

n(t0)−H.c.
]〉〈

exp
[
β1B̂(1)†

n (t)−H.c.
]〉

.

(9.181)

Inserting Eq. (9.163) into Eq. (9.175), we may rewrite B̂(1)
n (t) as

B̂(1)
n (t) =

√
ζ
(1)
n (t) b̂(1)

n (t) + ∑
σ

√
ζ
(1)
σ (t) ĉ(1)

σ (t), (9.182)

where the operators b̂(1)
n (t) and ĉ(1)

σ (t) are defined by

b̂(1)
n (t) =

∫
[n]

dω
χ

(1)
n (ω, t)√

ζ
(1)
n (t)

b̂n(ω, t0), (9.183)

ĉ(1)
σ (t) =

∫
[n]

dω
χ

(1)
σ (ω, t)√

ζ
(1)
σ (t)

ĉσ(ω, t0), (9.184)

and the functions ζ
(1)
µ (t) and χ

(1)
µ (t) [µ= (n, σ), σ=1, 2, . . .] read

ζ
(1)
µ (t) =

∫
[n]

dω |χ(1)
µ (ω, t)|2, (9.185)
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χ
(1)
µ (ω, t) =

∫
[n]

dω′ φ1(ω′, t)G∗
µ(ω′, ω, t). (9.186)

Inserting Eq. (9.182) into Eq. (9.181) and recalling Eq. (C.27), we may express

the characteristic function Φn out(β, t; s)≡ Φ(1)
n out(β1, t; s) in s order of the quan-

tum state of the relevant outgoing field [cf. Eq. (4.91)] in terms of the character-
istic functions Φn cav(β′; s′), and Φµ(βµ; sσ) of the quantum states of the cavity
field, the incoming field (µ=n) and the unwanted dissipative channels (µ=σ,
σ=1, 2, . . .), respectively, as

Φn out(β, t; s) = e−ξn(t)|β|2/2Φn cav

[√
ηn(t) β; s′

]
∏

µ

Φµ

[√
ζµ(t) β; sµ

]
,

(9.187)

where

ξn(t) = ηn(t)s′ + ∑
µ

ζµ(t)sµ − s. (9.188)

From Eq. (9.187) the phase-space function in s order can be derived to be [cf.
Eq. (4.93)]

Pn out(α, t; s) =
2
π

1
ξn(t)

∫
d2α′ Pn cav(α′; s′) ∏

µ

∫
d2αµ Pµ(αµ; sµ)

× exp
[
− 2

ξn(t)

∣∣∣√ηn(t) α′ + ∑
µ′

√
ζµ′(t) αµ′ − α

∣∣∣2], (9.189)

provided that

ξn(t) ≥ 0, (9.190)

where the equality sign must be understood as a limiting process. In par-
ticular, the Wigner function Wn out(α, t) is obtained by setting s = 0, that is
Wn out(α, t)=Pn out(α, t; s)|s=0.

In the case where both the incoming field and the dissipative channels are
in the vacuum states with Wigner functions

Wµ(α) = Pµ(α; s)|s=0 =
2
π

e−2|α|2 , (9.191)

from Eq. (9.189) (for s=0) it follows that the Wigner function of the quantum
state of the relevant outgoing field reads

Wn out(α, t) =
2
π

1
1 − ηn(t)

∫
d2α′ exp

[
−2|

√
ηn(t) α′ − α|2
1 − ηn(t)

]
Wn cav(α′),

(9.192)
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where, according to Eq. (9.173) [together with Eq. (9.162)],

ηn(t) =
Γn

Γn + Γ′
n

[
1 − e−(Γn+Γ′

n)(t+∆t−t0)
]

, (9.193)

with the damping rates Γn and Γ′
n, respectively, being defined by Eqs (9.26)

and (9.153) [together with Eq. (9.154)]. Equation (9.192) reveals that, for almost
perfect extraction of a quantum state from a high-Q cavity, the condition

ηn(t)
1 − ηn(t)

� 1 (9.194)

must be satisfied, i. e., the value of the extraction efficiency ηn(t) must be suf-
ficiently close to unity. Note that for (Γn +Γ′

n)(t− t0)�1

ηn(t) � Γn

Γn + Γ′
n

. (9.195)

The actual required efficiency for almost perfect quantum-state extraction
sensitively depends on the quantum state that is desired to be extracted. To
illustrate this, let us consider a k-photon number state,

W(k)
n cav(α) =

2
π

(−1)ke−2|α|2Lk(4|α|2) (9.196)

[see Eq. (4.119)]. Substituting Eq. (9.196) into Eq. (9.192), we obtain the Wigner
function of the outgoing field as

W(k)
n out(α, t) =

2
π

(−1)ke−2|α|2 [2ηn(t)− 1]k Lk

[
4ηn(t)

2ηn(t)− 1
|α|2

]
. (9.197)

From Eq. (9.197) it is not difficult to see that the condition

ηn(t) > 1 − 1
2k

(9.198)

must be satisfied to guarantee that the k-photon number state prevails in the
mixed output quantum state. In the simplest case of a one-photon number
state, k=1, the condition reduces to ηn(t)> 0.5. That is to say, the weight of
the one-photon number state exceeds the weight of the vacuum state in the
mixed state of the outgoing field,

W(1)
n out(α, t) = [1 − ηn(t)]W(0)

n out(α) + ηn(t)W(1)
n out(α), (9.199)

only if the extraction efficiency exceeds 50%. The condition (9.198) clearly
shows that with increasing value of k the required extraction efficiency rapidly
approaches 100%.

The dependence on the extraction efficiency of the quantum state of the
outgoing field is illustrated in Fig. 9.2 for the case in which a single-photon
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Fig. 9.2 Wigner function of the quantum state of the outgoing mode in
the case of the cavity mode being (initially) prepared in a single-photon
number state. (a) ηn(t)=0.99; (b) ηn(t)=0.71; (c) ηn(t)=0.5. [After
Khanbekyan, Knöll, Semenov, Vogel and Welsch (2004).]

number state is required to be extracted. Figure 9.2(a) reveals that nearly per-
fect extraction requires an extraction efficiency that should be no smaller than
ηn(t)=0.99, which for t→∞ corresponds to the requirement that Γ′

n/Γn �0.01.
As long as ηn(t)>0.5, the single-photon number state is the dominant state
in the mixed output state, as can be seen from Fig. 9.2(b) [ηn(t) = 0.71, i. e.,
Γ′

n/Γn =0.429 (t→∞)]. For ηn(t)≤ 0.5, i. e., Γ′
n/Γn ≥ 1 (t → ∞)], the features

typical of a single-photon number state are lost, Fig. 9.2(c).
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10
Medium-assisted electromagnetic vacuum effects

The classical electromagnetic vacuum is simply the state in which all moments
of the electric and induction fields identically vanish, and thus the fields them-
selves identically vanish. Hence, in classical electrodynamics the interaction
of matter with the electromagnetic field – including field-assisted interaction
between matter systems – always requires excited (source-attributed) fields,
which, as is known, can be described in terms of positive semi-definite proba-
bility distribution functions in phase space. In quantum electrodynamics the
situation is quite different, because the noncommutativity of canonical conju-
gate field quantities necessarily implies nonvanishing moments. As we know,
the quantum electromagnetic vacuum can be regarded as the state in which all
normally ordered field moments identically vanish. Clearly, the anti-normally
ordered field moments cannot do so due to virtual photon creation and de-
struction – an effect in which the noise of the quantum vacuum becomes man-
ifest.

Since the electromagnetic vacuum cannot be switched off, its interaction
with atomic systems cannot be switched off either, thereby giving rise to a
number of observable effects such as spontaneous emission, the Lamb shift,
intermolecular energy transfer and the van der Waals force. Both virtual and
real photons can be involved in the atom–field interaction. Whereas the inter-
action of ground-state atoms with the electromagnetic vacuum processes via
virtual photon creation and destruction, the creation of real photons always
requires excited atoms. A typical example of the first case is the van der Waals
force between two ground-state atoms, whereas the spontaneous decay of an
excited atomic state typically represents the second case.

The presence of linear media in the form of macroscopic bodies changes the
structure of the electromagnetic field compared to that in the free space and
in consequence the electromagnetic vacuum felt by an atom is changed. In
a broader sense the effect is called the Casimir effect. It offers the possibil-
ity of controlling the interaction of atomic systems with the medium-assisted
electromagnetic vacuum, with applications that range from cavity QED to in-
tegrated atom optics and electronics. On the basis of the quantization scheme
for the electromagnetic field in dispersing and absorbing media (Section 2.4),
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the effect of the presence of macroscopic bodies on the spontaneous emission
of a single atom is studied in Section 10.1, and Section 10.2 provides a unified
approach to the problem of van der Waals and Casimir forces.

10.1
Spontaneous emission

Spontaneous emission is not only one of the most familiar quantum phenom-
ena but it is also the basic process for generating light. Although a number of
properties of the spontaneously emitted radiation can be described classically,
spontaneous emission is a pure quantum effect the understanding of which
requires quantization of the electromagnetic field. A dynamical theory of the
spontaneous emission of a single (two-level) atom in free space was first given
by Weisskopf and Wigner (1930).

Let us consider a single atomic system such as an atom or a molecule –
briefly referred to as an atom in the following – (position rA, energy eigen-
values En = h̄ωn) which in the presence of arbitrary linear dielectric bodies1

interacts with the electromagnetic field via electric-dipole transitions, so that
the multipolar-coupling Hamiltonian (2.229) can be given in the form of

Ĥ = ĤC + ĤF + Ĥint , (10.1)

where

ĤC = ∑
n

h̄ωnÂnn (10.2)

is the atomic Hamiltonian,

ĤF =
∫

d3r
∫ ∞

0
dω h̄ω f̂†(r, ω)f̂(r, ω) (10.3)

is the Hamiltonian of the electromagnetic field and the medium forming the
bodies, and, according to Eq. (2.243),

Ĥint = − ∑
n,m

dnmÊ(+)(rA) Ânm + H.c.

= −i

√
h̄

πε0
∑
n,m

∫ ∞

0
dω

ω2

c2

∫
d3r′ dnmG(rA, r′, ω)f̂(r′, ω)Ânm + H.c.

(10.4)

1) For an extension to magnetodielectric
bodies, see Ho, Buhmann, Knöll, Welsch,
Scheel and Kästel (2003). It is worth not-
ing that all formulas in this chapter which
do not explicitly contain the permittivity,
but are solely expressed in terms of the

Green tensor (or related quantities), are
also valid for magnetodielectric bodies,
with the Green tensor being determined
from the full Maxwell equations contain-
ing both the medium polarization and
magnetization.
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is the atom–field interaction energy in the electric-dipole approximation
(Ânm = |n〉〈m|, ĤC|n〉= h̄ωn|n〉). The typical features of spontaneous decay
can already be understood on the basis of a two-state model of the atom, i. e.,

ĤC = h̄
(
ω1Â11 + ω2Â22

)
= h̄ω1 + h̄ω21Â22 �→ ĤC = h̄ω21Â22 (10.5)

(ω21 =(E2−E1)/h̄>0; note that Â11 + Â22 =1), and within the rotating-wave
approximation, i. e.,2

Ĥint = −i

√
h̄

πε0

∫ ∞

0
dω

ω2

c2

∫
d3r′ d21G(rA, r′, ω)f̂(r′, ω)Â21 + H.c.. (10.6)

It should be stressed that the relevant information on the bodies is fully in-
cluded in the Green tensor G(r, r′, ω) of the macroscopic Maxwell equations.

From Eq. (10.6) it is seen that when the atom is in the upper state |2〉 and the
rest of the system is in the vacuum state |{0}〉,

f̂(r, ω)|{0}〉 = 0, (10.7)

then a single-quantum state of the combined field–body system,

|1(r, ω)〉 = f̂†(r, ω)|{0}〉, (10.8)

can be created owing to a transition of the atom into the lower state |1〉. Hence
for the overall-system state vector at time t the ansatz

|ψ(t)〉 = C2(t)e−iω21t|{0}〉|2〉
+

∫
d3r

∫ ∞

0
dω e−iωtC1(r, ω, t)|1(r, ω)〉|1〉 (10.9)

can be made. To determine the (slowly varying) expansion coefficients C2(t)
and C1(r, ω, t), we insert |ψ(t)〉 into the Schrödinger equation and obtain the
following system of coupled differential equations:

Ċ2(t) = − 1√
πε0 h̄

∫ ∞

0
dω

ω2

c2 e−i(ω−ω21)t

×
∫

d3r
√

Im ε(r, ω) d21G(rA, r, ω)C1(r, ω, t), (10.10)

Ċ1(r, ω, t) =
1√

πε0h̄
ω2

c2

√
Im ε(r, ω) ei(ω−ω21)td12G∗(rA, r, ω) C2(t). (10.11)

2) Note that here, in addition to the transverse electric field consid-
ered in Eq. (2.244), the interaction of the atom with the longitudinal
electric field which is attributed to the medium is also treated in the
rotating-wave approximation.
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To solve it under the initial conditions C2(t)|t=0=1, C1(r, ω, t)|t=0=0, we for-
mally integrate Eq. (10.11) and insert the result in Eq. (10.10). Making use of
the relation (A.3), after some algebra we derive the integro-differential equa-
tion

Ċ2(t) =
∫ t

0
dt′ K(t − t′)C2(t′), (10.12)

where the kernel function reads

K(t) = − 1
h̄πε0c2

∫ ∞

0
dω ω2e−i(ω−ω21)td21Im G(rA, rA, ω)d12 . (10.13)

It is not difficult to see that Eq. (10.12) can be converted into the integral equa-
tion

C2(t) =
∫ t

0
dt′ K′(t − t′)C2(t′) + 1, (10.14)

where

K′(t) =
1

h̄πε0c2

∫ ∞

0
dω ω2 e−i(ω−ω21)t − 1

i(ω − ω21)
d21Im G(rA, rA, ω)d12 . (10.15)

Next let us calculate the intensity of the emitted radiation. From Eq. (2.295)
it follows that the Heisenberg operator of the source-field part of the electric
field reads

Ês(r, t) = Ê(+)
s (r, t) + H.c., (10.16)

where, in the rotating-wave approximation,

Ê(+)
s (r, t) =

∫ t

0
dt′ K(+)

(E) (r, t; rA, t′)d12Â12(t′), (10.17)

with K(+)
(E) (r, t; rA, t′) being expressed in terms of the Green tensor according

to Eq. (2.296).3 Since the free-field part is in the vacuum state, the intensity of
the emitted radiation is fully determined by the source-field part,

I(r, t) =
〈
Ê(−)(r, t)Ê(+)(r, t)

〉
=

〈
Ê(−)

s (r, t)Ê(+)
s (r, t)

〉
, (10.18)

and can therefore be expressed in terms of C2(t) as

I(r, t) =
∣∣∣∣∫ t

0
dt′ K(+)

(E) (r, t; rA, t′)d12C2(t′)e−iω21t′
∣∣∣∣2

. (10.19)

Note that only the far field contributes to the actually emitted radiation.

3) Note that for a two-level atom the polarization �̂P(r) reduces to
�̂P(r)= d̂δ(r−rA)=(d21Â21 +d12Â12)δ(r−rA), and that, with respect
to the emitted radiation, the difference between multipolar coupling
and minimal coupling becomes meaningless.
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From the above it is seen that all the relevant quantities can be expressed in
terms of C2(t), with the presence of macroscopic bodies being fully included in
the Green tensor of the system. The calculation of C2(t) requires the solution
of Eq. (10.12) [or Eq. (10.14)] – a problem, which in general must be solved
numerically. However, there are two limiting cases for which Eq. (10.13) [or
Eq. (10.14)] can be further evaluated analytically without explicitly making
use of the actual structure of the Green tensor – namely the cases of weak and
strong atom–field coupling. In the analytical calculations it may be convenient
to set

C2(t) = C̃2(t)e−iδω21t (10.20)

in order to determine the shifted atomic transition frequency

ω̃21 = ω21 + δω21 (10.21)

in a self-consistent way. Equation (10.12) then changes to

˙̃C2(t) = iδω21C̃2(t) +
∫ t

0
dt′ K̃(t − t′)C̃2(t′), (10.22)

where

K̃(t) = K(t)eiδω21t. (10.23)

10.1.1
Weak atom–field coupling

We begin with the case of weak atom–field coupling, which is typical of the
spontaneous emission observed, e. g., in free space. Let τc be the characteris-
tic (correlation) time that defines the time interval in which K(t) [Eq. (10.13)]
and also K̃(t) [Eq. (10.23)] are significantly different from zero. When C̃2(t)
is slowly varying in this time interval, then in the time integral in Eq. (10.22)
C̃2(t′) may be replaced with C̃2(t) and in the remaining integral the upper
limit t may be extended to infinity. In this approximation – known as the
Markov approximation (cf. Section 5.1.3) – memory effects are disregarded,
i. e., the temporal variation of C̃2(t) at any chosen time is solely determined
by C̃2(t) at that time. In this way, the integro-differential equation (10.22) ap-
proximates to the simple differential equation

˙̃C2(t) = iδω21C̃2(t) + C̃2(t) lim
t→∞

∫ t

0
dt′ K̃(t − t′) = − 1

2 ΓC̃2(t), (10.24)

leading to an exponential decay of the upper atomic state,

C̃2(t) = e−
1
2 Γt. (10.25)
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Inserting Eq. (10.23) [together with Eq. (10.13)] in the decomposition

lim
t→∞

∫ t

0
dτ K̃(τ) = −iδω21 − 1

2 Γ (10.26)

used in Eq. (10.24) and recalling the definition of the ζ function [Eq. (5.85)], we
can easily see that the decay rate is given by4

Γ =
2ω̃2

21
h̄ε0c2 d21Im G(rA, rA, ω̃21)d12 (10.27)

and for the shift of the transition frequency follows

δω21 =
P

πh̄ε0c2

∫ ∞

0
dω ω2 d21Im G(rA, rA, ω)d12

ω̃21 − ω
. (10.28)

Note that Eq. (10.28) does not explicitly determine δω21, because it also ap-
pears via ω̃21 in the frequency integral on the right-hand side of the equation.
If δω21 is set equal to zero in the frequency integral, then Eq. (10.28) becomes
an explicit expression for δω21 which is valid in lowest (nonvanishing) order
of perturbation theory – an approximation widely used in practical calcula-
tions.

10.1.1.1 Decay rate and quantum yield

For an atom in free space, the Green tensor G(r, r′, ω) reduces to the sim-
ple free-space Green tensor G0(r, r′, ω) given by Eq. (2.298), from which
Im G0(r, r, ω)= Iω/(6πc) follows, leading to the well-known formula for
the spontaneous-emission rate in free space:

Γ0 =
ω̃3

21|d21|2
3h̄πε0c3 . (10.29)

When there are bodies in the neighborhood of the free-space region where the
atom is located, then the Green tensor for the, now inhomogeneous, system
can be given, in the free-space region, in the form

G(r, r′, ω) = G0(r, r′, ω) + GS(r, r′, ω), (10.30)

where GS(r, r′, ω) is the more or less complicated scattering part, which typ-
ically describes the effect of reflection at the (surfaces of discontinuity of the)
bodies. Combining Eq. (10.27) with Eqs (10.29) and (10.30), we can write the

4) Γ corresponds to Γ(r) in Eq. (5.166) and the equations following. For
notational convenience we drop the superscript here.
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decay rate as5

Γ = Γ0 +
2ω̃2

21
h̄ε0c2 d21Im GS(rA, rA, ω̃21)d21 . (10.31)

In contrast to the homogeneous and isotropic free space, the decay rate now
becomes a function of the atomic position and the orientation of the transition
dipole moment. In other words, the homogeneous and isotropic vacuum fluc-
tuations felt by an atom in the strictly free space are inhomogeneously and
anisotropically changed by the presence of the bodies, in general. The nearer
to a body that the atom is located, the stronger the effect to be expected.

Another effect of the bodies is that the spontaneous decay is not necessar-
ily accompanied by the emission of a really observable photon, but instead a
matter quantum can be created, because of material absorption (described in
terms of the imaginary part of the permittivity). To quantify the effect, let us
consider the emitted radiation energy W, which can be obtained by integra-
tion of I(r, t) [Eq. (10.19)] with respect to time and integration over the surface
of a sphere whose radius is much larger than the extension of the system un-
der consideration,

W = 2cε0 lim
ρ→∞

∫ ∞

0
dt

∫ 2π

0
dφ

∫ π

0
dθ ρ2 sin θ I(r, t) (10.32)

(ρ = |r− rA|). The ratio W/W0 (W0 = h̄ω̃21), which is obviously a measure of
the fraction of the emitted (radiation) energy, on average, can be regarded as
the quantum yield on the time scale ∼ Γ−1. Accordingly, 1−W/W0 measures
the fraction of the energy which is effectively absorbed by the bodies.

According to Eq. (10.19), together with Eqs (2.296) and (10.25), the intensity
of the emitted radiation, I(r, t), is given by

I(r, t) =
∣∣∣∣∫ t

0
dt′ K(+)

(E) (r, t; rA, t′)d12e−(iω̃21+Γ/2)t′
∣∣∣∣2

=
∣∣∣∣ i
πε0c2

∫ ∞

0
dω

e−(iω̃21+Γ/2)t − e−iωt

iω − (iω̃21 + Γ/2)
ω2Im G(r, rA, ω)

∣∣∣∣2

. (10.33)

In the free-space case, where G(r, r′, ω)=G0(r, r′, ω) is valid, with G0(r, r′, ω)
being given by Eq. (2.298), straightforward calculation of the integral in
Eq. (10.33) leads to

I0(r, t) =

(
ω̃2

21d21 sin θ

4πε0c2ρ

)2

e−Γ0(t−ρ/c)Θ(t−ρ/c) + O(ρ−3), (10.34)

5) In fact, the imaginary part of the Green tensor at equal positions
in Eq. (10.27) is singular for any realistic bulk material. Physically,
this singularity is fictitious, because an atom, though surrounded
by matter, should always be localized in a (more or less small) free-
space region.
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where the first term represents the relevant far-field intensity. It is straightfor-
ward to prove that Eq. (10.32) together with Eq. (10.34) leads to W0 = h̄ω̃21.

The effect of the body-induced change of the electromagnetic vacuum fluc-
tuation can be used to control, to some extent, the process of spontaneous
emission. So, spontaneous emission can be either enhanced [Purcell (1946)]
or (almost) inhibited [Kleppner (1981)] compared with that in the free space.
To be more specific, knowledge of the Green tensor for the body configura-
tion of interest is required. It is worth noting that the Green tensor has been
available for a large variety of configurations such as planar, spherically and
cylindrically multi-layered ones [see, e. g., Tai (1994); Chew (1995)].

ε(ω) z

atom

Fig. 10.1 Excited atom close to a dielectric microsphere. Possible ways
of spontaneously emitting a photon are sketched by dashed arrows.

To give an impression of what can be observed, let us consider a two-level
atom close to a dielectric microsphere (Fig. 10.1) whose permittivity is of the
Drude–Lorentz type,

ε(ω) = 1 +
ω2

P

ω2
T − ω2 − iωγ

. (10.35)

Here ωP corresponds to the coupling constant, and ωT and γ are respec-
tively the medium (transverse) oscillation frequency and the absorption
linewidth. Note that the permittivity features a band gap between ω=ωT and
ω=ωL=(ω2

T+ω2
P)1/2. Figure 10.2 illustrates the dependence on the transition

frequency of the decay rate. From the figure it is clearly seen that, when the
atomic transition frequency agrees with (or is close to) the frequency of a field
excitation of either whispering gallery type below the band gap (ω̃21<ωT) or
surface-guided type inside the band gap (ωT≤ω̃21 <ωL),6 the spontaneous

6) The orthogonal modes obtained by solving the homogeneous
Helmholtz equation for a dielectric sphere of constant and real per-
mittivity are commonly called whispering gallery modes (surface-
guided modes) in the case of positive (negative) permittivity.
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Fig. 10.2 The rate of spontaneous decay Γ of a two-level atom near a
dielectric microsphere is shown as a function of the transition frequency
ω̃21 for a radially oriented transition dipole moment, Γ0 being the decay
rate in free space [Eq. (10.29)]. The parameters in the permittivity (10.35)
are chosen to be ωP/ωT =0.5 and γ/ωT =10−4. The radius of the sphere
is R=2λT, and the distance between the atom and the surface of the
sphere is zA =0.1 λT (λT =2πc/ωT). [After Ho, Knöll and Welsch (2001).]

decay can be strongly enhanced. Figure 10.3 illustrates the fraction of the
spontaneously emitted radiation energy, on average. The minima at the field
resonance frequencies below the band gap indicate that, although the decay
can be noticeably enhanced, the probability of emission of a really observable
photon can be substantially reduced compared to the case of spontaneous
emission in the free space. Obviously, a photon emitted at such a frequency is
typically captured inside the microsphere for some time,7 and hence the prob-
ability of photon absorption is increased. For transition frequencies inside
the band gap, two regions can be distinguished. In the low-frequency region,
where surface-guided waves are typically excited, radiative decay dominates,
i. e., the atomic transition is accompanied by the emission of a photon escap-
ing from the system. Here, the radiation penetration depth into the sphere
is small and the probability of a photon being absorbed is also small. With
increasing atomic transition frequency the penetration depth increases and
the chance of a photon to escape drastically diminishes. As a result, photon
absorption dominates.

7) This time, which is inversely proportional to the width of the re-
spective field resonance line, is of course small compared with the
decay time Γ−1. Otherwise the Markov approximation fails (see
Section 10.1.2).
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ω̃21/ωT

W/W0

Fig. 10.3 The fraction W/W0 of spontaneously emitted radiation of
a two-level atom near a dielectric microsphere is shown as a function
of the transition frequency ω̃21 for a radially oriented transition dipole
moment. The other parameters are the same as in Fig. 10.2. [After Ho,
Knöll and Welsch (2001).]

In particular, when the distance zA between the atom and the surface of the
sphere tends to zero,8 then the decay rates Γ⊥ and Γ‖, respectively, for radially
and tangentially oriented transition dipole moments approach the asymptotic
values [Ho, Knöll and Welsch (2001)]

Γ⊥ =
3Γ0c3

4ω̃3
21

Im ε(ω̃21)
|ε(ω̃21) + 1|2

1
z3

A
, Γ‖ = 1

2 Γ⊥, (10.36)

which solely result from absorption, as it is proportional to Im ε(ω̃21). In other
words, an effectively nonradiative decay is observed. The result reveals that,
in the case of strong material absorption, the decay rate rises drastically as the
atom approaches the surface of the microsphere, because of near-field assisted
energy transfer from the atom to the medium – an effect that is typically ob-
served for metals [see, e. g., Drexhage (1974)]. It should be pointed out that
Eq. (10.36) also applies to the case of the atom being in front of a semi-infinite
half space [Yeung and Gustafson (1996)], because in the short-distance limit
the atom effectively regards the surface of the sphere as a plane.

10.1.1.2 Level shift

Let us return to the shift of the atomic transition frequency δω21, Eq. (10.28). It
reflects the fact that even in the case of an atom in the otherwise empty space,

8) Recall that z must not be smaller than typical interatomic distances
in the sphere. Otherwise a microscopic treatment is required.
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the unperturbed atomic energy levels are not the observed ones, because the
interaction of the atom with the always present electromagnetic vacuum gives
rise to level shifts. The effect usually called the Lamb shift9 was first demon-
strated experimentally by Lamb and Retherford (1947) [for the first calculation
of the Lamb shift, see Bethe (1947)].

Substituting the decomposition according to Eq. (10.30) for the Green tensor
in Eq. (10.28), one can see that the term arising from the free-space Green ten-
sor G0(rA, rA, ω) is divergent and a refined description (including regulariza-
tion) is required to adequately treat the (rA-independent) level shift caused by
the interaction of the atom with the electromagnetic vacuum in free space.10

To study the body-induced (rA-dependent) level shift, the shift observed in
the free space may be thought of as being already included in the atomic tran-
sition frequency ω21, so that ω21 is not the bare transition frequency but the
transition frequency that is really observed in the free space, and thus δω21
can be regarded as being determined by the scattering part of the Green ten-
sor GS(rA, rA, ω), leading to

δω21 =
P

πh̄ε0c2

∫ ∞

0
dω ω2 d21Im GS(rA, rA, ω)d12

ω̃21 − ω
. (10.37)

The integral in Eq. (10.37) can be further evaluated by means of contour inte-
gral techniques to obtain

δω21 = δω
(1)
21 + δω

(2)
21 , (10.38)

where

δω
(1)
21 = − ω̃2

21
h̄ε0c2 d21Re GS (rA, rA, ω̃21)d12 (10.39)

and

δω
(2)
21 = − ω̃21

πh̄ε0c2

∫ ∞

0
du u2 d21GS(rA, rA, iu)d12

ω̃2
21 + u2

. (10.40)

In fact, the off-resonant contribution δω
(2)
21 to the shift of the transition fre-

quency is not complete, because – apart from the two-state model – the under-
lying rotating-wave approximation does not take into account the purely off-
resonant lower-state level shift [cf. Section 10.2, Eqs (10.70)–(10.72)]. However,

even if δω
(2)
21 is complemented by the missing terms, it would typically remain

9) More generally, the effect of level shifting observed when a dynam-
ical system interacts with a dissipative system (Chapter 5) is also
called Lamb shift.

10) For the problem of the level shift in free space, which has widely
been studied, we refer the reader to the literature [e. g., Milonni
(1994)].
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small compared with the resonant contribution δω
(1)
21 and may be therefore

disregarded in many cases. In this approximation, Eq. (10.38) reduces to

δω21 = − ω̃2
21

h̄ε0c2 d21Re GS (rA, rA, ω̃21)d12 . (10.41)

Whereas the effect of the bodies on the decay rate is determined by the imagi-
nary part of the scattering part of the Green tensor, the real part is responsible
for the shift of the transition frequency, as a comparison of Eq. (10.31) with
Eq. (10.41) shows.

As in the case of the decay rate, further evaluation of Eq. (10.41) requires
knowledge of the Green tensor for the actual body configuration. Again, the
dependence of δω21 on the distance zA between an atom and the surface of a
body in front of which the atom is situated becomes independent of the actual
form of the body, if zA is sufficiently small, leading to the short-distance law

δω⊥
21 = − 3Γ0c3

16ω̃3
21

|ε(ω̃21)|2 − 1
|ε(ω̃21) + 1|2

1
z3

A
, δω

‖
21 = 1

2 δω⊥
21 (10.42)

[see, e. g., Ho, Knöll and Welsch (2001)]. This effect can be employed in scan-
ning near-field optical microscopy to detect surface corrugation or impurities
via the changes in the line shift of the radiation emitted by a probe atom, un-
less material absorption dominates the transition [see, e. g., Henkel and San-
doghdar (1998)]. The high sensitivity of the method results from the cubic
dependence of the line shift on the inverse distance of the probe atom from
the surface. As we will see in Section 10.2.1, body-induced level shifts are not
only of spectroscopic relevance, but they are also closely related to the van der
Waals force acting on an atom located near to macroscopic bodies.

10.1.2
Strong atom–field coupling

When a resonator-like arrangement of one or more macroscopic bodies fea-
tures sharply peaked electromagnetic field resonances (such as the surface-
guided waves or the whispering gallery waves in the case of a microsphere
considered in Section 10.1.1, or the intra-cavity waves considered in Chap-
ter 9) and the atomic transition frequency approaches the (mid-)frequency of
such a resonator-assisted resonance line, then the strength of the atom–field
coupling can drastically increase. More precisely, the correlation time, which
in this case is determined by the inverse width of the resonator-assisted res-
onance line, can become much longer than the characteristic time scale on
which the atomic-state population noticeably changes. As a consequence, the
Markov approximation can fail and the temporal evolution of the occupation
probability |C2(t)|2 of the upper atomic state can become nonexponential.
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In order to gain insight into such a non-Markovian regime typical of strong
atom–field coupling, let us consider a resonator-like equipment, referred to as
cavity in the following, and assume that only one line of the cavity field, say
the νth of (mid-)frequency ων, is involved in the strong atom–field coupling
– a case which requires the lines to be sufficiently well separated from each
other in the relevant frequency interval. Accordingly we may decompose the
integral kernel K̃(t) as given by Eq. (10.23) together with Eq. (10.13) into two
parts,

K̃(t) = K̃(1)(t) + K̃(2)(t), (10.43)

where

K̃(1)(t) = − 1
h̄πε0c2

∫ ων+ 1
2 ∆ω

ων− 1
2 ∆ω

dω ω2e−i(ω−ω̃21)td21Im G(rA, rA, ω)d12 ,

(10.44)

∆ω being a measure of the separation of two adjacent lines, is related to the
cavity-resonance line under consideration, and K̃(2)(t) which is related to the
residual cavity field may be regarded as being responsible for the shift of
the atomic transition frequency, similar to Eq. (10.28). To further evaluate
K̃(1)(t), let us assume that the cavity-resonance line can be approximated by a
Lorentzian,

K̃(1)(t) = −ω2
νeiδνt

h̄πε0c2 d21Im G(rA, rA, ων)d12γ2
ν

∫ ων+ 1
2 ∆ω

ων− 1
2 ∆ω

dω
e−i(ω−ων)t

(ω−ων)2+γ2
ν

,

(10.45)

where

δν = ω̃21 − ων . (10.46)

If the linewidth is sufficiently small compared with the line separation, i. e.,
γν �∆ω, the upper (lower) limit of the integral may be extended to infinity
(minus infinity), leading to

K̃(1)(t) = − 1
2 Γνγνeiδνte−γν|t|, (10.47)

where Γν is defined according to Eq. (10.27), with ω̃21 being replaced with ων,

Γν =
2ω2

ν

h̄ε0c2 d21Im G(rA, rA, ων)d12. (10.48)

Hence the integro-differential equation (10.22) approximates to

˙̃C2(t) =
∫ t

0
dt′ K̃(1)(t − t′)C̃2(t′)

= − 1
2 Γνγν

∫ t

0
dt′ e(iδν−γν)(t−t′)C̃2(t′), (10.49)
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which corresponds to the differential equation

¨̃C2(t)− (iδν − γν) ˙̃C2(t) + 1
4 Ω2

νC̃2(t) = 0 (10.50)

[C̃2(0)=1, ˙̃C2(0)=0], where

Ων =
√

2Γνγν (10.51)

is the vacuum Rabi frequency with respect to the νth resonance line of the
cavity field.

Equation (10.50) can be solved by means of the standard ansatz C̃2(t)∼ eλt,
leading to

λ2 − (iδν − γν)λ + 1
4 Ω2

ν = 0, (10.52)

from which

λ = 1
2 (iδν − γν) ± 1

2

√
(iδν − γν)2 − Ω2

ν (10.53)

follows. Strong atom–field coupling requires that the inequalities11

|δν| � Ων, γν � Ων (10.54)

are fulfilled. Hence the square root on the right-hand side of Eq. (10.53) may
be expanded to linear order in δν and γν to approximately obtain

λ = 1
2 (±Ων + δν)i − 1

2 γν , (10.55)

leading to

C̃2(t) = e
1
2 (iδν−γν)t

[
cos

( 1
2 Ωνt

) − iδν − γν

Ων
sin

( 1
2 Ωνt

)]

 e

1
2 (iδν−γν)t cos

( 1
2 Ωνt

)
. (10.56)

In contrast to the irreversible exponential decay of the upper-state occupation
probability which is typical of weak atom–field coupling, damped (vacuum)
Rabi oscillations are typically observed in the case of strong atom–field cou-
pling. In particular, on the time scale ∼ Ω−1

ν the atom and the cavity field
periodically exchange excitation – a process which is not disturbed by dissi-
pation so that it becomes reversible on this time scale:

|C̃2(t)|2 = |C2(t)|2 = 1 − |C1(t)|2 = cos2( 1
2 Ωνt

)
= 1

2 [1 + cos(Ωνt)]. (10.57)

11) Note that the second condition implies a sufficiently high-Q cavity
with respect of the νth line, in general (Q=ων/γν�1).
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ε(ω)

atom

Fig. 10.4 Atom at the center of a dielectric spherical-shell cavity. Possi-
ble waves which an excited atom can spontaneously emit are sketched
by dashed arrows.

Physically this means that a photon spontaneously emitted by the atom in
the upper quantum state will be reabsorbed by the atom in the further course
of time, thereby again exciting the atom, and the cycle of photon emission
and reabsorption begins anew. The process can be obviously described by
resonantly coupling the two-level atom to a single mode of an ideal cav-
ity (Q → ∞). Though only valid on a time scale that is sufficiently short
compared with the inverse of the small, but always finite, width of the cav-
ity line with which the atom strongly interacts, one advantage of such a
model of strong atom–field coupling – known as the Jaynes–Cummings model
(Section 12.1) – is the fact that the effect of arbitrarily excited states of the cav-
ity field can be included in the theory more easily than would be the case in
the exact description.

To illustrate the effect of strong atom–field coupling, let us consider an ex-
cited two-level atom located at the center of a dielectric spherical-shell cavity
(Fig. 10.4). Typical examples of the temporal evolution of the occupation prob-
ability |C2(t)|2 of the upper atomic state are shown in Fig. 10.5. They were ob-
tained by numerical integration of the exact integral equation (10.14), with the
permittivity being of Drude–Lorentz type according to Eq. (10.35), by assum-
ing the atomic transition being tuned to a cavity-resonance line in the middle
of the band gap. The figure reveals that, with decreasing value of γν (increas-
ing Q value), the Rabi oscillations become more and more pronounced, in full
agreement with Eq. (10.56).
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Fig. 10.5 The temporal evaluation of the occupation probability
|C2(t)|2 of the upper atomic state is shown for an atom at the center
of a spherical-shell cavity of inner radius R=30 λT and thickness d=λT
[ωP/ωT =0.5, ω̃21/ωT ω̃ν/ωT =1.046448, Γ0λT/(2c)=10−6; γν/ωT =
10−4 (solid line), γν/ωT =5 × 10−4 (dashed line), γν/ωT =10−3 (dotted
line). For comparison, the exponential decay in free space (dash-dotted
line) is shown. [After Ho, Knöll and Welsch (2000).]

10.2
Vacuum forces

It is well known that there is an attractive force between electrically neutral,
unpolarized ground-state atoms or molecules. This force, also called the van
der Waals force, represents a pure quantum effect. Restricting his attention to
two-level atoms and employing fourth-order time-independent perturbation
theory, London (1930) derived the potential associated with the force to be

U(r) = −3h̄ω21α2
stat

4r6 (10.58)

(r, distance between the atoms; αstat, static atomic polarizability). Verwey and
Overbeek (1948) had already pointed out that the r−6 potential does not apply
in the retarded limit, i. e., when the separation of the atoms is large compared
with the atomic transition wavelength. A consistent quantum mechanical the-
ory which closed this loophole was then given by Casimir and Polder (1948).12

In particular, they found that, for large interatomic separations, the van der
Waals potential varies as r−7 due to retardation. Moreover, the theory clearly
showed that the origin of the force must be seen in the interaction of the atoms
with the fluctuating electromagnetic quantum vacuum.

12) In this context, van der Waals forces are also referred to as Casimir–
Polder forces.
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Forces of van der Waals type are not only observed on a microscopic level
but also on a macroscopic level. Typical examples are the force (also referred
to as the van der Waals force) to which an atom is subject in the presence of
macroscopic bodies, or the force (referred to as the Casimir force) between
macroscopic bodies – dense media that may be thought of as consisting of
a huge number of interacting atoms. Both types of force can be regarded as
being macroscopic manifestations of microscopic van der Waals forces. In the
following we restrict our attention to dielectric bodies, noting that the theory
can also be extended to other materials.

10.2.1

Force on an atom

From Eq. (2.10) we know that the classical Lorentz force density fL(r) acting
on a charge density ρ(r) and a current density j(r) in an electric field E(r) and
an induction field B(r) reads

fL(r) = ρ(r)E(r) + j(r)× B(r), (10.59)

and the total Lorentz force acting on the matter contained inside some space
region (of volume V) can be obtained according to

F =
∫

V
d3r fL(r). (10.60)

In the case of neutral matter which is electrically polarizable, the charge and
current densities can be regarded as being the polarization charge and current
densities ρP(r) and jP(r), respectively, so that in Eq. (10.59) we may set

ρ(r) = ρP(r) = −∇P(r) (10.61)

and

j(r) = jP(r) = Ṗ(r). (10.62)

Let us consider a neutral, electrically polarizable atom at position rA and
restrict our attention to the electric-dipole approximation, i. e.,

P(r) ≡ PA(r) = dδ(r − rA). (10.63)

Combining Eqs (10.59)–(10.63), we find that the Lorentz force acting on the
atom can be given in the form

F = d∇A ⊗ E(rA) + ḋ × B(rA)

= ∇ ⊗ dE(r)
∣∣
r=rA

+
∂[d × B(r)]

∂t

∣∣∣∣
r=rA

(10.64)
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(∇A =̂∂/∂xAk), where the second line follows from the first one by using the
Maxwell equation (2.2). Equation (10.64), which as an operator-valued equa-
tion is also valid in quantum theory, may serve as a starting point for calculat-
ing the radiation force acting (in the electric-dipole approximation) on a neu-
tral atom, by taking the expectation value with respect to the internal atomic
quantum state (i. e., the electronic quantum state in the case of an atom) and
the quantum state of the electromagnetic field,

F = ∇〈d̂Ê(r)〉∣∣r=rA
+

∂〈d̂ × B̂(r)〉
∂t

∣∣∣∣
r=rA

. (10.65)

This equation can be interpreted in several ways. So it can be regarded as
giving the force in the Newtonian equation of motion for the center-of-mass
coordinate, which is further evaluated within the frame of quantum mechan-
ics or, if possible, also within the frame of classical mechanics. Clearly, the
center-of-mass motion should be sufficiently slow, so that it (approximately)
decouples from the internal motion in the spirit of a Born-Oppenheimer ap-
proximation. Equation (10.65) can be also regarded as determining the force
that must be compensated for in the case when the center-of-mass coordinate
may be considered as a given (classical) parameter controlled externally. Since
there is no need here to distinguish between the possible interpretations, we
do not use the operator hat on the center-of-mass coordinate rA in Eq. (10.65).
In particular, when the atom–field system is prepared in an energy eigenstate,
then the expectation value of the magnetic part of the force obviously van-
ishes, so that only the expectation value of the electric part needs to be consid-
ered, i. e.,

F = ∇〈d̂Ê(r)〉∣∣r=rA
. (10.66)

To calculate the van der Waals force which is observed in the case when
the atom is subject to a body-assisted electromagnetic vacuum, we restrict our
attention to energy eigenstates. In this case Eq. (10.66) applies, and a compar-
ison with the (multipolar-coupling) interaction energy (2.239)13 may suggest,
at first glance, that the interaction energy plays the role of the potential of the
force. However, the exact state vector with which the expectation value is
calculated introduces an additional rA dependence, which prevents this idea
from being true in general. Fortunately, the expectation value calculated with
the state vector in the lowest (leading) order of perturbation theory is an ex-
ception, so that in this most commonly considered case, the force can be sim-
ply obtained by taking the negative gradient of the (position-dependent) part

13) Note that Eq. (10.64) also holds with E being replaced by the trans-
formed E′, so that in the further calculations the prime can be omit-
ted for notational convenience.
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of the body-induced shift of the corresponding energy, as we will do in the
following.

10.2.1.1 Lowest-order perturbation theory

Let the body-assisted electromagnetic field be in the ground state and the atom
in the nth energy eigenstate. The interaction Hamiltonian (2.239) in the form
of Eq. (2.243) implies that the lowest-order energy shift δEn is obtained in the
second order of the perturbation series of the energy, i. e.,

δEn = −1
h̄ ∑

k
P

∫ ∞

0
dω

∫
d3r

|〈n|〈{0}|Ĥint|{1(r, ω)}〉|k〉|2
ωkn + ω

(10.67)

[ωkn =(Ek − En)/h̄ are the unperturbed transition frequencies], where [recall
Eqs (10.7) and (10.8)]

〈n|〈{0}|Ĥint|{1(r, ω)}〉|k〉 = −〈n|〈{0}|d̂Ê(rA)|{1(r, ω)}〉|k〉

= −i

√
h̄

πε0

ω2

c2

√
Im ε(r, ω) dnkG(rA, r, ω).

(10.68)

Combining Eqs (10.67) and (10.68) yields

δEn = − 1
πε0c4 ∑

k
P

∫ ∞

0
dω

[
ω4

ωkn + ω

×
∫

d3r Im ε(r, ω)dnkG(rA, r, ω)G∗(r, rA, ω)dkn

]
, (10.69)

which, with the help of the relation (A.3), can be performed to obtain

δEn = − 1
πε0c2 ∑

k
P

∫ ∞

0
dω

ω2dnkIm G(rA, rA, ω)dkn

ωkn + ω
. (10.70)

Before proceeding let us briefly make contact with the frequency shift δω21
as given by Eq. (10.28). We first note that from Eq. (10.70) the shifted transition
frequencies ω̃nm can be calculated according to

ω̃nm = h̄−1[En + δEn − (Em + δEm)] = ωnm + δωnm, (10.71)

where the frequency shifts are given by

δωnm = h̄−1(δEn − δEm). (10.72)

Comparing δω21 calculated from Eq. (10.72) [together with Eq. (10.70)] with
δω21 from Eq. (10.28), we see, on identifying ω̃21 in Eq. (10.28) with the un-
perturbed transition frequency ω21, that in the rotating-wave approximation
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used to derive Eq. (10.28), the off-resonant lower-state level shift is completely
ignored. Further, in Eq. (10.28) only the term with k = 1 in the sum for δE2
in Eq. (10.70) is taken into account, which is of course a consequence of the
two-level approximation.

As already mentioned in Section 10.1.1, the body-induced level shifts in
which we are interested are determined by the scattering part of the Green
tensor [recall the decomposition (10.30) of the Green tensor]. Hence the po-
tential Un(rA) for the van der Waals force

Fn(rA) = −∇AUn(rA) (10.73)

can be obtained from Eq. (10.70) by replacing therein the Green tensor by its
scattering part:

Un(rA) = − 1
πε0c2 ∑

k
P

∫ ∞

0
dω

ω2dnkIm GS(rA, rA, ω)dkn

ωkn + ω
. (10.74)

Applying contour integral techniques, we may decompose the van der Waals
potential Un(rA) into two parts [cf. Eqs (10.37)–(10.40)],

Un(rA) = U(1)
n (rA) + U(2)

n (rA), (10.75)

where

U(1)
n (rA) = − 1

ε0c2 ∑
k

Θ(ωnk)ω2
nkdnkRe GS(rA, rA, ωnk)dkn (10.76)

is the resonant part and

U(2)
n (rA) =

1
πε0c2 ∑

k

∫ ∞

0
du u2 ωkndnkGS(rA, rA, iu)dkn

ω2
kn + u2 (10.77)

the off-resonant part. In order to bring Eq. (10.77) into a more compact form,
it may be convenient to introduce the lowest-order polarizability tensor14 at-
tributed to the atom in the nth excited state, viz.

αn(ω) ≡ α
(0)
n (ω) = lim

ε→0

2
h̄ ∑

k

ωkndnk ⊗ dkn

ω2
kn − ω2 − iωε

, (10.78)

leading to

U(2)
n (rA) =

h̄
2πε0c2

∫ ∞

0
du u2Tr

[
αn(iu)G(1)(rA, rA, iu)

]
. (10.79)

14) See, e. g., Fain and Khanin (1969).
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In particular, for an atom in a spherically symmetric state, Eqs (10.76) and
(10.79) simplify to

U(1)
n (rA) = − 1

3ε0c2 ∑
k

Θ(ωnk)ω2
nk|dnk|2Tr [Re GS(rA, rA, ωnk)] (10.80)

and

U(2)
n (rA) =

h̄
2πε0c2

∫ ∞

0
du u2αn(iu) Tr GS(rA, rA, iu). (10.81)

To obtain Eq. (10.81) from Eq. (10.79), we have used the relation αn(ω) =
αn(ω)I, where

αn(ω) = lim
ε→0

2
3h̄ ∑

k

ωkn|dnk|2
ω2

kn − ω2 − iωε
. (10.82)

Equation (10.75), together with Eqs (10.76) and (10.77) [or, equivalently,
(10.79)], apply to arbitrary causal dielectric bodies which linearly and locally
respond to the electric field;15 all relevant information on the bodies is con-
tained in the scattering Green tensor. From Eq. (10.76) it is seen that [because

of Θ(ωnk)] U(1)
n (rA) can only contribute to Un(rA) if the atom is excited. In

this case U(1)
n (rA) can be expected to be the dominant contribution in general.

It should be pointed out that since an excited state decays in the further course
of time, the force acting on an initially excited atom varies with time until the
atom has arrived back at the ground state – an effect that requires a dynamic
description rather than the static one considered here [for a dynamic descrip-
tion, see Buhmann, Knöll, Welsch and Ho (2004)]. Note that the dipole matrix
elements which enter the spontaneous decay rate attributed to an excited state
also enter the excited-state van der Waals potential.

Let us study the van der Waals potential U(rA)≡U0(rA) = U(2)
0 (rA) of a

ground-state atom in more detail. According to Eq. (10.81) it reads

U(rA) =
h̄

2πε0c2

∫ ∞

0
du u2α(iu) Tr GS(rA, rA, iu). (10.83)

[α(ω)≡α0(ω)]. From Eq. (10.83) it is clearly seen that the van der Waals force
acting on a nonexcited, electrically neutral, polarizable particle, represents a
quantum effect, which would vanish if h̄ were set equal to zero in Eq. (10.83).16

It is basically a pure vacuum effect, because the overall system is in the ground

15) It can be shown that Eq. (10.75) together with Eqs (10.76) and (10.77)
[or, equivalently, (10.79)] also apply to causally, linearly and locally
responding magnetodielectric bodies [Buhmann, Knöll, Welsch and
Ho (2004)].

16) Note that the (scattering part of the) Green tensor is a classical quan-
tity and the polarizability can also be introduced classically.
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state, and hence a fully quantum theoretical treatment is necessary. By con-

trast, if the atom is in an excited state, the resonant contribution U(1)
n (rA) as

given by Eq. (10.76) can be understood, in a sense, on the basis of a quasi-
classical description, by considering the interaction of an oscillating classical
dipole with the field scattered by the bodies.

10.2.1.2 Atom in front of a planar body

To give a typical example of the van der Waals potential of a ground-state
atom, let us consider an atom in front of a planar body. It can be calculated in
a straightforward way by inserting in Eq. (10.83) the well-known (scattering
part of the) Green tensor for a multi-layer dielectric plate of infinite lateral
extension.16 Since the calculation is somewhat lengthy, we renounce it here
and present the result at once:

U(zA) =
h̄µ0

8π2

∫ ∞

0
du u2α(iu)

∫ ∞

0
dq

q
κ

e−2κzA

[
rs− −

(
1 + 2

q2c2

u2

)
rp−

]
.

(10.84)

Here, the atom is on the right of the plate, with zA being the (positive) distance
between the surface of the plate and the atom (see Fig. 10.6). Further, q is the
absolute value of the transverse (lateral) component q of the wave vector k,
and rσ− (σ = s, p) are the (generalized) reflection coefficients for s-polarized
and p-polarized waves17 with respect to the surface (at z=0) which faces the
atom, and

κ = κ(iu, q) =

√
q2 − (iu)2

c2 . (10.85)

Since, depending on the actual layer structure of the plate, the reflection co-
efficients rσ−=rσ−(iu, q) can be more or less complicated functions of u and

16) For a suitable representation of the Green
tensor for a multi-layer dielectric struc-
ture of infinite lateral extension, see, e. g.,
Tomaš (1995). Since the transverse pro-
jection q of the wave vector is conserved
and the polarizations σ= s, p decouple, the
scattering part of the Green tensor within
each layer can be expressed in terms of
reflection coefficients rσ±=rσ±(ω, q) re-
ferring to reflection of waves at the right

(+) and left (−) wall (formed by the re-
spective layers), as seen from the layer
under consideration. Explicit (recurrence)
expressions for the reflection coefficients
are available if the walls are multi-slab
magnetodielectrics like Bragg mirrors.
For continuous wall profiles, Riccati-
type equations have to be solved [Chew
(1995)].

17) The corresponding polarization
vectors are es−=q/q × ez and
ep−=−(iqez−κq/q)/k.
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ε(z, ω)
atom

zA
z

F(zA)

rσ−

Fig. 10.6 A ground-state atom near to a (multi-layer) dielectric plate
is subject to an attractive force F(zA), Eq. (10.84), which, for chosen
atomic position zA, is determined by the (zeroth-order) atomic polariz-
ability and the (generalized) reflection coefficients rσ− (σ= s, p). Note
that only virtual photons are involved in the scattering at the plate.

q, further evaluation of the integrals in Eq. (10.84) requires application of nu-
merical methods, in general.

In the limiting case of a perfectly reflecting plate such that

rp− = −rs− = 1, (10.86)

the second integral in Eq. (10.84) can be easily calculated, leading to the attrac-
tive potential

U(zA) = − h̄
16π2ε0z3

A

∫ ∞

0
du α(iu)e−2uzA/c

[
1 + 2

(uzA

c

)
+ 2

(uzA

c

)2
]

,

(10.87)

which is exactly the formula first derived by Casimir and Polder (1948) for the
potential of a ground-state atom in front of a perfectly conducting plate. In the
short-distance (i. e., nonretarded) limit we may approximately set e−2uzA/c = 1
in the integral in Eq. (10.87) and neglect the second and third terms in the
square brackets to recover, on using Eq. (10.82), the result of Lennard-Jones
(1932):

U(zA) = − 1
48πε0

1
z3

A
∑
k
|d0k|2 = −〈0|d̂2|0〉

48πε0

1
z3

A
. (10.88)

In the long-distance (i. e., retarded) limit the atomic polarizability α(iu) may be
approximately replaced by its static value α(0) and put in front of the integral,
leading to

U(zA) = −3h̄cα(0)
32π2ε0

1
z4

A
. (10.89)
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As already mentioned, the general formulas that do not explicitly make use
of the material properties are also valid for other materials than dielectrics.
Hence relations other than the ones given in Eq. (10.86) might be attributed
to a perfectly reflecting plate. In particular, when rp−=−rs−=−1 is set, then
the expression in the square brackets in Eq. (10.84) changes the sign; hence
U(zA) changes to −U(zA) and as a result a repulsive force is observed. This
case of a perfectly reflecting plate would correspond to an infinitely perme-
able magnetic plate – a case which is, of course, far from reality. Neverthe-
less, it reveals a very general aspect. The fact that Maxwell’s equations in the
absence of (free) charges and currents are invariant under a duality transfor-
mation between electric and magnetic fields can be exploited to extend the
notion of forces acting on electrically polarizable objects to magnetically po-
larizable objects. Thus, knowing the attractive van der Waals force between
two electrically polarizable particles (e. g., atoms), one can infer the existence
of an analogous attractive force between two magnetically polarizable parti-
cles, which may be obtained from the former by replacing the electric polar-
izabilities by the corresponding magnetic ones. In contrast, the force between
two polarizable particles of opposite type is repulsive [Feinberg and Sucher
(1970)], which implies that an atom in front of a magnetic plate is subject to a
repulsive force.

The van der Waals potential Un(rA) as given by Eq. (10.75) together with
Eqs (10.76) and (10.77) [or (10.79)] is the body-induced shift of the (unper-
turbed) atomic energy level En. This offers the possibility of measuring it by
means of spectroscopic methods. In particular, the powerful methods of laser
spectroscopy used in cavity QED to study fundamental quantum phenomena
can be employed also to perform direct and precise measurements of the van
der Waals coupling between an atom and cavity walls, in which the interac-
tion is quantitatively studied as a function of controlled separation and of the
electronic state of the atom [Sandoghdar, Sukenik, Hinds and Haroche (1992)].

10.2.2

The Casimir force

In classical electrodynamics, electrically neutral material bodies at zero tem-
perature which do not carry a permanent polarization (and/or magnetization)
are not subject to a Lorentz force in the absence of external electromagnetic
fields. The situation changes in quantum electrodynamics, since the body-
assisted vacuum fluctuations of the electromagnetic field can give rise to a
nonvanishing Lorentz force – the Casimir force. Let us assume that the macro-
scopic bodies consist of distinguishable, polarizable microconstituents com-
monly called atoms or molecules within the framework of molecular optics.
From Section 10.2.1 it is clear that in the case of a large collection of (ground-
state) atoms forming a macroscopic body, a van der Waals interaction of the
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body with other bodies should be observed. Clearly, the resulting Casimir
force between macroscopic bodies is in general not simply the sum of the
van der Waals forces acting on single (ground-state) atoms, because of many-
particle interactions [see, e .g, Buhmann and Welsch (2006)]. Fortunately, the
interaction of electromagnetic fields with linear magnetodielectric matter can
be expressed, via the permittivity and the permeability, in terms of the Green
tensor which a priori takes into account many-particle interactions. Hence,
the Casimir force expressed in terms of the Green tensor takes into account
many-particle interactions as well.

10.2.2.1 Basic equations

Let us again restrict our attention to dielectric bodies19 and begin with the
classical Lorentz force as given by Eq. (10.60) together with Eqs (10.59), (10.61)
and (10.62). In contrast to Eq. (10.63), P(r) is now the macroscopic polarization
field associated with the dielectric medium. Recalling Section 2.4.2, we may it
write in the form of

P(r) =
∫ ∞

0
dω P(r, ω) + c.c., (10.90)

where

P(r, ω) = ε0[ε(r, ω)− 1]E(r, ω) + PN(r, ω). (10.91)

Inserting Eqs (10.61) and (10.62) into Eq. (10.59) and making use of Eq. (2.2),
we find that the Lorentz force density can be rewritten as

fL(r) = ∇′ ⊗ P(r)E(r′)
∣∣
r′=r +

∂[P(r) × B(r)]
∂t

+ ∇[P(r) ⊗ E(r)] (10.92)

(∇′ =̂ ∂/∂x′k). Hence the total Lorentz force acting on the matter which fills
some space region of volume V, Eq. (10.60), can be represented in the form

F =
∫

V
d3r ∇′ ⊗ P(r)E(r′)

∣∣
r′=r +

d
dt

∫
V

d3r P(r)× B(r) +
∫

∂V
daP(r)⊗ E(r).

(10.93)

In particular in the case of a body which is not embedded in a medium the
surface integral taken with respect to the “outer” values of the integrand van-
ishes and Eq. (10.93) simplifies to

F =
∫

V
d3r ∇′ ⊗ P(r)E(r′)

∣∣
r′=r +

d
dt

∫
V

d3r P(r)× B(r), (10.94)

19) For an extension to magnetodielectric bodies, see
Raabe and Welsch (2005).
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which corresponds to the single-atom equation (10.64). Note that for P(r) from
Eq. (10.63), Eq. (10.94) reduces to Eq. (10.64).

Equivalently, by recalling the local momentum balance as given by Eq. (2.7),
we see that the total Lorentz force (acting on the matter in a space region of
volume V) can be expressed in terms of the electric and induction fields as

F =
∫

∂V
da T(r)− ε0

d
dt

∫
V

d3r E(r)× B(r), (10.95)

where T(r) is the ordinary stress tensor as given by Eq. (2.11), i. e.,

T(r) = ε0E(r) ⊗ E(r) + µ−1
0 B(r) ⊗ B(r) − 1

2 [ε0E2(r) + µ−1
0 B2(r)]I. (10.96)

If the volume integral on the right-hand side of Eq. (10.95) can be regarded
as being time-independent, then the total force is solely determined by the
surface integral

F =
∫

∂V
dF, (10.97)

where

dF = da T(r) = T(r) da (10.98)

can be regarded as the infinitesimal force element acting on the infinitesimal
surface element da.

Equation (10.93) [or (10.94)] and the equivalent equation (10.95) [together
with Eq. (10.96)] are respectively basic formulas for calculating radiation
forces on macroscopic bodies. Note that Eq. (10.95) is more general than
Eq. (10.93), because it is also valid for other materials than dielectrics. The
formulas can be analogously used in quantum theory as well, by regarding
them as operator-valued ones and taking the expectation values. Recall that
the noise polarization P̂N(r, ω) is given by Eq. (2.210). In particular, Eq. (10.94)
then reads

F =
∫

V
d3r ∇′〈P̂(r)Ê(r′)〉∣∣r′=r +

d
dt

∫
V

d3r 〈P̂(r)× B̂(r)〉, (10.99)

which obviously corresponds to the single-atom equation (10.65). In a steady-
state regime the second term on the right-hand side in this equation vanishes
and the force formula reduces to

F =
∫

V
d3r ∇′〈P̂(r)Ê(r′)〉∣∣r′=r, (10.100)

which corresponds to Eq. (10.66).
To calculate the Casimir force as the ground-state Lorentz force, we follow

the line suggested by classical electrodynamics to derive Eq. (10.97) together
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with Eqs (10.98) and (10.96), noting that the (expectation value of the) second
term on the right-hand side in Eq. (10.95) vanishes. Hence

F =
∫

∂V
da T(r), (10.101)

where the (time-independent) Casimir stress tensor T(r) can be obtained, in
agreement with the classical equation (10.96), from the quantum-mechanical
ground-state expectation value

T(r, r′) = ε0〈{0}|Ê(r)⊗ Ê(r′)|{0}〉 + µ−1
0 〈{0}|B̂(r) ⊗ B̂(r′)|{0}〉

− 1
2 I

[
ε0〈{0}|Ê(r)Ê(r′)|{0}〉 + µ−1

0 〈{0}|B̂(r)B̂(r′)|{0}〉] (10.102)

in the coincidence limit,

T(r) = lim
r′→r

T(r, r′), (10.103)

where divergent bulk contributions are to be removed before taking the limit.
This is always possible if the body under study is embedded in a material en-
vironment which is homogeneous at least in the vicinity of the body. If this
is not the case, special care and additional considerations may be necessary.
Note that in the calculation of the surface integral in Eq. (10.101) the “outer"
values of the integrand should be used if ∂V is the interface between an in-
homogeneous body and a near-surface homogeneous medium in which the
body is embedded.

Recalling the commutation relations (2.208) and (2.209) and making use of
the field representation as given by Eqs (2.211)–(2.214), we can calculate the
field correlation functions in Eq. (10.102) in a straightforward way. By means
of the commutation relations (2.208) and (2.209) it is not difficult to see that
[recall Eq. (10.7)]

〈{0}|f̂(r, ω)⊗ f̂†(r′, ω′)|{0}〉 = δ(ω − ω′)δ(r − r′), (10.104)

〈{0}|f̂(r, ω)⊗ f̂(r′, ω′)|{0}〉 = 0. (10.105)

Using Eqs (2.211)–(2.214), together with Eqs (10.104) and (10.105), we then
derive, on employing the relation (A.3),

〈{0}|Ê(r) ⊗ Ê(r′)|{0}〉 =
h̄µ0

π

∫ ∞

0
dω ω2Im G(r, r′, ω), (10.106)

〈{0}|B̂(r)⊗ B̂(r′)|{0}〉 = − h̄µ0

π

∫ ∞

0
dω ∇ × Im G(r, r′, ω)× ∇←−

′.

(10.107)

Combination of Eqs (10.102), (10.106) and (10.107) eventually yields

T(r, r′) = θ(r, r′) − 1
2 I Tr θ(r, r′), (10.108)
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where

θ(r, r′) =
h̄
π

∫ ∞

0
dω

[
ω2

c2 Im G(r, r′, ω)− ∇ × Im G(r, r′, ω)× ∇←−
′
]

. (10.109)

Note that the permittivity ε(r, ω) does not appear explicitly in Eq. (10.109),
but only via the Green tensor G(r, r′, ω).20 Having removed divergent bulk
contributions [by replacing the Green tensor G(r, r′, ω) with its scattering part
GS(r, r′, ω), cf. Eq. (10.30)], we may take the imaginary part of the whole inte-
gral instead of the integrand in Eq. (10.109) and rotate the integration contour
in the usual way toward the imaginary frequency axis, on which the Green
tensor is real. In this way we arrive at

T(r) = θS(r) − 1
2 I Tr θS(r), (10.110)

where

θS(r) = − h̄
π

∫ ∞

0
du

[
u2

c2 GS(r, r, iu) + ∇ × GS(r, r, iu)× ∇←−
′
]

. (10.111)

Now we insert Eq. (10.110) into Eq. (10.101) to obtain the following expression
for the Casimir force:

F =
∫

∂V
da

[
θS(r)− 1

2 I Tr θS(r)
]
. (10.112)

10.2.2.2 Planar structures

Let us apply the theory to a planar dielectric structure defined according to

ε(r, ω) =


ε−(z, ω) z < 0,

ε(ω) 0 < z < d,
ε+(z, ω) z > d

(10.113)

(Fig. 10.7). To determine the Casimir stress in the interspace 0<z<d, we need,
according to Eqs (10.110) and (10.111), the (scattering part of the) Green ten-
sor for both spatial arguments within the interspace (0<z=z′<d). As in the
example studied in Section 10.2.1.2, the calculation can be performed on the
basis of the well-known Green tensor for a multi-layer dielectric structure of
infinite lateral extension. We again renounce the rather lengthy but straight-
forward calculation and present the final result. For symmetry reasons it is
clear that the stress tensor effectively reduces to the Tzz component, which can
be given in the form of [Raabe and Welsch (2005)]

Tzz(z) = − h̄
8π2

∫ ∞

0
du

∫ ∞

0
dq

q
κ(iu, q)

g(z, iu, q), (10.114)

20) Equation (10.109) is also valid for magnetodielectrics, if G(r, r′, ω)
is understood as the Green tensor of the inhomogeneous Helmholtz
equation with ε(r, ω) and µ(r, ω) [Raabe and Welsch (2005)].
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ε

ε−(z, ω) ε+(z, ω)

z

−FF

d

rσ−

rσ+

Fig. 10.7 Two (multi-layer) dielectric plates are subject to a mu-
tual attractive force, whose absolute value (per unit area) F = Tzz(d),
Eq. (10.114), is, for chosen spacing d, determined by the coefficients of
(virtual-)photon reflection rσ− (rσ+) at the left (right) plate (σ= s, p).

where

κ(iu, q) =

√
q2 − ε(iu)

(iu)2

c2 (10.115)

and

g(z, iu, q) = − 2[κ2(1 + ε−1) + q2(1 − ε−1)]D−1
s rs+rs−e−2κd

− 2[κ2(1 + ε−1) − q2(1 − ε−1)]D−1
p rp+rp−e−2κd

+ (κ2 − q2)(1 − ε−1)D−1
s

[
rs−e−2κz + rs+e−2κ(d−z)]

− (κ2 − q2)(1 − ε−1)D−1
p

[
rp−e−2κz + rp+e−2κ(d−z)] (10.116)

with

Dσ = Dσ(iu, q) = 1 − rσ+rσ−e−2κd (10.117)

[rσ± are the reflection coefficients referring to reflection of waves at the right
(+) and left (−) wall, as seen from the interspace, cf. Fig. 10.7]. Note that in
Eqs (10.116) and (10.117) ε=ε(iu), κ=κ(iu, q), and rσ±=rσ±(iu, q).

To further (numerically) evaluate Eq. (10.114), knowledge of the depen-
dence of the reflection coefficients on u and q is required. Let us here restrict
our attention to (i) the retarded limit and (ii) the limit of perfectly reflecting
plates. That is to say, we (i) assume that the distance d between the plates is
not too small so that the permittivities can be replaced by their static values,
and (ii) we set

rp± = −rs± = 1. (10.118)

It is then not difficult to calculate the simplified integrals in Eq. (10.114) ana-
lytically to obtain the Casimir force per unit area as [ε≡ε(0)]

F = Tzz(d) =
h̄cπ2

240
1√

ε

(
2
3

+
1
3ε

)
1
d4 , (10.119)
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which reduces to Casimir’s and Polder’s famous formula

F =
h̄cπ2

240
1
d4 (10.120)

[Casimir and Polder (1948)] in the case when the interspace between the plates
is empty (ε=1).
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11
Resonance fluorescence

Among the various light–matter interaction processes, resonant light scatter-
ing from microscopic objects (single atoms, ions etc.) are of particular interest,
because they make it possible to study a series of typical quantum effects. An
illustrative example is the resonance fluorescence from a single atom. The
light emitted by the atom shows various nonclassical features. Even under
resonance conditions where the frequency of the incident light is close to an
atomic transition frequency, the effect of a single atom on the radiation field is
of course small, and the observation requires refined experimental techniques.

In resonance-fluorescence experiments, the atom is usually placed in free
space and irradiated by laser light tuned to an atomic transition, so that the
atom can truly be excited into an upper quantum state. From Section 10.1
we know that, owing to the interaction of the atom with the electromagnetic
vacuum, an excited atomic state can spontaneously decay. In the free space
this decay is exponential and accompanied by the emission of a photon. Res-
onance fluorescence may therefore be regarded as being an interplay between
the competing effects of (coherent) driving of an atomic transition and its (in-
coherent) decay – an interplay which is expected to give rise to interesting
quantum-statistical features of the scattered radiation.

11.1
Basic equations

Let us consider N atoms situated at positions rA, A=1, 2, 3, . . . , N, and as-
sume that the atom–light interaction may be treated in the electric-dipole and
rotating-wave approximations. From Eq. (2.295) [together with Eq. (2.266)] it

then follows that the source part Ê(+)
s (r, t) of the positive-frequency part of

the electric field1

Ê(+)(r, t) = Ê(+)
free(r, t) + Ê(+)

s (r, t) (11.1)

1) Recall that in the free space Ê(+)(r)= Ê⊥(+)(r).
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can be written in the form of

Ê(+)
s (r, t) = ∑

A
Ê(+)

sA (r, t), (11.2)

where

Ê(+)
sA (r, t) = ∑

a,b

′
∫

dt′Θ(t−t′)K(+)
(E) (r, t, rA, t′)dAabÂAab(t′), (11.3)

with K(+)
(E) (r, t, rA, t′) being given by Eq. (2.296), and dAab and ÂAab=|a〉A A〈b|,

respectively, being the transition dipole matrix elements and the associated
flip operators of the Ath atom. The primed sum in Eq. (11.6) indicates that
irrelevant off-resonant transitions are to be excluded from consideration. In
the following we will assume that the interaction of the atom with the elec-
tromagnetic vacuum is weak, which is always the case when the atom is in
the free space, so that the Markov approximation applies. That is to say, we
introduce slowly varying atomic operators ˜̂AAab(t),2

ÂAab(t) = e−iω̃Abat ˆ̃AAab(t), (11.4)

put them at an appropriately chosen retarded time t − lA/c in front of the
integral in Eq. (11.6) and extend the time t in the remaining integral to ∞ to
obtain

ÊsA(r, t) = ∑
ba

′
gba(r, rA)ÂAab(t−lA/c), (11.5)

where

gab(r, rA) = lim
t→∞

∫
dt′Θ(t−t′)eiω̃Aba(t−lA/c−t′)K(+)

(E) (r, t, rA, t′)dAab . (11.6)

Further evaluation of Eq. (11.6) requires knowledge of the dyadic kernel func-

tion K(+)
(E) (r, t, rA, t′), which itself is determined, according to Eq. (2.296), by

the Green tensor of the system. In particular if the atoms are in free space, we
can combine Eq. (2.296) with Eq. (2.298) to derive, on restricting our attention
to the far-field region relevant to the emitted radiation,

gab(r, rA) =
ω̃2

Aba
4πε0c2

[
dAab

|r − rA|
− dAab(r − rA) ⊗ (r − rA)

|r − rA|3
]

, (11.7)

and the simple relation lA = |r−rA | is valid.
Let us consider normally and time-ordered field correlation functions of the

general form

G(m,n)
{kikj}({ri, ti, rj, tj}) =

〈
◦◦

m

∏
i=1

m+n

∏
j=m+1

Ê(−)
ki

(ri, ti)Ê(+)
kj

(rj, tj) ◦◦

〉
. (11.8)

2) ω̃Aba is thought of as containing the Lamb shift.
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Applying Eq. (2.320),

G(m,n)
{kikj}({ri, ti, rj, tj}) =

〈
••

m

∏
i=1

m+n

∏
j=m+1

Ê(−)
ski

(ri, ti)Ê(+)
skj

(rj, tj) ••

〉
, (11.9)

and using Eq. (11.5), we may express the G(m,n)
{ki,kj} in terms of atomic correlation

functions as

G(m,n)
{kikj}({ri, ti, rj, tj}) =

〈{
T−

m

∏
i=1

[
∑
A

∑
a,b

′
g∗abki

(ri, rA)ÂAba(ti−liA/c)
]}

×
{
T+

m+n

∏
j=m+1

[
∑
A

∑
a,b

′
gabkj

(rj, rA)ÂAab(tj−ljA|/c)
]}〉

. (11.10)

In Eqs (11.9) and (11.10) the spatial range of light observation is assumed to be
outside the exciting beam, so that only the scattered light is observed, the free
field being in the vacuum state. Note that in Eq. (11.10) the T± time orderings
involve the atomic operators, whose time arguments are the retarded times
ti− liA/c.

To study spectral properties, let us consider the case where the scattered
light is detected after it has passed through a spectral filter, and apply the
results given in Section 6.4:

G(m,n)
{kikj}({ri, ti, rj, tj}) =

∫
dt′1 T∗

f
(
t1 − t′1

)
· · ·

∫
dt′m+n Tf

(
tm+n − t′m+n

)
×

〈
••

m

∏
i=1

Ê(−)
ski

(rf, t′i−|ri−rf|/c)
m+n

∏
j=m+1

Ê(+)
skj

(rf, t′j−|ri−rf|/c) ••

〉
(11.11)

(rf, position vector of the entrance plane), where the response function Tf(t) of
the spectral filter may be assumed to be

Tf(t) = 1
2 Γf Θ(t − ∆t) exp

[
−

(
iω + 1

2 Γf
)
(t − ∆t)

]
(11.12)

[ω, setting frequency; Γf, passband width; c∆t, difference between the opti-
cal and geometrical paths through the spectral apparatus; cf. Eqs (6.140) and
(6.150)]. Instead of Eq. (11.10), we now obtain, using Eqs (11.2) and (11.5),3

G(m,n)
{kikj} =

∫
dt′1 T∗

f (t1 − t′1) · · ·
∫

dt′m+n Tf(tm+n − t′m+n)

×
〈{

T−
m

∏
i=1

[
∑
A

∑
a,b

′
g∗abki

(rf, rA)ÂAba(t′i − lia/c)
]}

×
{
T+

m+n

∏
j=m+1

[
∑
a,b

′
gabkj

(rf, rA)ÂAab(t′j − lja/c)
]}〉

. (11.13)

3) If correlations of different frequency components are required to
be observed, spectral filters with different setting frequencies are
needed. In this case the Tf in Eqs (11.11) and (11.13) may differ in the
setting frequency (and passband width): Tf 	→ Tfi


=Tfj
.
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11.2
Two-level systems

In the case of resonance fluorescence from a single atom (at position rA) with
a single two-level resonant transition involved in the scattering process, the
model of an atomic two-level system applies, and Eq. (11.2), together with
Eq. (11.5), reduces to

Ê(+)
s (r, t) = g(r, rA)Â12(t − lA/c) (11.14)

[g(r, rA)≡g12(r, rA), Â12(t)≡ ÂA12(t)], Eq. (11.10) takes the form

G(m,n)
{kikj} = g(m,n)

{kikj}

〈[
T−

m

∏
i=1

Â21(tri)
][

T+

m+n

∏
j=m+1

Â12(trj)
]〉

, (11.15)

and in the case of spectral filtering, Eq. (11.13) is

G(m,n)
{kikj} = g(m,n)

{kikj}

∫
dt′1 T∗

f (t1 − t′1) · · ·
∫

dt′m+n Tf(tm+n − t′m+n)

×
〈[

T−
m

∏
i=1

Â21(t′ri)
][

T+

m+n

∏
j=m+1

Â12(t′rj)
]〉

(11.16)

(see also footnote 3). Here the abbreviated notations tr = t− lA/c and

g(m,n)
{kikj} =

m

∏
i=1

m+n

∏
j=m+1

g∗ki
gkj

(11.17)

are used for the retarded times and the overall geometry factors, respectively.
Treating atomic relaxations such as spontaneous emission in the Markov

approximation, we know that the problem of calculating the multi-time corre-
lation functions appearing in Eq. (11.15) may be reduced to the problem of cal-
culating the one-time averages 〈Âab(t)〉, by applying the quantum regression
theorem (Section 5.5). Since these one-time averages are related to the atomic
density-matrix elements (in the Schrödinger picture) by 〈Âab(t)〉=σba(t), the
problem effectively reduces to solving the atomic density-matrix equations of
motion, which in the case of the two-level atom considered are just the (opti-
cal) Bloch equations (5.177)–(5.180). Let us consider the case where the atom is
driven by monochromatic laser light of frequency ωL (ωL≈ω̃21) and assume
that the laser light may be treated as classical. In this semi-classical descrip-
tion, in Eqs (5.177)–(5.180) we may let

F(r)
21 (t) 	→ −1

h̄
|d21EL|e−i(ωLt+ϕL) (11.18)

[cf. Eq. (5.174)], where EL is the amplitude of the laser wave. Further, intro-
ducing slowly varying off-diagonal density-matrix elements according to

σ̃12(t) = σ12(t)e−i(ωLt+ϕL), (11.19)
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disregarding the excited-state filling rate w(nr)
12 , and using the abbreviated no-

tations

Γ1 = Γ(r) + w(nr)
21 , Γ2 = 1

2 Γ1 + γ′, (11.20)

we may write Eqs (5.177)–(5.180) as

σ̇22 = −Γ1σ22 − 1
2 iΩRσ̃21 + 1

2 iΩRσ̃12 , (11.21)

σ̇11 = Γ1σ22 + 1
2 iΩRσ̃21 − 1

2 iΩRσ̃12 , (11.22)

˙̃σ21 = (−iδω − Γ2)σ̃21 + 1
2 iΩR(σ11 − σ22), (11.23)

˙̃σ12 = (iδω − Γ2)σ̃12 − 1
2 iΩR(σ11 − σ22), (11.24)

where ΩR and δω are the Rabi frequency and the detuning respectively:

ΩR = 2h̄−1|d21EL|, (11.25)

δω = ω̃21 − ωL . (11.26)

Note that σ̃12 = σ̃∗
21.4 Combining Eqs (11.21) and (11.22) yields

d
dt

(σ11 + σ22) = 0, (11.27)

so that the two-level completeness relation

σ22 + σ11 = 1 (11.28)

can be satisfied. Note that, in the case of spontaneous emission in free space,
the Bloch equations (11.21)–(11.24) reduce to

σ̇22 = −Γ1σ22 = −σ̇11 , ˙̃σ21 = − 1
2 Γ1σ̃21 , ˙̃σ12 = ˙̃σ21 , (11.29)

leading, in agreement with Eq. (10.25), to the exponential decay law σ22(t)=e−Γ1t

for an initially excited atom [σ22(0)=1]. Recall that for a single (isolated) atom,
which only interacts with the electromagnetic field, radiationless relaxation

described by w(nr)
21 and γ′ does not occur and hence the relations Γ1 =Γ(r) and

Γ2 = Γ(r)/2 are valid, where Γ(r) is the spontaneous decay rate Γ as given by
Eq. (10.27).

Since the Bloch equations can also be used to study the dynamics of two-
level systems embedded in (dense) matter, where radiationless relaxation can
become significant, we will include them in further considerations for the sake
of generality. In particular, fast radiationless dephasing may be observed:
Γ2
Γ1. In this case the density-matrix equations of motion (11.21)–(11.24)

4) This relation and Eq. (11.28) may be violated when the Bloch equa-
tions are used in an application of the quantum regression theorem.



372 11 Resonance fluorescence

may be simplified by adiabatically eliminating the off-diagonal elements. On
a time scale Γ−1

1 it is sufficient to substitute into Eqs (11.21) and (11.22) for σ̃21
and σ̃12 the steady-state solutions of Eqs (11.23) and (11.24) respectively, which
are

σ̃21 =
ΩR

2(δω − iΓ2)
(σ11 − σ22), σ̃12 = (σ̃21)

∗ . (11.30)

On the chosen time scale, the off-diagonal density-matrix elements adiabat-
ically follow the inversion. Combining Eqs (11.21), (11.22) and (11.30), we
arrive at

σ̇22 = − Ω2
R Γ2

2[(δω)2 + Γ2
2]

(σ22 − σ11)− Γ1σ22 , (11.31)

σ̇11 =
Ω2

R Γ2

2[(δω)2 + Γ2
2]

(σ22 − σ11) + Γ1σ22 . (11.32)

We see that in the case of fast radiationless dephasing, balance equations for
the atomic-state occupation probabilities may be derived. The method of bal-
ance equations is widely used (e. g., in laser theory and related fields) in or-
der to simplify complicated multi-level density-matrix equations of motion
and make them physically transparent. If we let σ̇11 = σ̇22 =0 in Eqs (11.31)
and (11.32), after some algebra we obtain, using the relation σ11 +σ22 =1, the
steady-state values of σ11 and σ22 as

σ11(∞) =
1
2

Ω2
RΓ2 + 2Γ1[(δω)2 + Γ2

2]
Ω2

RΓ2 + Γ1[(δω)2 + Γ2
2]

, (11.33)

σ22(∞) =
1
2

Ω2
RΓ2

Ω2
RΓ2 + Γ1[(δω)2 + Γ2

2]
. (11.34)

Combining Eqs (11.30), (11.33) and (11.34) yields the steady-state value of σ̃21
as

σ̃21(∞) =
1
2

ΩRΓ1(δω + iΓ2)
Ω2

RΓ2 + Γ1[(δω)2 + Γ2
2]

(11.35)

[with σ̃12(∞)= σ̃∗
21(∞)].

11.2.1
Intensity

To determine the intensity of the scattered light observed by means of a broad-
band, point-like photodetector situated at position r, we have to calculate

I(t) ≡ G(1,1)
kk (r, t, r, t) =

〈
Ê(−)

k (r, t)Ê(+)
k (r, t)

〉
. (11.36)
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According to Eq. (11.15), we may write

I(t + r/c) = |g|2
〈

Â22(t)
〉

= |g|2σ22(t) (11.37)

(rA =0); recall that

Âab Âa′b′ = δba′ Âab′ , 〈Âab〉 = σba. (11.38)

Hence the intensity of the scattered light is determined by the atomic excited-
state occupation probability σ22(t).5 The remaining problem thus consists in
solving the Bloch equations (11.21)–(11.24) in order to calculate σ22(t).

Making the standard ansatz

σab(t) ∼ eλt, a, b=1, 2, (11.39)

yields a fourth-order algebraic characteristic equation for determining λ. The
roots λi, i=1, 2, 3, 4, imply the following structure of the general solution:

σab(t) =
4

∑
i=1

c(i)
ab eλit. (11.40)

In view of Eq. (11.27), we may let λ4 =0, and the characteristic equation ef-
fectively reduces to a third-order algebraic equation, which may be solved by

means of Cardan’s formula to yield λi, i=1, 2, 3. Finally, the constants c(i)
ab are

determined from the initial conditions. We leave the details of the calculation
to the reader.

Since the atom is usually in the lower quantum state before the interac-
tion with the laser is switched on, we may choose the initial conditions to be
σab(0)=δa1δb1. If we further assume that the laser is tuned to the transition fre-
quency (δω=0), the procedure outlined above yields the following expression
for the atomic excited-state occupation probability:

σ22(t) =
Ω2

R

2(Ω2
R + Γ1Γ2)

(
1 +

λ2

λ1 − λ2
eλ1t +

λ1

λ2 − λ1
eλ2t

)
, (11.41)

where

λ1,2 = − 1
2 (Γ1 + Γ2) ±

√
1
4 (Γ1 − Γ2)2 − Ω2

R . (11.42)

Note that when the driven atom, with regard to relaxations, only undergoes
radiative damping through spontaneous emission, Eq. (11.42) may be written
as

λ1,2 = − 3
2 γ ±

√
1
4 γ2 − Ω2

R , (11.43)

5) It is not difficult to see that application of Eq. (11.37) together with
Eq. (11.7) to the spontaneous emission of a two-level atom leads
exactly to Eq. (10.34).
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σ22

γt

(1)

(2)

(3)

Fig. 11.1 The time evolution of the excited-state occupation probability
σ22(t) of a two-level atom undergoing radiative damping (Γ1 = 2Γ2 = 2γ)
and resonantly driven by a monochromatic laser beam, is shown for
various values of the Rabi frequency: ΩR/γ = 0.6 (1); ΩR/γ = 2 (2);
ΩR/γ=5 (3).

where

γ = 1
2 Γ(r) = Γ2 , Γ1 = 2γ. (11.44)

Typical examples of σ22(t) are shown in Fig. 11.1.
From Eq. (11.37) together with Eq. (11.34) the steady-state intensity of the

resonance fluorescence (t→∞, δω=0) is given by

I(∞) = |g|2σ22(∞) = |g|2 Ω2
R

2(Ω2
R + Γ1Γ2)

. (11.45)

This result reveals that the intensity of the scattered light is, in general, a non-
linear function of the pump laser intensity [recall that Ω2

R∼E2
L; cf. Eq. (11.25)].

Only in the weak-driving-field limit is resonance fluorescence a phenomenon
of linear optics:

I(∞) = |g|2 Ω2
R

2Γ1Γ2
, Ω2

R � Γ1Γ2 , (11.46)

whereas in the high-driving-field limit, saturation may be observed:

I(∞) = 1
2 |g|2, Ω2

R 
 Γ1Γ2 (11.47)

[σ11(∞) = σ22(∞) = 1/2]. It should be pointed out that, in the weak-driving-
field limit, when the atom undergoes radiative damping through spontaneous
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emission and the relations (11.44) are valid, from Eqs (11.34) and (11.35) the
relation |σ̃21|2 =σ22 is seen to hold, which implies coherent light scattering. In
the high-driving-field limit σ̃21 generally vanishes and the scattering is inco-
herent.

11.2.1.1 Limiting cases

To briefly illustrate the main features of the time evolution of the fluorescence
intensity as given from Eqs (11.37) and (11.41) (cf. Fig. 11.1), let us again con-
sider the two instructive cases of weak and strong pumping:

(i) Weak-driving-field limit: Ω2
R �Γ1Γ2. In this case Eq. (11.42) reduces to

λ1,2 = −Γ2,1 , (11.48)

and from Eqs (11.37) and (11.41) we deduce that

I(t+r/c) = |g|2 Ω2
R

Γ1Γ2

(
1 − Γ1

Γ1 − Γ2
e−Γ2t +

Γ2

Γ1 − Γ2
e−Γ1t

)
. (11.49)

The intensity is seen to monotonically approach the stationary value, and the
characteristic time scale is given by the atomic relaxation times Γ−1

1 and Γ−1
2 ,

which for an isolated atom are just related to the time of radiation damping
due to spontaneous emission. Note that the result (11.49) may also be derived
from a perturbative solution of the Bloch equations.

(ii) High-driving-field limit: Ω2
R 
 Γ1Γ2. In this case from Eq. (11.42) we derive

λ1 and λ2 as

λ1,2 = − 1
2 (Γ1 + Γ2) ± iΩR . (11.50)

Thus, combining Eqs (11.37), (11.41) and (11.50) yields

I(t+r/c) = 1
2 |g|2

{
1 − exp[− 1

2 (Γ1+Γ2)t] cos(ΩRt)
}

. (11.51)

The intensity oscillates with the Rabi frequency ΩR, the Rabi oscillations being
damped owing to the atomic relaxation processes. The time scale of damping
again corresponds to the time scale on which the intensity approaches the
stationary value.

11.2.2

Intensity correlation and photon anti-bunching

To study the effect of photon anti-bunching in resonance fluorescence from
a single atom [Carmichael and Walls (1976); Kimble and Mandel (1976)], we
now consider the normally and time-ordered intensity correlation function of
the scattered light,

G(2,2)(r, t+τ, r, t) =
〈

Ê(−)
k1

(r, t)Ê(−)
k2

(r, t+τ)Ê(+)
k2

(r, t+τ)Ê(+)
k1

(r, t)
〉
, (11.52)
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which may be observed by measuring the correlation of counts in photodetec-
tion correlation experiments (Sections 6.1 and 8.2.1). Recall that the joint prob-
ability of observing an event during the time interval t, t+∆t and an event
during the time interval t+τ, t+τ+∆t is proportional to G(2,2)(r, t+τ, r, t).
Introducing the atomic correlation functions6

G(II)
ab (t + τ, t) = 〈Â21(t)Âba(t + τ)Â12(t)〉, a, b = 1, 2, (11.53)

and applying Eq. (11.15) together with the relations (11.38), we can eas-
ily find that the normally and time-ordered intensity correlation function

G(2,2)(t+τ, t)≡G(2,2)
k1k2k2k1

(r, t+τ, r, t) may be expressed in terms of G(II)
22 (t+τ, t)

as

G(2,2)(t + r/c + τ, t + r/c) = |g|4 G(II)
22 (t + τ, t). (11.54)

In particular, for equal times

G(2,2)(t + r/c, t + r/c) = |g|4〈Â21(t)Â22(t)Â12(t)〉. (11.55)

Taking into account the properties of the atomic flip operators [cf. the relations
(11.38)], we can easily see that

G(2,2)(t + r/c, t + r/c) = 0. (11.56)

The result that the normally and time-ordered intensity correlation function at
equal times is exactly zero, indicates perfect photon anti-bunching. In this case
the joint probability of simultaneously detecting two events vanishes, and the
anti-bunching condition (8.24) is satisfied. That is, the steady-state intensity
correlation function

G(2)(τ) ≡ lim
t→∞

G(2,2)(t + r/c + τ, t + r/c) (11.57)

necessarily has a positive initial slope:

G(2)(τ) > G(2)(0) = 0. (11.58)

Recall that photon anti-bunching, which may be regarded as a proof of the
photon nature of light, is a pure quantum effect that cannot be explained on
the basis of classical optics (Section 8.2.1).

To physically understand the effect of ideal photon anti-bunching in reso-
nance fluorescence from a single atom, one may advance the following intu-
itive arguments. When the atom emits a photon to be detected, it undergoes

6) The superscript (II) indicates that the atomic correlation function is
related to a field correlation function of second order with respect to
the intensity of light.
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a quantum jump from the upper to the lower quantum state. Clearly, in the
lower quantum state (ground state) the atom cannot emit a second photon.
After performing a pump-laser-induced transition from the lower to the up-
per quantum state, the atom is ready to emit a second photon to be detected.
The probability of emitting the first photon at time t is proportional to the
atomic excited-state occupation probability σ22(t) (cf. Section 11.2.1). Since,
owing to the emission of the photon, the atom should be in the lower quan-
tum state, the probability of emitting a photon at later time t+τ is expected
to be proportional to the atomic excited-state occupation probability at time
t+τ under the condition that the atom at time t is in the lower quantum state:
σ22(t+τ)|σab(t)=δa1δb1

. Hence the probability of emitting a photon at time t and
a photon at time t+τ is expected to be equal to the product of the two excited-
state occupation probabilities mentioned, so that

G(II)
22 (t + τ, t) = σ22(t) σ22(t+τ)|σab(t)=δa1δb1

. (11.59)

We prove Eq. (11.59) as follows. First, we introduce σab(t+τ)|σa′b′ (t)=δa′1δb′1
as the density-matrix elements σab(t+τ) which solve, with regard to the
time argument τ, the equations of motion (11.21)–(11.24) together with the
initial conditions σab(t+τ)|τ=0=δa1δb1. Secondly, to calculate the atomic

correlation function G(II)
22 (t+τ, t), we use the quantum regression theo-

rem (Section 5.5). Applying, for example, Eq. (5.195) [〈Ĉ2(t+τ)Ĉ1(t)〉 	→
〈Â21(t)Âba(t+τ)Â12(t)〉] and taking the relations (11.38) into account, we

see that the G(II)
ab (t+τ, t) defined in Eq. (11.53) obey, with regard to the time

argument τ (τ≥0+), the density-matrix equations of motion (11.21)–(11.24):

dG(II)
22

dτ
= −Γ1G(II)

22 − 1
2 iΩRG̃(II)

21 + 1
2 iΩRG̃(II)

12 , (11.60)

dG(II)
11

dτ
= Γ1G(II)

22 + 1
2 iΩRG̃(II)

21 − 1
2 iΩRG̃(II)

12 , (11.61)

dG̃(II)
21

dτ
= (−iδω − Γ2)G̃(II)

21 + 1
2 iΩR

(
G(II)

11 − G(II)
22

)
, (11.62)

dG̃(II)
12

dτ
= (iδω − Γ2)G̃(II)

21 − 1
2 iΩR

(
G(II)

11 − G(II)
22

)
, (11.63)

where, in accordance with Eq. (11.19), slowly varying correlation functions

G̃(II)
12 (= G̃(II)

21
∗
) have been introduced,

G̃(II)
12 (t + τ, t) = G(II)

12 (t + τ, t) exp{−i[ωL(t + τ) + ϕL]}. (11.64)

The initial conditions required for solving the above equations of motion are

determined from the equal-time correlation functions G(II)
ab (t, t). Using the re-
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lations (11.38), we readily deduce that

G(II)
ab (t + τ, t)

∣∣
τ=0 = 〈Â21(t)Âba(t)Â12(t)〉 = δa1δb1σ22(t). (11.65)

We see that, with regard to the time argument τ, the G(II)
ab (t+τ, t)/σ22(t) and

the σab(t+τ)|σa′b′ (t)=δa′1δb′1
are determined from the same equations of motion

and initial conditions. Hence they are equal,

G(II)
ab (t + τ, t)

σ22(t)
= σab(t + τ)

∣∣
σa′b′ (t)=δa′1δb′1

, (11.66)

from which, in particular, Eq. (11.59) is seen to be valid (a=b=2). Note that
in the considered case of the Rabi frequency being time-independent and the
atom being initially in the lower quantum state Eq. (11.59) reduces to7

G(II)
22 (t + τ, t) = σ22(τ)σ22(t). (11.67)

Combining Eqs (11.37), (11.54) and (11.59) we find that the normally and
time-ordered intensity correlation function of the scattered light may be fac-
tored into two intensities:

G(2,2)(t + r/c + τ, t + r/c) = I(t + r/c + τ)|σab(t)=δa1δb1
I(t + r/c). (11.68)

Here I(t+r/c+τ)|σab(t)=δa1δb1
is the intensity observed at space point r and

time t+r/c+τ under the condition that, at time t, the state of the atom
has been reduced to the lower state. In particular, when Eq. (11.67) holds,
Eq. (11.68) can be simplified to obtain

G(2,2)(t + r/c + τ, t + r/c) = I(τ + r/c) I(t + r/c)

= |g|4σ22(τ)σ22(t), (11.69)

so that the results of Section 11.2.1 apply directly. It should be pointed out that
when multi-level systems are involved in light scattering, the situation may be
much more complicated.

In the study of intensity correlations the normalized intensity correlation
function γ(22)(t+τ, t) is frequently introduced,

γ(22)(t + τ, t) =
G(2,2)(t + τ, t)
I(t + τ) I(t)

, (11.70)

which, using Eq. (11.69), becomes

γ(22)(t + r/c + τ, t + r/c) =
I(τ + r/c)

I(t + r/c + τ)
. (11.71)

7) Both σ22(τ) and σ22(t) are now understood to be solutions of the
optical Bloch equations with the initial conditions σab(0)=δ1aδb1.
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In particular, for steady-state observation conditions

γ(22)(τ) = lim
t→∞

γ22(t + r/c + τ, t + r/c) =
I(τ + r/c)

I(∞)
=

σ22(τ)
σ22(∞)

. (11.72)

In this case the normalized intensity correlation function obviously exhibits
the same behavior as the normalized intensity [see Eqs (11.37) and (11.41) and
Fig. 11.1], and it is clear that γ22(τ) has a positive initial slope, which just
reflects the effect of photon anti-bunching. It is worth noting that, since

γ22(0) < 1, (11.73)

the fluorescence light gives rise to a (nonclassical) sub-Poissonian photocount-
ing statistics [Cook (1981)]; see also Section 8.2.2. Both the photon anti-
bunching nature and the sub-Poissonian statistics of the resonance fluores-
cence from a two-level atom have been demonstrated experimentally (Sec-
tions 8.2.1 and 8.2.2).

11.2.3

Squeezing

To study squeezing in resonance fluorescence [Walls and Zoller (1981)], let
us consider the normally ordered variance of the electric field strength of the
radiation field:

〈: [∆Ê(r, t)]2 :〉 = 2〈Ê(−)(r, t)Ê(+)(r, t)〉+ {〈[Ê(+)(r, t)]2〉+ c.c.}
− [〈Ê(+)(r, t)〉+ c.c.]2

= 2G(1,1)
kk (r, t, r, t) + [G(0,2)

kk (r, t, r, t) + c.c.]

− [G(0,1)
kk (r, t, r, t) + c.c.]2. (11.74)

Recall that light is squeezed when the normally ordered variance 〈: [∆Ê(r, t)]2 :〉
attains negative values (for appropriately chosen phases):

〈: [∆Ê(r, t)]2 :〉 < 0 (11.75)

(cf. Sections 3.3 and 8.2.3). In the case of resonance fluorescence from a single
two-level atom, on applying Eq. (11.15) and using the relations (11.38), we
obtain

〈: [∆Ê(r, t)]2 :〉 = 2|g|2σ22(t − r/c) − [g σ21(t − r/c) + c.c.]2; (11.76)

note that

〈[Ê(+)(r, t)]2〉 = |g|2〈Â12(t − r/c)Â12(t − r/c)〉 = 0. (11.77)
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Introducing the slowly varying off-diagonal density-matrix element σ̃21,
Eq. (11.19), and separating from the product gσ̃21(t − r/c) the slowly vary-
ing exponential phase factor exp[−iϕ̃21(t− r/c)], we may rewrite Eq. (11.76)
as

〈: [∆Ê(r, t)]2 :〉|g|−2 = 2σ22(t − r/c)

− 4|σ̃21(t − r/c)|2 cos2[ωL(t − r/c) + φ(t − r/c)], (11.78)

where

φ(t − r/c) = ϕ̃21(t − r/c) + ϕL . (11.79)

If g is real, ϕ̃21(t) is simply the phase of σ̃21(t).
In particular, when the atom is driven by a single-mode cw laser, in the

steady-state regime (t→∞) we may take the stationary values σ22(∞) and
σ̃21(∞) as given in Eqs (11.34) and (11.35) to obtain

〈: [∆Ê(r, t)]2 :〉|g|−2 = − Γ2Ω2
R

Γ1[Γ2
2 + (δω)2 + (Γ2/Γ1)Ω2

R]2

×
{

[Γ2
2 + (δω)2]

[
Γ1

2Γ2
cos[2ωL (t−r/c)+2φ(∞)] − 1 +

Γ1

2Γ2

]
− Γ2

Γ1
Ω2

R

}
,

(11.80)

which for exact resonance (δω=0) and radiative damping [Γ1 =2Γ2 =2γ;
cf. Eq. (11.44)] reduces to (Fig. 11.2)

〈: [∆Ê(r, t)]2 :〉|g|−2 = − 1
2 Ω2

R
γ2 cos[2ωL (t − r/c) + 2φ(∞)]− 1

2 Ω2
R(

γ2 + 1
2 Ω2

R

)2 .

(11.81)

From Eq. (11.81) we see that, to obtain squeezed light, the condition

ΩR <
√

2 γ (11.82)

must be satisfied. The optimum phase condition is ωL(t−r/c)+φ(∞)=nπ,
n=0, 1, 2, . . ., which, for a given value of ΩR/γ, determines the min-
imum noise. Accordingly, the phase condition for maximum noise is
ωL(t−r/c)+φ(∞)=(2n+1)π/2, n=0, 1, 2, . . .. When the driving laser beam
becomes too intense, so that in the fluorescence, the coherent Rayleigh com-
ponent (∼σ21) is suppressed, the squeezing effect vanishes; cf. Fig. 11.2. Note
that 〈: [∆Ê(r, t)]2 :〉/|g|2 tends to unity as γ/ΩR goes to zero (high-driving-
field limit). From Eqs (11.74)–(11.77) it can be seen that only a sufficiently
large coherent part of the field can compensate the positive intensity term in



11.2 Two-level systems 381

〈: (∆E)2 :〉
|g|2

ΩR/γ

(1)
(2)

(3)

Fig. 11.2 The normally ordered variance 〈: (∆Ê)2 :〉 of stationary reso-
nance fluorescence from a two-level atom undergoing radiative damping
(Γ1 = 2Γ2 = 2γ) and resonantly driven by a monochromatic laser beam
is shown as function of the Rabi frequency ΩR and for various values of
the phase ωL(t−r/c)+φ(∞): nπ (1); (2n+1)π/4 (2); (2n+1)π/2 (3);
n=1, 2, 3, . . ..

order to produce squeezing. Maximum squeezing, 〈: (∆Ê)2 :〉/|g|2 =−1/8,
may be attained for ΩR =

√
2/3γ (δω=0).

The results given above may be extended to the case of a sample of N iden-
tical two-level atoms being quasi-resonantly driven by a monochromatic laser
beam, whose wavelength λL is small compared with the distance d between
neighboring atoms. In this case (λL�d) we may ignore collective effects,8

which implies that the source fields from different atoms are uncorrelated:

〈ÂAab(t)ÂA′a′b′(t′)〉 = 〈ÂAab(t)〉〈ÂA′a′b′(t′)〉, A 
= A′. (11.83)

Applying Eq. (11.10) and using Eq. (11.83), after some algebra we obtain the
generalized version of Eq. (11.80) as

〈: [∆Ê(r, t)]2 :〉|g|−2 = −N
Γ2Ω2

R

Γ1[Γ2
2 + (δω)2 + (Γ2/Γ1)Ω2

R]2

{
[Γ2

2 + (δω)2]

×
[

Γ1

2Γ2

∣∣C(N)∣∣ cos
[
2ωL (t−r/c)+2φ(N)(∞)

]
− 1 +

Γ1

2Γ2

]
− Γ2

Γ1
Ω2

R

}
, (11.84)

where

C(N) =
∣∣C(N)∣∣ e2iϕC =

1
N

N

∑
A=1

exp[2i(k − k′)rA], (11.85)

8) A typical example of a collective effect is the so-called super-
radiance [Dicke (1954, 1964)]. If the distance of the atoms is small
compared with the wavelength of the light, the intensity of the emit-
ted light is proportional to N2 in place of N.
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φ(N)(∞) = φ(∞) − ϕC . (11.86)

In Eq. (11.85) the rA are the position vectors of the atoms, and the vectors
k≡kL and k′≡(ωL/c)r/|r| are respectively the wavenumber vectors of the
incident laser light and the scattered light in the r direction, where r is the
distance vector from the center of the scattering volume (origin of coordinates)
to the chosen point of observation; note that |rA|�|r|.

Comparing Eq. (11.84) with Eq. (11.80), we see that, when N atoms are
involved in the resonant light scattering, the effect of squeezing will be en-
hanced by a factor N when the absolute value of C(N) is held equal to unity.
Distributing the atoms at regular positions is a way to enhance squeezing in
resonance fluorescence [Vogel and Welsch (1985)]. For example, let us con-
sider a linear chain of atoms, the distance vector between two neighboring
atoms being d. In this case, we can easily deduce from Eq. (11.85) that

|C(N)| =
1
N

∣∣∣∣sin[N(k − k′)d]
sin[(k − k′)d]

∣∣∣∣ , (11.87)

from which we see that the scattered light may indeed exhibit enhanced
squeezing in k′ directions for which

(k − k′)d = nπ, n = 0,±1,±2, . . . . (11.88)

For comparison, the directions of the maxima of the coherent diffraction pat-
tern are determined by the condition that

(k − k′)d = 2nπ, n = 0,±1,±2, . . . . (11.89)

Hence the maxima of the squeezing pattern correspond to both the maxima
and the minima of the ordinary diffraction pattern, so that, depending upon
the direction of observation, squeezed coherent and squeezed vacuum light
may be observed.

Clearly, if the atoms are distributed at random positions, from Eq. (11.85) the
value of |C(N)| is seen to tend (for k 
=k′) to zero as the number of atoms, N,
is sufficiently increased, and the squeezing effect is removed. An exception is
the case of forward scattering (k=k′) [Heidmann and Reynaud (1985)]. From
Eq. (11.85) it is clear that, for k close to k′, the value of C(N) may be close to
unity.

Squeezing may be observed by means of a homodyne detection scheme
(Section 6.5.3), in which a signal field to be detected is combined, through
a lossless beam splitter, with a perfectly stable local-oscillator field on a
photodetector. In particular, when the strength of the local-oscillator field
greatly exceeds the signal field, the measured photocounting statistics is sub-
Poissonian, provided that the signal field is squeezed. However, in single-
atom light scattering the sub-Poissonian effect is expected to be extremely
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small due to a very small overall quantum efficiency,9 so that it seems hope-
less to measure it. For a small quantum efficiency, as in the case of resonantly
scattered light from a trapped and cooled ion, a homodyne correlation mea-
surement with a weak local oscillator is suited to detect the squeezing effect
[Vogel (1991a)], for details of the method see Section 6.5.6.

11.2.4
Spectral properties

Let us now consider the power spectrum of the resonance fluorescence; that is,

the spectrally resolved intensity I(t; ω, Γf)≡G(1,1)
kk (r, t, r, t) with G(1,1)

kk (r, t, r, t)
from Eq. (11.16) (rA =0):

I(t+r/c; ω, Γf) = |g|2
∫

dt′1

∫
dt′2 T∗

f (t − t′1)Tf(t − t′2)G(I)
12 (t′1, t′2), (11.90)

where the atomic correlation function G(I)
12 (t1, t2) is defined by

G(I)
12 (t1, t2) = 〈Â21(t1)Â12(t2)〉. (11.91)

We substitute the result (11.12) into Eq. (11.90) for Tf and let t− t′i =τi, which
yields

I(t + rop/c; ω, Γf) = |g|2
( 1

2 Γf
)2

∫
dτ1

∫
dτ2 Θ(τ1)Θ(τ2)

× exp
[
− 1

2 Γf(τ1 + τ2) − iω(τ2 − τ1)
]
G(I)

12 (t − τ1, t − τ2), (11.92)

where rop =r+c∆t is the optical bath from the source (through the spectral
filter) to the point of observation.

In particular, under steady-state conditions

S(ω, Γf) =
2

πΓf|g|2
lim
t→∞

I(t; ω, Γf)

=
Γf
2π

∫
dτ1

∫
dτ2 Θ(τ1)Θ(τ2) exp

[
− 1

2 Γf(τ1+τ2)− iω(τ2−τ1)
]
G(I)

12 (τ2−τ1),

(11.93)

where

G(I)
12 (τ) ≡ lim

t→∞
G(I)

12 (t + τ, t). (11.94)

We now let τ2−τ1 =τ and τ1 +τ2 =τ′ and perform the τ′ integration to obtain

S(ω, Γf) =
1

2π

∫ ∞

0
dτ exp

[
−

(
iω + 1

2 Γf
)
τ
]
G(I)

12 (τ) + c.c. , (11.95)

9) In particular, the fluorescence light can be collected only within a
small angular range.
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from which we find that S(ω, Γf) may be rewritten as

S(ω, Γf) =
1

2π

∫
dω′ Γf

(ω′ − ω)2 +
( 1

2 Γf
)2 S(ω′), (11.96)

where the Wiener–Khintchine spectrum [cf. Eq. (6.167)]

S(ω) =
1

2π

∫ ∞

0
dτ e−iωτ G(I)

12 (τ) + c.c. (11.97)

corresponds to a (steady-state) Fourier analysis of the scattered light. In
the limit as Γf→0 the “physical” spectrum S(ω, Γf) is equal to the Wiener–
Khintchine spectrum S(ω):

lim
Γf→0

S(ω, Γf) = S(ω). (11.98)

Note that from Eq. (11.97) [together with Eqs (11.91) and (11.94)] the relation

G(I)
12 (0) = σ22(∞) =

∫
dω S(ω) (11.99)

may be deduced. Since σ22(∞) determines the overall steady-state intensity
of the scattered light [cf. Eq. (11.45)], S(ω) dω corresponds to the contribution
arising from frequencies within the interval ω, ω+dω.

Before going into the details of the further calculation, let us briefly outline
the concept of dressed-atom states [Cohen-Tannoudji and Reynaud (1977)],
which may be helpful in understanding the line structure to be expected. For
this purpose, we view the exciting radiation field as a quantized single-mode
field and describe the near-resonant interaction of the two-level atom with this
field by a Hamiltonian Ĥ of the form Eqs (12.1)–(12.3) in Section 12.1. If |a〉,
a=1, 2, are the eigenstates of the unperturbed atomic Hamiltonian and |n〉 the
eigenstates (photon-number states) of the unperturbed radiation-field Hamil-
tonian, the product states |a〉|n〉 are of course eigenstates of the Hamiltonian

Ĥ0 of the uncoupled light–matter system with eigenvalues E(0)
a,n = h̄(ωa +nω),

Eq. (12.4):10

Ĥ0|a〉|n〉 = E(0)
a,n |a〉|n〉, E(0)

a,n = h̄(ωa + nω) (11.100)

(ω, frequency of the radiation-field mode), which implies that, in the case
of exact resonance, ω̃21 =ω, the eigenvalues of Ĥ0, except the ground state
value, are twofold-degenerate, because the states |1〉|n+1〉 and |2〉|n〉 belong
to equal energies:

E(0)
2,n = E(0)

1,n+1 . (11.101)

10) Here the level shifts are thought of as being already included in the
unperturbed atomic energies h̄ωa, thus ω̃ab = h̄(ωa−ωb)/h̄.



11.2 Two-level systems 385

E(0)
2,n+1 = E(0)

1,n+2

E(0)
2,n = E(0)

1,n+1

En+1,+

En+1,−


 = E(0)

2,n+1 ± 1
2 Ωn+1

En,+

En,−


 = E(0)

2,n ± 1
2 Ωn+1

Fig. 11.3 The unperturbed, degenerate energy levels and the dressed-
state energy levels of a two-level atom resonantly interacting with a
quantized single-mode (driving) radiation field are shown schematically,
and the dipole-allowed radiative transitions between the dressed states
are indicated.

This degeneracy is removed by the interaction between atom and radiation–
field mode, as can be seen by diagonalizing the full Hamiltonian Ĥ [Sec-
tion 12.1, Eqs (12.5)–(12.16)], which for exact resonance yields (cf. Fig. 11.3)

Ĥ|n,±〉 = En,±|n,±〉, (11.102)

En,± = h̄
(
ω2 + nω ± 1

2 Ωn
)
, (11.103)

|n,±〉 =
√

1
2 (|1〉|n + 1〉 ± |2〉|n〉). (11.104)

In Eq. (11.103) the n-photon Rabi frequency Ωn defined in Eq. (12.11) may be
written as

Ωn = 2h̄−1|d21E(rA)|
√

n + 1 , (11.105)

where E(r) is the electric-field mode function. The states |n,±〉, which are usu-
ally called dressed-atom states, describe the atom “dressed” by the interaction
with the radiation field. From Eq. (11.103) the originally degenerate (excited)

energy levels, E(0)
2,n =E(0)

1,n+1, are seen to be split into two levels separated from
each other by h̄Ωn (Fig. 11.3).

If we now suppose that the Hamiltonian is complemented by the interac-
tion energy between the two-level atom and the free-space mode continuum
of the radiation field to allow for resonant light scattering (by spontaneous
emission), we see from Eq. (11.104) that there are the following (dipole) tran-
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sitions between the dressed states:

〈n,±|d̂|n + 1,±〉 = ± 1
2 〈1|d̂|2〉, (11.106)

〈n,∓|d̂|n + 1,±〉 = ± 1
2 〈1|d̂|2〉, (11.107)

and from Eq. (11.103) we obtain the corresponding transition frequencies as
(cf. Fig. 11.3)

h̄−1(En+1,± − En,±) = ω21 ± 1
2 (Ωn+1 − Ωn), (11.108)

h̄−1(En+1,± − En,∓) = ω21 ± 1
2 (Ωn+1 + Ωn). (11.109)

Clearly, if the photon-number distribution of the field is sharply peaked at
a sufficiently large value of the photon number n, so that it may be viewed as
a classical driving field, we may let

Ωn+1 ≈ Ωn ≈ ΩR . (11.110)

In this case the four transition frequencies, Eqs (11.108) and (11.109), reduce
to the three transition frequencies ω21 and ω21±ΩR. From the dressed-state
picture the spectrum of the resonance fluorescence is therefore expected to ex-
hibit a triplet structure, provided that the Rabi frequency (line separation) sub-
stantially exceeds the line broadening arising from dampings, such as sponta-
neous emission. Moreover, in this case the ratio of the (frequency-integrated)
intensities of the center line and a side-band line is expected to be 2:1, be-
cause of the two dressed-state transitions contributing to the center line [cf.
Eqs (11.106)–(11.109)].

It is worth noting that the dressed-state picture may also be useful for ob-
taining some insight into the line structure of the spectra in cases where more
than two atomic levels are involved in the (resonant) light–matter interac-
tion. Assume, for example, that there are additional atomic states between
the atomic ground and excited states. If the corresponding transitions to these
additional states are off-resonant, with regard to the driving field, they cannot
give rise to dressed-state level splittings. Thus emission from the exited state
into these lower-lying states can only yield doublet spectra.

So far relaxations, which typically determine transient and line-broadening
effects, have been ignored. In the following we shall include them in the the-
ory by applying the Bloch equations. It is worth noting that they may also be
included in the theory within the framework of the dressed-state concept.

We confine attention to the steady-state regime and return to Eq. (11.95).11

Applying the quantum regression theorem (Section 5.5), the desired atomic

correlation function G(I)
12 (t+τ, t) (t→∞) may be calculated in analogy with the

11) For transient effects, the more general equation (11.92) applies [see,
e. g., Herrmann, Süsse and Welsch (1973)].
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lines shown in Section 11.2.2 for G(II)
ab (t+τ, t). Introducing the set of atomic

correlation functions

G(I)
ab (t + τ, t) = 〈Âba(t + τ)Â12(t)〉, a, b = 1, 2, (11.111)

and the slowly varying quantities

G̃(I)
12 (t + τ, t) = G(I)

12 (t + τ, t) exp(−iωLτ), (11.112)

G̃(I)
21 (t + τ, t) = G(I)

21 (t + τ, t) exp[i(ωLτ)] exp[2i(ωLt + ϕL)], (11.113)

G̃(I)
aa (t + τ, t) = G(I)

aa (t + τ, t) exp[i(ωLt + ϕL)], (11.114)

the G̃(I)
ab (t+τ, t) are easily proved to obey, with regard to τ (τ≥0+), the Bloch

equations (11.21)–(11.24) [or Eqs (11.60)–(11.63)],12 where the initial conditions
are determined from Eq. (11.111) [together with Eqs (11.112)–(11.114)] as

G(I)
ab (t + τ, t)

∣∣
τ=0 = 〈Âba(t)Â12(t)〉 = δa1σ2b(t) (11.115)

[cf. the relations (11.38)]. In particular, we see that

lim
t→∞

G̃(I)
11 (t + τ, t)

∣∣
τ=0 = σ̃21(∞), (11.116)

lim
t→∞

G̃(I)
12 (t + τ, t)

∣∣
τ=0 = σ22(∞), (11.117)

where the steady-state density-matrix elements σ22(∞) and σ̃21(∞) may be
taken from Eqs (11.34) and (11.35), respectively.

Introducing the Laplace transforms

S̃ab(s) =
∫ ∞

0
dτ e−sτ G̃(I)

ab (τ), (11.118)

where

G̃(I)
ab (τ) ≡ lim

t→∞
G̃(I)

ab (t + τ, t), (11.119)

we find, on taking Eq. (11.112)–(11.114) into account, that the “physical”
spectrum S(ω, Γf), Eq. (11.95), and the Wiener–Khintchine spectrum S(ω),
Eq. (11.97), are related to S̃12(s) by

S(ω, Γf) = π−1Re
{

S̃12
[
i(ω − ωL) + 1

2 Γf
]}

, (11.120)

S(ω) = lim
Γf→0

S(ω, Γf) = π−1Re {S̃12[i(ω − ωL)]}. (11.121)

Thus to calculate the spectrum it is sufficient to determine S̃12(s), Eq. (11.118),

12) Note that G̃(I)
ab 
= G̃(I)

ba
∗
.
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S(ω, Γf)

(ω − ωL)/γ

(1)

(2) (3)

Fig. 11.4 The steady-state resonance fluorescence spectrum S(ω, Γf)
of a two-level atom undergoing radiative damping (Γ1 =2Γ2 =2γ) and
resonantly driven by a monochromatic laser beam of frequency ωL
is shown for various values of the Rabi frequency ΩR/γ: 2 (1); 5 (2);
10 (3); the passband width of the spectral apparatus is chosen to be
Γf =0.1 γ.

from the solution of the Laplace-transformed Bloch equations [with the initial
conditions from Eqs (11.116) and (11.117)]:

sS̃22(s) = −Γ1S̃22(s)− 1
2 iΩRS̃21(s) + 1

2 iΩRS̃12(s), (11.122)

sS̃11(s) = σ̃21(∞) + Γ1S̃22(s) + 1
2 iΩRS̃21(s)− 1

2 iΩRS̃12(s), (11.123)

sS̃21(s) = (−iδω − Γ2)S̃21(s) + 1
2 iΩR[S̃11(s) − S̃22(s)], (11.124)

sS̃12(s) = σ22(∞) + (iδω − Γ2)S̃12(s) − 1
2 iΩR[S̃11(s) − S̃22(s)]. (11.125)

In this way, the determination of the spectrum is reduced to a straightforward
algebraic problem. In particular, for exact resonance (δω=0) we readily de-
duce that

S̃12(s) =
σ22(∞)
s + Γ2

− i
2

ΩR

[
σ̃21(∞)

s(s + Γ2)
− isΩRσ22(∞) + Ω2

R σ̃21(∞)
s(s + Γ2)[(s +Γ1)(s + Γ2) + Ω2

R]

]
,

(11.126)

where

σ22(∞) =
1
2

Ω2
R

Γ1Γ2 + Ω2
R

, (11.127)
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σ̃21(∞) =
i
2

Γ1ΩR

Γ1Γ2 + Ω2
R

(11.128)

[Eqs (11.34) and (11.35) for δω=0].
As expected, the spectrum S(ω, Γf) [Eq. (11.120) together with Eq. (11.126)]

depends sensitively on the intensity of the driving field (Fig. 11.4).

11.2.4.1 Limiting cases

Let us particularly consider the two cases of weak and strong pumping.

(i) Weak-driving-field limit: Ω2
R�Γ1Γ2. In this limit the lowest order of per-

turbation theory applies. Keeping only terms up to second order in the Rabi
frequency in Eq. (11.126) reduces Eq. (11.120) to

S(ω, Γf) = Scoh(ω, Γf) + Sincoh(ω, Γf), (11.129)

where

Scoh(ω, Γf) =
1
π

1
2 Γf|σ̃21(∞)|2

(ω − ωL)2 +
( 1

2 Γf
)2 , (11.130)

Sincoh(ω, Γf) =
1
π

( 1
2 Γf + Γ2

)
[σ22(∞) − |σ̃21(∞)|2]

(ω − ωL)2 +
( 1

2 Γf + Γ2
)2 , (11.131)

and

|σ̃21(∞)|2 =
Γ1

2Γ2
σ22(∞), σ22(∞) =

1
2

Ω2
R

Γ1Γ2
. (11.132)

We see that the resulting line at ω=ωL consists of two parts. Scoh(ω, Γf)
(Rayleigh component) is the part that obviously results from the coher-
ently emitted light (whose intensity is proportional to |σ̃21|2). Accordingly,
Sincoh(ω, Γf) is related to the incoherently emitted light. It is worth noting
that in the case of radiative damping [Γ2 =γ and Γ1 =2γ; cf. Eq. (11.44)] the
intensity of the incoherently emitted light vanishes (σ22= |σ̃21|2), so that

S(ω, Γf) = Scoh(ω, Γf). (11.133)

Thus in the high-resolution limit (Γ f →0) the spectrum simply consists of the
sharply peaked Rayleigh line:

S(ω) = Scoh(ω) = |σ21(∞)|2δ(ω − ωL) =
(

ΩR

2γ

)2

δ(ω − ωL). (11.134)

(ii) High-driving-field limit: Ω2
R
Γ1Γ2. In this case Eqs (11.128) and (11.127)

approximate to

σ̃21(∞) = 0, σ22(∞) = 1
2 , (11.135)
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and the spectrum arises solely from incoherently scattered light. After some
minor algebra, from Eq. (11.120) [together with Eqs (11.126) and (11.135)] we
obtain the following result:

S(ω, Γf) = Sincoh(ω, Γf)

=
1

4π
[S0(ω, Γf) + S+(ω, Γf) + S−(ω, Γf)], (11.136)

where

S0(ω, Γf) =
Γ2 + 1

2 Γf

(ω − ωL)2 +
(
Γ2 + 1

2 Γf
)2 , (11.137)

S±(ω, Γf) =
1
2

1
2 (Γ1 + Γ2 + Γf)

[ω − (ωL ± ΩR)]2 +
[ 1

2 (Γ1 + Γ2 + Γf)
]2 . (11.138)

In particular, for radiative damping (Γ2 =γ, Γ1 =2γ) and high resolution
(Γf→0) Eqs (11.137) and (11.138) are

S0(ω) =
γ

(ω − ωL)2 + γ2 , (11.139)

S±(ω) =
1
2

3
2 γ

[ω − (ωL ± ΩR)]2 +
( 3

2 γ
)2 . (11.140)

In accordance with the dressed-state concept, the spectrum is found to be a
triplet, frequently called the Mollow triplet [Mollow (1969); for measurements
see Schuda, Stroud and Hercher (1974); Wu, Grove and Ezekiel (1975, 1977)
and Hartig, Rasmussen, Schieder and Walther (1976)]. The line separation is
just given by the Rabi frequency. Note that the side-band width (3γ) is larger
than the width of the central line (2γ); the central line exceeds the side bands
in height by a factor of 3:

S0(ωL)
S±(ωL ± ΩR)

= 3. (11.141)

11.2.4.2 Higher-order spectral properties

We recall that the spectral intensity considered so far is determined by the

correlation function G(1,1)
kk , which contains both the operator Ê(+) and the op-

erator Ê(−) at first order, so that the T± time orderings of the atomic source
operators [cf. Eq. (11.16)] become superfluous. In the study of higher-order
spectral properties, where Ê(+) and/or Ê(−) appear at higher than first order,
these time orderings must be performed very carefully.

Spectral squeezing is a typical example. We know that the criterion for
squeezing is that the normally ordered variance 〈: (∆Ê)2 :〉 may become neg-
ative. Decomposing Ê into Ê(+) and Ê(−), we easily see that 〈: (∆Ê)2 :〉 may
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be expressed in terms of the (equal-time) correlation functions G(0,1), G(1,0),
G(1,1), G(0,2) and G(2,0) [cf. Eq. (11.74)]. In the case of spectral squeezing
in resonance fluorescence [Collett, Walls and Zoller (1984)] all of these cor-
relation functions may be calculated by appropriately applying Eq. (11.16).
It is worth noting that the required time orderings in G(0,2) and G(2,0) pre-
vent the observable (steady-state) squeezing spectrum from being related to
a squeezing spectrum defined by a (steady-state) Fourier analysis of the scat-
tered light [Knöll, Vogel and Welsch (1986, 1990)].13 Another illustrative ex-
ample of a higher-order spectral property is the spectrally resolved intensity
correlation determined, according to Eq. (11.16), by the correlation function

G(2,2)
k1k2k2k1

(r, t+τ, r, t) [Knöll and Weber (1986); Cresser (1987)]. In particular,
to answer the question of how the intensities of different lines of the Mollow
triplet are correlated with each other, a spectral resolution which allows sep-
aration of the lines from each other but leaves the line shapes unresolved, is
sufficient (ΩR >Γf >Γ1,2). In this case the time orderings in Eq. (11.16) play
a minor role, because the response functions of the (two) spectral filters are
rapidly varying on the time scale of the decay of the relevant atomic correla-
tion functions [for experimental results see Aspect, Roger, Reynaud, Dalibard
and Cohen-Tannoudji (1980)].

11.3
Multi-level effects

If more than two atomic quantum states are involved in the resonant light–
matter interaction, atomic excitation redistributions together with the discrete
nature of resonant transitions (quantum jumps) may give rise to a series of
new effects, such as dark resonances and intermittent fluorescence. In general,
the dynamics of a driven multi-level atomic system depends sensitively on the
(multi-level) damping parameters, the Rabi frequencies and the detunings of
the driving fields, so that separating multi-level effects from each other may
often be difficult. In the following we shall therefore restrict attention to a
few illustrative examples and briefly discuss the features that may typically
be observed under certain limiting conditions.

11.3.1
Dark resonances

Let us consider a three-level system as shown in Fig. 11.5 (the so-called Λ con-
figuration). The transition from the (ground) state |1〉 to the excited state |3〉
is pumped by a laser of frequency ωg (say a green laser). A second (red) laser

13) The two kinds of squeezing spectra differ in time-delayed commuta-
tor terms, which do not appear in the measured spectrum.



392 11 Resonance fluorescence

|1〉

|2〉

|3〉

ωg

ωr

Fig. 11.5 Scheme of a three-level system of Λ configuration driven by
two laser fields of frequencies ωr and ωg.

of frequency ωr is used to pump the transition from a state |2〉 to the state
|3〉.14 To describe the dynamics of this system, the corresponding three-level
density-matrix equations of motion may be deduced by straightforward ex-
tension of the derivation of the (two-level) optical Bloch equations to a three-
level system (cf. Section 5.4.2):

σ̇11 = w21σ22 + w31σ33 − 1
2 iΩgσ̃13 + 1

2 iΩgσ̃31, (11.142)

σ̇22 = −w21σ22 + w32σ33 − 1
2 iΩrσ̃23 + 1

2 iΩrσ̃32, (11.143)

σ̇33 = −(σ̇22 + σ̇11), (11.144)

˙̃σ12 = [i(δωg − δωr)− Γ12]σ̃12 + 1
2 iΩgσ̃32 − 1

2 iΩrσ̃13, (11.145)

˙̃σ13 = (iδωg − Γ13)σ̃13 − 1
2 iΩrσ̃12 − 1

2 iΩg(σ11 − σ33), (11.146)

˙̃σ23 = (iδωr − Γ23)σ̃23 − 1
2 iΩgσ̃21 − 1

2 iΩr(σ22 − σ33), (11.147)
˙̃σba = ( ˙̃σab)∗, (11.148)

where δωg =ω31−ωg, δωr =ω32−ωr, Ωg and Ωr are the Rabi frequencies of
the green and red lasers respectively, the values of which may be compara-
ble. Note that σ̃13, σ̃23 and σ̃12 are slowly varying off-diagonal density-matrix
elements:

σ̃13 = σ13 exp[−i(ωgt + ϕg)], (11.149)

σ̃23 = σ23 exp[−i(ωrt + ϕr)], (11.150)

σ̃12 = σ12 exp[−i(ωg − ωr)t − i(ϕg − ϕr)] (11.151)

[cf. Eq. (11.19)].
Although the transitions |1〉↔|3〉 and |2〉↔|3〉 are comparably driven, so

that, at first glance, a trapping state would not be expected to appear, the fluo-

14) The state |2〉 is a long-lived (metastable) state, so that the transition
|1〉↔|2〉 is weak.



11.3 Multi-level effects 393

rescence intensity may break down (dark resonance) under certain excitation
conditions. The principal mechanism for this effect may be seen to be effective
pumping of a superposition of the states |1〉 and |2〉 [Orriols (1979)]. To clarify
this point, let us consider the temporal evolution of the intensity of the scat-
tered light, which is, as we know, determined by the occupation probability
of state |3〉, i. e., 〈Ê(−)Ê(+)〉∼σ33, and introduce a new set of (time-dependent)
atomic states |i′〉 (i=1, 2, 3):

|1′〉 = |1〉, (11.152)

|2′〉 = exp[−i(ωg − ωr)t − i(ϕg − ϕr)]|2〉, (11.153)

|3′〉 = exp[−i(ωgt + ϕg)]|3〉. (11.154)

Note that the slowly varying off-diagonal density-matrix elements (11.149)–
(11.151) are the density-matrix elements in the basis |i′〉, σi′ j′ ≡〈i′|σ̂|j′〉= σ̃ij,
and σi′i′ =σii. Defining the superposition states

|±〉 = 1√
2
(|1′〉 ± |2′〉) (11.155)

and expressing σ3′±≡〈3′|σ̂|±〉, σ±±≡〈±|σ̂|±〉 and σ∓±≡〈∓|σ̂|±〉 in terms of
the original density-matrix elements, we can easily deduce that

σ3′± = σ̃31 ± σ̃32, (11.156)

σ±± = 1
2 (σ11 + σ22)± Re σ̃12, (11.157)

σ∓± = 1
2 (σ11 − σ22)± i Im σ̃12. (11.158)

Note that the (new) occupation probabilities will, of course, satisfy the condi-
tion

σ−− + σ++ + σ33 = 1. (11.159)

Now it is a straightforward procedure to rewrite Eqs (11.142)–(11.148) to
obtain the equations of motion obeyed by the above density-matrix elements.
In particular, we deduce that15

σ̇++ = 1
2 (w31 + w32)σ33 − 1

2 Γ12(σ++ − σ−−)

− 1
2 (δωg − δωr)(σ−+ + σ+−) + 1√

2
(Ωg + Ωr)Im σ+3′ , (11.160)

σ̇−− = 1
2 (w31 + w32)σ33 + 1

2 Γ12(σ++ − σ−−)

+ 1
2 (δωg − δωr)(σ−+ + σ+−) + 1√

2
(Ωg − Ωr)Re σ3′− . (11.161)

From inspection of Eqs (11.160) and (11.161) we can see that σ++ and σ−−
are coupled to the two laser fields by Ωg +Ωr and Ωg−Ωr respectively. Thus
when

Ω ≡ Ωg = Ωr , (11.162)

15) For the full set of the equations of motion, see Vogel and Blatt (1992).
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then the occupation probability σ−− is not influenced by the laser fields. More-
over, when the lasers are exactly tuned to the Raman resonance, that is, when
the difference of the two laser frequencies ωg−ωr is equal to the atomic tran-
sition frequency ω21, so that

δωg = δωr , (11.163)

then Eqs (11.160) and (11.161) simplify to

σ̇++ = 1
2 (w31 + w32)σ33 − 1

2 Γ12(σ++ − σ−−) +
√

2 Ω Im σ+3′ , (11.164)

σ̇−− = 1
2 (w31 + w32)σ33 + 1

2 Γ12(σ++ − σ−−). (11.165)

From Eq. (11.165) we see that, in general, the process of occupying the state
|−〉 by spontaneous emission from state |3〉 (first term) is, according to the
term −(Γ12/2)σ−−, in competition with a depopulation process. When the
atom undergoes radiative damping and is driven by lasers with sufficiently
small linewidths, then the depopulation rate Γ12/2 in Eq. (11.165) is very
small, so that the inequality

Γ12 � w31, w32 (11.166)

may assumed to be satisfied (cf. footnote 14). In the regime described, the
first term in Eq. (11.165) is therefore the leading one. This implies that on a
time scale of 2(w31+w32)−1 the occupation probability σ−− is increased at the
expense of σ33 (and σ++) [cf. Eq. (11.159)]. Note that in the limit as Γ12→0
we find from Eq. (11.165) that σ33(∞)→0, the optically active electron being
trapped in the superposition state |−〉.

Thus the fluorescence intensity I (I∼σ33) observed at the beginning of the
interaction of the atom with the laser fields, breaks down in the further course
of time, which gives rise to the above-mentioned dark resonance. It should
be noted that the superposition states |+〉 and |−〉 can be exchanged by a
π change of the laser difference phase ϕg−ϕr [cf. Eq. (11.155) together with
Eqs (11.152)–(11.154)]. Hence the fluorescence can be switched on by appro-
priately switching the laser phase difference [Vogel and Blatt (1992)], which
reveals that the considered dark resonance is a phase-sensitive (coherent) ef-
fect.

11.3.2
Intermittent fluorescence

Let us now consider a three-level system of the so-called V configuration
(Fig. 11.6). The transition from the (ground) state |1〉 to the excited state |3〉 is
pumped by a laser of frequency ωg (green laser). A second (red) laser of fre-
quency ωr is used to pump the transition from state |1〉 to state |2〉. We assume
that the transition |1〉↔|3〉 is dipole allowed, whereas the other transitions are
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|1〉

|2〉

|3〉

ωg

ωr

Fig. 11.6 Scheme of a three-level system of V configuration driven by
two laser fields of frequencies ωr and ωg.

dipole forbidden. Moreover, we assume that the transition |3〉↔|2〉 is weak
compared with the (pumped) transition |1〉↔|2〉.16 The corresponding three-
level density-matrix equations of motion are similar to Eqs (11.142)–(11.148),
however with the transition |1〉↔|2〉 pumped by the red laser (in place of the
transition |2〉↔|3〉).

If the atom, which is irradiated by the two laser beams, is at a certain
time t in the (ground) state |1〉, during a relatively long period of time the
strong (green) transition |1〉↔|3〉 is expected to dominate the atomic dynam-
ics, which implies the generation of green fluorescence. During this period the
atom undergoes many quantum jumps between the states |3〉 and |1〉. With
a small but finite probability, it may also undergo a quantum jump from the
state |1〉 to the state |2〉 by absorbing a red laser photon. Such an event is ex-
pected to switch off the transition |1〉↔|3〉 and the green fluorescence as long
as the atom is in the long-lived state |2〉. The atom is expected to become in-
visible until it emits a red photon and therefore undergoes a quantum jump
from state |2〉 to |1〉 owing to the weak transition |1〉↔|2〉 driven by the red
laser. Now, the emission of green photons and the excitation of the transition
|1〉↔|3〉 by the green laser may be viewed as the most probable process until
again a dark period occurs, as described. In this way, the beginnings and ends
of the dark periods may be regarded as indicating the instants of the quantum
jumps |1〉→|2〉 and |2〉→|1〉 respectively.

The above intuitive arguments may be proved to be correct by calculating
the intensity correlations of green and red photons, using the general results
given in Section 11.1 and applying (as in Section 11.2.2) the quantum regres-
sion theorem together with the density-matrix equations of motion. From

16) For example, |1〉↔|2〉 may be a quadrupole transition.
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Eq. (11.5) the source-field part of the scattered light is found to be

Ê(+)
s (r, t) = Ê(+)

g s (r, t) + Ê(+)
r s (r, t), (11.167)

where

Ê(+)
g s (r, t + r/c) ∼ d13Â13(t), (11.168)

Ê(+)
r s (r, t + r/c) ∼ q12 Â12(t), (11.169)

where d13 and q12 are respectively the (large) dipole and (small) quadrupole
matrix elements. The four intensity correlation functions (green-green, red-
red, green-red and red-green) are17

G(2,2)
gg ∼ |d13|4〈Â31(t)Â33(t + τ)Â13(t)〉, (11.170)

G(2,2)
rr ∼ |q12|4〈Â21(t)Â22(t + τ)Â12(t)〉, (11.171)

G(2,2)
gr ∼ |d13|2|q12|2〈Â21(t)Â33(t + τ)Â12(t)〉, (11.172)

G(2,2)
rg ∼ |q12|2|d13|2〈Â31(t)Â22(t + τ)Â13(t)〉. (11.173)

Recall that the joint probability of observing a green (respectively, red) pho-
ton at time t+τ and at the earlier time t a green (respectively, red) pho-

ton is proportional to G(2,2)
gg (respectively, G(2,2)

rr ). Accordingly, the joint
probability of observing at time t+τ a green (respectively, red) photon and

at time t a red (respectively, green) photon is proportional to G(2,2)
gr (re-

spectively, G(2,2)
rg ). In Eqs (11.170)–(11.173) the atomic correlation functions

〈Âa1(t)Âbb(t+τ)Â1a(t)〉 (a, b=2, 3) may be calculated in a similar way to Sec-
tion 11.2.2:

G(2,2)
gg ∼ |d13|4σ33(t)σ33(t + τ)

∣∣
σab(t)=δa1δb1

, (11.174)

G(2,2)
gr ∼ |d13|2|q12|2σ22(t)σ33(t + τ)

∣∣
σab(t)=δa1δb1

, (11.175)

G(2,2)
rg ∼ |q12|2|d13|2σ33(t)σ22(t + τ)

∣∣
σab(t)=δa1δb1

, (11.176)

where σab(t+τ)|σa′b′ (t)=δa′1δb′1
are the solutions of the density-matrix equations

of motion with initial conditions σab(t+τ)|τ=0 =δa1δb1 (atom in state |1〉 at

17) Tuning a filter to the green (respectively,
red) light may suppress the red (respec-
tively, green) light, without resolving the
line shape of the green (or red) light. Note
that the line shapes are determined by
the damping parameters wab, Γab and (for
high driving fields) by the Rabi frequen-
cies Ωg and Ωr (cf. Section 11.2.4). With re-

gard to each light component (green, red),
the filter response function Tf, (11.12),
therefore reduces to a δ function, and both
the intensities of the green and red light
and the corresponding intensity correla-
tions may be found by appropriate appli-
cation of Eqs (11.9) and (11.10).



11.3 Multi-level effects 397

time t). Note that G(2,2)
rr ∼|q12|4 is very small and may be disregarded for the

following.
Equation (11.174) reveals that the (steady-state) conditional probability

pg|g(τ) of observing a green photon at time τ when at time τ=0 a green pho-
ton has been observed, is

pg|g(τ) ∼ |d13|2σ33(τ)
∣∣
σab(0)=δa1δb1

. (11.177)

Similarly, from Eqs (11.175) and (11.176) we derive the probability pg|r(τ) (re-
spectively, pr|g(τ)) of observing a green (respectively, red) photon at time τ

when, at time τ=0, a red (respectively, green) photon has been observed:

pg|r(τ) ∼ |d13|2σ33(τ)
∣∣
σab(0)=δa1δb1

, (11.178)

pr|g(τ) ∼ |q12|2σ22(τ)
∣∣
σab(0)=δa1δb1

. (11.179)

Note that the probability for detecting a green (respectively, red) photon

is proportional to the green (respectively, red) intensity Ig∼〈Ê(−)
g s Ê(+)

g s 〉 (re-

spectively, Ir∼〈Ê(−)
r s Ê(+)

r s 〉), which is proportional to |d13|2σ33 (respectively,
|q12|2σ22); cf. Eqs (11.168) and (11.169).

We see that pg|g(0)= pg|r(0)= pr|g(0)=0, which reflects the fact that, at time
τ=0, owing to the emission of either a green or red photon, the atom is in
state |1〉, and the (simultaneous) emission of a second photon is impossible.
Further, if at a certain time a green photon is observed, the observation of a
green photon at later time is much more probable than the observation of a
red photon, because from Eqs (11.177) and (11.179) we can readily prove that,
under the assumptions made, the inequality

pg|g(τ) 
 pr|g(τ) (11.180)

is valid. Thus in most of the recorded events, green photons are observed
to be followed by more green ones, which gives rise to the dominant green
fluorescence. Nevertheless, from time to time a green photon is observed to
be followed by a red one, according to the small probability pr|g(τ). As can be
seen from Eq. (11.179), this conditional probability is slowly rising since it rests
on the excitation of the weakly coupled transition |1〉↔|2〉; that is, when this
transition is excited due to the absorption of a red laser photon, the electron
is trapped for a long time in the metastable state |2〉. When a red photon is
emitted, according to Eq. (11.178), the green fluorescence is switched on, the
time scale now being determined by the strong dipole transition |1〉↔|3〉.

Another, rather direct, explanation for the dark periods may be given by cal-
culating the probability for the emission of the next photon at time τ after the
emission of a photon at τ=0 [Zoller, Marte and Walls (1987)]. There is a large
body of work on the problem of intermittent fluorescence, and configurations
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Counts/0.1 s

Time [s]

Fig. 11.7 Intermittent fluorescence from a single Ba+ ion. [The mea-
sured data are used by kind permission by P.A. Appasamy, I. Siemers
and P.E. Toschek, University of Hamburg.]

other than V, such as ladder and Λ, have been studied.18 The effect has also
been demonstrated experimentally using single trapped ions [Nagourney,
Sandberg and Dehmelt (1986); Sauter, Blatt, Neuhauser and Toschek (1986);
Bergquist, Hulet, Itano and Wineland (1986)]. A typical example of the behav-
ior of the (green) fluorescence of a trapped Ba+ ion intermitted by quantum
jumps, is shown in Fig. 11.7. In the case of two trapped ions, quantum jumps
have also been observed. In particular, the probability of simultaneous quan-
tum jumps of both atoms has been found to be much larger than expected for
the case when the atoms emit photons independently of each other [Sauter,
Neuhauser, Blatt and Toschek (1986)].

11.3.3
Vibronic coupling

Let us consider a vibronic system, such as a molecule, and assume that the
(harmonic) potential-energy surfaces, which govern the vibrational motion in
the two electronic quantum states involved in the resonant light–matter inter-
action, are shifted as well as distorted with respect to each other (Fig. 11.8).
The Hamiltonian of the free vibronic system may be written as

18) For further reading, see, e. g., Cook and Kimble (1985); Arecchi,
Schenzle, DeVoe, Jungmann and Brewer (1986); Schenzle and
Brewer (1986); Pegg, Loudon and Knight (1986); Cohen-Tannoudji
and Dalibard (1986); Nienhuis (1987).
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|2, n2〉

|1, n1〉

ωL

Fig. 11.8 Scheme of a vibronic system resonantly driven by a laser
beam of frequency ωL, the (harmonic) potential-energy surfaces for the
vibrational motion in the two electronic quantum states being displaced
and distorted.

Ĥvib =
2

∑
i=1

∑
ni

h̄ωi,ni
|i, ni〉〈i, ni|, (11.181)

where

ωi,ni
= ωi + Ω(i)

v
(
ni + 1

2

)
, i = 1, 2, ni = 0, 1, 2, . . . , (11.182)

and the vibronic quantum states

|i, ni〉 = |i〉|ni〉 (11.183)

are closely related to the Born–Oppenheimer states, the two electronic quan-
tum states and the associated vibrational states are enumerated by i and ni
respectively, and h̄ωi is the energy of the ith electronic quantum state, while

Ω(i)
v is the vibrational frequency in this state.
In particular, let us suppose that the distortion-assisted difference between

the vibrational frequencies in the two electronic states, δΩv≡|Ω(2)
v −Ω(1)

v |, is
large compared with the linewidths of the driving laser field and the vibronic
transitions. In this case a single vibronic transition may be driven resonantly
by tuning the laser frequency to the corresponding transition frequency.19

19) When the difference in the two vibrational frequencies cannot be re-
solved, a large manifold of vibronic transitions may simultaneously
be driven by the laser field [Vogel, Welsch and Kühn (1988)].
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Clearly, in the course of time, a series of levels below the primarily excited one
may also be excited to modify the light-scattering process, because of the var-
ious kinds and strengths of vibronic and vibrational relaxations. To illustrate
some features which typically arise from the manifold of vibrational states in
the lower electronic state, let us briefly study the case where the vibrationless
transition |1, 0〉↔|2, 0〉 is resonantly driven [Vogel and Ullmann (1986); Vogel
(1991b)].20

The various correlation functions of the scattered light may again be calcu-
lated by using the formulae given in Section 11.1 [the level label a now corre-
sponds to (i, ni)] and applying the quantum regression theorem. In particular,
in close analogy with the derivation of Eq. (11.37), the intensity of the scat-
tered light is determined from Eq. (11.10) by the occupation probability of the
state |2, 0〉 as

I(t + r/c) = |g|2σ00
22 (t). (11.184)

Here and in the following the notation σmn
ij ≡〈i, ni|σ̂|j, nj〉|ni=m,nj=n is used.

The multi-level density-matrix equations of motion may be found by com-
bining the (electronic) two-level Bloch equations [cf. Eqs (11.21)–(11.24) and
Section 5.4.2] and the harmonic-oscillator master equations (cf. Section 5.3.2):

σ̇00
22 = −Γ1σ00

22 − 1
2 iΩRσ̃00

21 + 1
2 iΩRσ̃00

12 , (11.185)

˙̃σ00
21 = (−iδω − Γ2)σ̃00

21 + 1
2 iΩR(σ00

11 − σ00
22 ), (11.186)

˙̃σ00
12 = (iδω − Γ2)σ̃00

12 − 1
2 iΩR(σ00

11 − σ00
22 ), (11.187)

σ̇00
11 = p0Γ1σ00

22 + Γvσ11
11 + 1

2 iΩRσ̃00
21 − 1

2 iΩRσ̃00
12 , (11.188)

σ̇nn
11 = pnΓ1σ00

22 − nΓvσnn
11 + (n + 1)Γvσn+1n+1

11 (n ≥ 1), (11.189)

where, according to Eq. (11.19), slowly varying off-diagonal density-matrix
elements σ̃00

12 (= σ̃00 ∗
21 ) have been introduced, and the detuning δω is defined

according to Eq. (11.26).21 The rates Γ1 and Γ2 are respectively the electronic
energy- and phase-relaxation rates, Γv is the vibrational-energy relaxation rate
and ΩR is the Rabi frequency of the driven transition |1, 0〉↔|2, 0〉. Further,
interaction-matrix elements are factored into an electronic matrix element and
a vibrational overlap integral 〈ni|nj〉, so that the vibronic coupling may be
described in terms of vibrational overlap integrals. In this way, the filling

20) If the driving laser is tuned to a transition |1, 0〉↔|2, n〉, n>0, hot
luminescence (i. e., spontaneous emission during the process of vi-
brational relaxation in the excited electronic state) may additionally
appear [Kühn, Vogel and Welsch (1989)].

21) The equations of motion for off-diagonal density-matrix elements of
the types σn0

12 (=σ0n ∗
21 ) and σnm

11 (=σmn ∗
11 ), n 
=m, are omitted, because

these elements are assumed not to be prepared initially, so that they
vanish for all times.
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rates of the states |1, n〉, n=0, 1, 2, . . ., may be written as pnΓ1, where

pn = |〈n2|n1〉|2n2=0,n1=n (11.190)

(note that ∑n pn =1), and the Rabi frequency is

ΩR =
2
h̄
√

p0 |d21EL| (11.191)

[cf. Eq. (11.25)]. The strength of vibrational overlap depends on the shifts
with respect to each other of both the equilibrium positions and the frequen-
cies of the vibrations in the two electronic quantum states. In particular,
when the frequency shift is small compared with the vibrational frequencies

(|Ω(1)
v −Ω(2)

v |�Ω(1)
v , Ω(2)

v ), the pn, which may easily be calculated using the
well-known energy eigenfunctions of a harmonic oscillator, simply represent
a Poissonian distribution:

pn =
Vn

n!
e−V , (11.192)

where the vibronic coupling strength V is related to the displacement of the
corresponding normal coordinate, δQ0, by

V =
mΩ(1)

v

2h̄
(δQ0)2, (11.193)

with m being the reduced mass.
To solve the multi-level master equations (11.185)–(11.189) and determine

σ00
22 (t) with initial conditions σnm

ij (t)|t=0=δi1δj1δn0δm0, we note that these
equations can be put into forms resembling the equations of motion for an
(electronic) two-level system undergoing a non-Markovian dephasing [Vogel
(1991b)]. Introducing the quantities

u = σ̃00
21 + σ̃00

12 , (11.194)

v = i(σ̃00
21 − σ̃00

12 ), (11.195)

w = σ00
22 − σ11 , (11.196)

where

σ11 =
∞

∑
n=0

σnn
11 , (11.197)

after some algebra, we deduce from Eqs (11.185)–(11.189) the following equa-
tions of motion for u, v and w:

ẇ = −Γ1(w + 1)− ΩRv, (11.198)

v̇ = δωu − Γ2v −
∫ t

0
dτ M(t−τ)v(τ) + ΩRw, (11.199)

u̇ = −δωv − Γ2u. (11.200)
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In Eq. (11.199) the field-induced memory function

M(t) = 1
2 Ω2

R Γ1

∫ t

0
dτ K(t−τ) e−Γ1τ (11.201)

is introduced, where

K(t) = 1 −
∞

∑
n=0

pn[1 − exp(−Γvt)]n = 1 − exp
(
−Ve−Γvt). (11.202)

The memory function M(t) obviously reflects the dynamics of the vibra-
tional motion in the lower electronic quantum state, where the two competing
processes of vibrational-state population and depopulation are governed by
the strength of vibronic coupling, V, and the rate of vibrational relaxation, Γv,
respectively. Clearly, in the limiting cases of sufficiently weak vibronic cou-
pling (V→0) or extremely fast vibrational relaxation (Γ−1

v →0) the memory
function vanishes (M(t)→0), and Eqs (11.198)–(11.200) just correspond to the
familiar (two-level) Bloch equations. For a given strength of vibronic coupling
the effect of M(t) on the electronic-state dynamics is most pronounced in the
case of slow vibrational relaxation (Γv�Γ1). In this case Eq. (11.201) [together
with Eq. (11.202)] may be simplified to obtain the memory function as

M(t) � 1
2 Ω2

R
[
1 − exp

(
−Ve−Γvt)](1 − e−Γ1t). (11.203)

We see that M(t) is built up on a time scale of Γ−1
1 to attain a quasi-stationary

value

M = 1
2 Ω2

R
(
1 − e−V)

, Γ−1
1 � t � Γ−1

v , (11.204)

which, in the further course of time, decays to zero,

M(t) = 1
2 Ω2

R
[
1 − exp

(
−Ve−Γvt)], (11.205)

the time scale being given by Γ−1
v .

This behavior of M(t) typically influences the temporal evolution of the in-
tensity of the scattered light, as can be seen from Fig. 11.9. When the driving
field is sufficiently strong, Rabi oscillations are observed. However, with in-
creasing time, the intensity substantially decreases and the Rabi oscillations
are smoothed out. Eventually, in the long-time limit the intensity slightly
increases to attain a steady-state value. Note that the Rabi oscillations may
survive somewhat longer than in the case of a two-level system.

From the point of view of the multi-level description (11.185)–(11.189),
pumping of the transition |1, 0〉↔|2, 0〉 is followed by spontaneous emissions
|2, 0〉→|1, n〉, n=0, 1, 2, . . ., to also excite higher vibrational quantum states in
the electronic ground state (n>0). These states cannot serve as starting states
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Fig. 11.9 The time evolution of the excited-state occupation probability
σ00

22 (t) is shown for a vibronic system undergoing radiative damping
(Γ1 =2Γ2 =2γ), the parameters being ΩR/γ=3, Γv/γ=0.1 and V =3.

for further pumping, because the corresponding vibronic transitions are out
of resonance with the driving laser field. Moreover, slow vibrational relax-
ation reduces the repopulation of the ground state |1, 0〉 to a low level. In this
way, the optically active electron is effectively trapped and the intensity of
the scattered light nearly breaks down. On a long-time scale of Γ−1

v the inten-
sity slightly increases, because of the nonexponential filling of the state |1, 0〉
due to vibrational relaxation [cf. the double-exponential structure of M(t) as
given in Eq. (11.205)].22 From the point of view of the two-level description
(11.198)–(11.200), one would say that the decrease in the intensity results from
a field-induced dephasing, which is responsible for detuning the two-level
transition so that it goes out of resonance with the driving laser field.

It should be noted that, with regard to the intensity correlation of the scat-
tered light, the results (11.54) and (11.59) for the two-level case may easily be
extended to the case of the multi-level vibronic system, considered above, to
obtain

G(2,2)(t+r/c+τ, t+r/c) = I(t+r/c+τ)
∣∣
σnm

ij (t)=δi1δj1δnm pn
I(t+r/c)

= |g|4σ00
22 (t+τ)

∣∣
σnm

ij (t)=δi1δj1δnm pn
σ00

22 (t). (11.206)

Here σ00
22 (t+τ)|σnm

ij (t)=δi1δj1δnm pn
is determined from the solution of the equa-

tions of motion as given in Eqs (11.185)–(11.189), the initial conditions being
σnm

ij (t+τ)|τ=0 =δi1δj1δnm pn, where pn is given in Eq. (11.192). This initial
preparation reflects the fact that after the emission of a photon (at time t) the
system is, with probability pn, in the nth vibrational state of the electronic
ground state. (Note that the probabilities for the transitions |2, 0〉→|1, n〉 are
just proportional to the pn.) The difference in the initial conditions needed

22) When the ground state is filled exponentially, a long-time increase of
the intensity does not appear; see Vogel and Ullmann (1986).
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to calculate the intensity and the intensity correlation may lead to different
short-time behavior of the intensity (as a function of t) and the (normalized)
intensity correlation (as a function of τ), whereas the long-time behavior (time
scale Γ−1

v ) of the two functions is the same.
By extending the result (11.95), the steady-state power spectrum of the scat-

tered light is given as [Vogel and Welsch (1986)]:23

S(ω, Γf) = ∑
n

pnSn(ω, Γf), (11.207)

Sn(ω, Γf) =
1

2π

∫ ∞

0
dτ exp

[
−

(
iω + 1

2 Γf
)
τ
]
Gn0(I)

12 (τ) + c.c., (11.208)

where

Gn0(I)
12 (τ) ≡ lim

t→∞
Gn0(I)

12 (t + τ, t), (11.209)

Gn0(I)
12 (t + τ, t) = 〈Â0n

21(t+τ)Ân0
12(t)〉 (11.210)

[cf. Eqs (11.94) and (11.91)]. Application of the quantum regression theorem

for determining the Gnm(I)
ij (t+τ, t) requires that the density-matrix equations

of motion (11.185)–(11.189) are complemented by the equations of motion for
the off-diagonal density-matrix elements σn0

12 and σnm
11 , because the nonvanish-

ing initial values of the Gnm(I)
ij (t+τ, t) are

Gn0(I)
11 (t + τ, t)

∣∣
τ=0 = σ̃00

21 (∞)e−iω21t, (11.211)

Gn0(I)
12 (t + τ, t)

∣∣
τ=0 = σ22(∞). (11.212)

We omit a detailed analysis here and refer the interested reader to the litera-
ture.

From a dressed-state approach one may see, analogously to the discussion
in Section 11.2.4, that the line which corresponds to the driven (vibrationless)

transition and is related to the Fourier transform of G00(I)
12 (τ) shows a triplet

structure, provided that the Rabi frequency is sufficiently large. A detailed
analysis reveals that the side peaks of the triplet may become narrower and
higher as in the case of a two-level atom, which is consistent with the above-
mentioned fact that the Rabi oscillations may survive over a longer time. The

Raman lines, which are just related to the Fourier transforms of the Gn0(I)
12 (τ),

n>0, split into doublets, since the higher (n>0) vibrational energy levels of
the electronic ground state cannot give rise to level splittings under the exci-
tation conditions considered.

We finally note that a trapped ion undergoing quantized center-of-mass mo-
tion (of vibration type) in a trap potential may also be regarded as a vibronic

23) Here n̄Ω(1)
v �ω21, where n̄=∑n pn =V.
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system, whose Hamiltonian of course differs from that of the molecule-like
vibronic system considered above; for details see Chapter 13. Compared with
the situation in a molecule, the trap potential is externally given and thus it
does not depend on the electronic state of the atom. The vibronic coupling
arises from the kick effects due to the emission and absorption of photons,
which in momentum space play a similar role to the (position) displacement
of the potentials of the molecule. The effects of quantized motion in the res-
onance fluorescence of a trapped ion have been studied, for example, in con-
nection with the spectrum [Cirac, Blatt, Parkins and Zoller (1993)] and the
squeezing [de Matos Filho and Vogel (1994)] of the fluorescence radiation.
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12
A single atom in a high-Q cavity

From the study of spontaneous emission (Section 10.1) we know that, in the
presence of macroscopic bodies, the strength of the interaction between atoms
and the radiation field can drastically change compared with the case when
the atoms are in free space. In particular, if the bodies form a resonator-like
equipment – referred to as a cavity – giving rise to a well-pronounced line
spectrum of the field, a noticeably enhanced atom–field coupling is observed
for atomic transitions tuned to the lines of the cavity field. As a consequence,
a photon emitted by an excited atom does not escape at once but is captured
by the cavity for some time in general and can thus be reabsorbed by the atom.
Moreover, subsequent induced emission together with external pumping may
lead to the well-known lasing effects. In fact cavity-induced modifications of
radiation–matter interaction processes depend sensitively on the geometrical
and optical properties of the cavity, in particular on its Q value.

As long as Q is small and allows one to regard the cavity as being a mod-
erate disturbance of free space, so that the weak coupling regime effectively
continues to hold, the effect of the cavity on the atomic motion and the emit-
ted light may be included in the theory by appropriately modifying the re-
laxation rates appearing in the optical Bloch equations for the electronic-state
dynamics of the atom [Rice and Carmichael (1988)]. Further, non-Markovian
relaxation theory may be applied to explain the measured modifications in the
Mollow spectrum of the light emitted from an atom inside a cavity [Lezama,
Zhu, Morin and Mossberg (1989)].

When Q becomes sufficiently large, so that the coupling between the atom
and the cavity field becomes strong, the situation may be changed drastically,
since the back-action of the radiation field on the atom now plays a dominant
role. As already demonstrated in Section 10.1.2, strong atom–field coupling
requires sufficiently narrow lines of the cavity field, with some of which be-
ing tuned to specific atomic transitions. When only one atomic transition is
involved in the strong coupling regime, then, on a time scale small compared
with the inverse width of the corresponding line of the cavity field, the prob-
lem effectively reduces to a problem of Jaynes–Cummings type – the near-
resonant interaction of a two-level atom with a quantized mode of a perfect
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cavity (Q→∞). When the Jaynes–Cummings model was proposed [Jaynes
and Cummings (1963); Paul (1963)], its predictions seemed to be somewhat
artificial and far from practical relevance. Owing to progress in experimental
techniques, however, the situation has now changed. Experiments with the
micromaser, in which a beam of long-living Rydberg atoms is injected into a
cooled single-mode high-Q cavity at such a low rate that, at most, one atom
at a time is present inside the cavity, have made it possible to experimen-
tally prove a series of predictions derived from the Jaynes–Cummings model
[see, e. g., Haroche (1984); Haroche and Raimond (1985); Meschede, Walther
and Müller (1985); Rempe, Walther and Klein (1987)]. In the optical domain
the regime of strong coupling between an atom and a cavity field can also
be demonstrated using a cavity with mirrors of extremely high reflectivity
[Thompson, Rempe and Kimble (1992)].

The further improvement of the available cavities has created exciting
perspectives for realizing fundamental Gedanken experiments from the
early days of quantum mechanics. In this context new types of nonclas-
sical states have been realized, such as Schrödinger-cat states [Brune, Ha-
gley, Dreyer, Maitre, Maali, Wunderlich, Raimond and Haroche (1996)],
Einstein–Podolsky–Rosen pairs of atoms [Hagley, Maitre, Nogues, Wun-
derlich, Brune, Raimond and Haroche (1997)], and trapping states of the
micromaser [Weidinger, Varcoe, Heerlein and Walther (1999)]. The feasibility
of performing quantum nondemolition measurements of the cavity field has
been demonstrated [Nogues, Rauschenbeutel, Osnaghi, Brune, Raimond and
Haroche (1999)] and elementary quantum logic operations have been realized
[Rauschenbeutel, Nogues, Osnaghi, Bertet, Brune, Raimond and Haroche
(1999)].

12.1
The Jaynes–Cummings model

In the Jaynes–Cummings model the near-resonant interaction of a two-level
atom with a quantized single-mode radiation field is described by the Hamil-
tonian

Ĥ = Ĥ0 + Ĥint , (12.1)

where the Hamiltonian Ĥ0 governs the free motion of the atom and the
radiation-field mode,1

Ĥ0 = h̄ω1 Â11 + h̄ω2Â22 + h̄ωâ† â, (12.2)

1) Since only one mode is considered, the mode label is omitted for
notational convenience. Further, the atomic energies h̄ω1 and h̄ω2
are thought of as being the shifted ones, so that ω21 = ω2−ω1 is the
shifted transition frequency and the tilde notation used in Chap-
ter 10 can be omitted.
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and Ĥint describes their coupling to each other,

Ĥint = −h̄λ(â† Â12 + Â21 â). (12.3)

The coupling parameter λ is the electric-dipole matrix element of the atomic
transition multiplied by the cavity mode function at the location of the atom.
Without loss of generality, we may assume that λ is real-valued and λ > 0.
The Hamiltonian given in Eqs (12.1)–(12.3) corresponds to the Hamiltonian
already used in Section 11.2.4 to explain the line structure of the spectrum
of resonance fluorescence from a single atom in free space. Whereas in Sec-
tion 11.2.4 the radiation-field mode simply represents the field driving the
atomic transition, here and in the following it represents both the driving field
and the field radiated by the atom in the cavity.

The eigenvalue equation for Ĥ0 may be written as

Ĥ0|a, n〉 = h̄(ωa + nω)|a, n〉, (12.4)

where a labels the two electronic states of the atom (a=1, 2) and n is the pho-
ton number. It is straightforward to diagonalize the full Jaynes–Cummings
Hamiltonian Ĥ by making the ansatz that the eigenstates of Ĥ are super-
positions of the degenerate (or in the case of nonvanishing detuning, near-
degenerate) eigenstates of Ĥ0 as follows:

|n,±〉 = c±(|1, n + 1〉+ α±|2, n〉), (12.5)

so that

Ĥ|n,±〉 = En,±|n,±〉 ≡ h̄ωn,±|n,±〉. (12.6)

Applying in Eq. (12.6) the Hamiltonian Ĥ [Eqs (12.1)–(12.3)] to |n,±〉, as given
in Eq. (12.5), and comparing the coefficients of |1, n+1〉 and |2, n〉 on both sides
of the resulting equation, we obtain two equations for determining ωn,± and
α±. The c± are determined from the normalization condition 〈n,±|n,±〉=1.
After some algebra, we arrive at

ωn,± = 1
2 [ω2 + ω1 + (2n + 1)ω ± ∆n], (12.7)

α± = − 1
Ωn

(ω21 − ω ± ∆n), (12.8)

c± =
1√

1 + α2±
, (12.9)

where

∆n =
√

δ2 + Ω2
n , (12.10)

Ωn = 2λ
√

n + 1 , (12.11)

δ = ω21 − ω. (12.12)
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From Eqs (12.8)–(12.12) we may rewrite Eq. (12.5) to represent the eigenstates
|n,±〉 in the form

|n, +〉 = cos Θn|1, n + 1〉 − sin Θn |2, n〉, (12.13)

|n,−〉 = sin Θn|1, n + 1〉+ cos Θn |2, n〉, (12.14)

where

sin Θn =
Ωn√

(∆n − δ)2 + Ω2
n

, (12.15)

cos Θn =
∆n − δ√

(∆n − δ)2 + Ω2
n

. (12.16)

The states |n,±〉 are usually called dressed-atom states [Cohen-Tannoudji
and Reynaud (1977)], because they may be regarded as describing the atom
“dressed” by the interaction with the radiation mode rather than the free
atom. In particular, in the case of exact resonance (δ=0) the eigenstates |n,±〉
take the simple form

|n,±〉 = 1√
2
(|1, n + 1〉 ∓ |2, n〉), (12.17)

and the corresponding eigenfrequencies ωn,± are

ωn,± = (ω2 + nω) ± 1
2 Ωn . (12.18)

We see that the light–matter interaction considered gives rise to level splittings
h̄Ωn (dynamic Stark effect) where Ωn is called the n-photon Rabi frequency. It
should be pointed out that, even in the case of an excited atom interacting
with the photon vacuum (n=0), a splitting occurs, the so-called vacuum Rabi
splitting [for an experimental demonstration see Thompson, Rempe and Kim-
ble (1992)]. Note that the vacuum Rabi frequency Ωn=0 defined by Eq. (12.11)
corresponds exactly to Ων introduced by Eq. (10.51) in the limit γν → 0 but
finite Γνγν.

Clearly, the states |n, σ〉 ≡ |n,±〉 given in Eqs (12.13) and (12.14) are the
excited eigenstates of the Hamiltonian Ĥ. To make them complete requires
addition of the ground state |1, 0〉, which is an eigenstate of both Ĥ0 and Ĥ,

Ĥ|1, 0〉 = Ĥ0|1, 0〉 = h̄ω1|1, 0〉, (12.19)

because in this state there is no resonant coupling of the atom to the radiation-
field mode. The completeness relation is then

|1, 0〉〈1, 0|+ ∑
σ=±

∞

∑
n=0

|n, σ〉〈n, σ| = Î. (12.20)
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Let us represent the unitary time-evolution operator Û(t)=exp(−iĤt/h̄)
needed to study the dynamics of the coupled radiation–matter system when
it is initially prepared in a state that is not an eigenstate of Ĥ. In the basis of
the dressed states (eigenstates of Ĥ) we simply have

Û(t) = e−iω1t|1, 0〉〈1, 0|+ ∑
σ=±

∞

∑
n=0

e−iωn,σt|n, σ〉〈n, σ|, (12.21)

which follows directly from application of the completeness relation (12.20).
In Eq. (12.21), expressing the dressed states |n,±〉 in terms of the unperturbed
states |a, n〉, cf. Eqs (12.13)–(12.16), we may represent Û in the basis of the
eigenstates of the unperturbed Hamiltonian Ĥ0. After some algebra, we ob-
tain

Û(t) = e−iω1t|1, 0〉〈1, 0|+
∞

∑
n=0

e−
1
2 i[ω1+ω2+ω(2n+1)]t

×
{[

cos
( 1

2 ∆nt
)
+ i

δ

∆n
sin
( 1

2 ∆nt
)]|1, n + 1〉〈1, n + 1|

+
[

cos
( 1

2 ∆nt
)− i

δ

∆n
sin
( 1

2 ∆nt
)]|2, n〉〈2, n|

+ i
Ωn

∆n
sin
( 1

2 ∆nt
)
(|1, n + 1〉〈2, n|+ |2, n〉〈1, n + 1|)

}
, (12.22)

from which the matrix elements of Û in the basis of the |a, n〉,
Uan,bm(t) = 〈a, n|Û(t)|b, m〉 (12.23)

({a, b}=1, 2, {n, m}=0, 1, 2, . . .), can easily be obtained. Note that the nonva-
nishing matrix elements are U1n,1n, U2n,2n, U1(n+1),2n and U2n,1(n+1), all others
are zero. Taking into account that the density operators of the system at the
two times t and t′ are related by

�̂(t) = Û(t − t′)�̂(t′)Û†(t − t′), (12.24)

we may express the matrix elements of the density operator at time t,

�an,bm(t) = 〈a, n|�̂(t)|b, m〉, (12.25)

in terms of the matrix elements of the density operator �̂(t′) and the time evo-
lution operator Û(t− t′):

�an,bm(t) = ∑
a′n′

∑
b′m′

Uan,b′n′(t − t′)U∗
bm,b′m′(t − t′)�a′n′,b′m′(t′), (12.26)

which represents the general solution of the density-matrix equations of mo-
tion for the Jaynes–Cummings problem.
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The above formulae apply directly to the study of the time evolution of
atomic and photonic quantities, without any further approximations. The
Jaynes–Cummings model has been used successfully to study various prob-
lems in micromaser and optical-cavity experiments in the very-high-Q regime.
It also plays an important role in the study of fundamental quantum features
in the light–matter interaction on the basis of an exact solution of coupled
light–matter equations of motion. In this context, it has been extended to al-
low for more complicated light–matter interactions, such as the near-resonant
interaction of two quantized light modes with a three-level atomic system [see,
e. g., Yoo and Eberly (1985)].

In particular, the extension of the above results to the case of the so-called
multi-photon Jaynes–Cummings model, is straightforward. Assuming that
the atomic transition is in near-resonance with a k-photon transition (k =
2, 3, . . . ) of the cavity field, we may describe this form of interaction between
an atom and the quantized cavity mode by substituting into Eq. (12.1) for Ĥint

an effective interaction Hamiltonian Ĥ(k)
int as follows:2

Ĥint 	→ Ĥ(k)
int = −h̄λ(k)(â†k Â12 + Â21 âk). (12.27)

The determination of the eigenstates of the k-photon Jaynes–Cummings

Hamiltonian Ĥ0 + Ĥ(k)
int and of the time-evolution operator, may be performed

in close analogy to the approach outlined above. It can easily be proved that
the dressed states are now

|n, +〉(k) = cos Θ(k)
n |1, n + k〉 − sin Θ(k)

n |2, n〉, (12.28)

|n,−〉(k) = sin Θ(k)
n |1, n + k〉 + cos Θ(k)

n |2, n〉, (12.29)

[cf. Eqs (12.13) and (12.14)], where sin Θ(k)
n and cos Θ(k)

n may be calculated
using Eqs (12.15) and (12.16), respectively, [together with Eq. (12.10)] and sub-
stituting, for the one-photon quantities δ and Ωn, the corresponding k-photon
quantities:

δ 	→ δ(k) = ω21 − kω, (12.30)

Ωn 	→ Ω(k)
n = 2λ(k)

√
(n + k)!

n!
. (12.31)

Accordingly, the time-evolution operator (12.21) may be expressed in terms of
the dressed states |n,±〉(k) or the unperturbed states |i, n〉 [Vogel and Welsch
(1989)]. Since the states |1, q〉 for q=0, . . . , k−1 are not affected by the atom–
field interaction, in place of Eq. (12.21) the unitary time-evolution operator

2) For the derivation of effective multi-photon interaction operators,
we refer to Section 2.5.3.
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now reads as

Û(k)(t) =
k−1

∑
q=0

e−i(ω1+qω)t|1, q〉〈1, q|+ ∑
σ=±

∞

∑
n=0

e−iωn,σt|n, σ〉(k)(k)〈n, σ|. (12.32)

Substituting in this expression the explicit form of the multi-photon dressed
states, Eqs (12.28) and (12.29), one may obtain an expression for the time-
evolution operator in terms of the bare states in analogy to that given in
Eq. (12.22) for the one-photon model. It is noteworthy that the k-quantum
Jaynes–Cummings model plays an important role in describing the vibronic
coupling of an appropriately laser-driven trapped atom (Section 13.3.1).

12.2
Electronic-state dynamics

To measure the time-dependent occupation probabilities of the electronic
states of an atom interacting with a cavity field, one may transmit equally pre-
pared single atoms with different velocities through the cavity and measure
their final preparation by electronic-state sensitive ionization as a function of
the time of flight through the cavity. The interaction time between the atom
and the cavity field corresponds to the time of flight which is controlled by
the velocity of the atoms.3

12.2.1

Reduced density matrix

To calculate the temporal evolution of atomic quantities, we start from the
general solution for the atom–field density matrix [Eq. (12.26) together with
Eqs (12.22) and (12.23)] and take the trace with respect to the field to obtain
the reduced density matrix σab of the atomic (electronic) subsystem:

σab(t) =
∞

∑
n=0

�an,bn(t). (12.33)

When we identify the time t′ with the onset of the interaction between the
atom and the cavity field (e. g., when the atom enters the cavity), we may
write the initial density matrix in factored form as

�an,bm(t′) = ρnm(t′)σab(t′). (12.34)

Here and in the following the (reduced) density operator of the radiation-
field mode is denoted by ρ̂, with ρnm being the matrix elements in the photon-
number basis. Since σ22 + σ11 =1 and σ21 = σ∗

12, it is sufficient to perform the

3) Such a measurement scheme is typically used in micromaser experi-
ments, cf. Section 12.4.
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calculations for two density-matrix elements of the atomic system. Let us con-
sider the excited-state occupation probability σ22 measured in the above men-
tioned detection scheme. Combining Eqs (12.22)–(12.26) and (12.33), (12.34),
we deduce that (t′=0)

σ22(t) = σinc
22 (t) + σcoh

22 (t), (12.35)

where

σinc
22 (t) =

∞

∑
n=0

{
2δ2+Ω2

n[1+cos(∆nt)]
2∆2

n
σ22(0)ρnn(0)

+
Ω2

n[1−cos(∆nt)]
2∆2

n
σ11(0)ρn+1n+1(0)

}
(12.36)

is the part of the atomic excited-state occupation probability arising from the
initially prepared diagonal density-matrix elements (incoherent preparation),
whereas the term

σcoh
22 (t) = Re

{ ∞

∑
n=0

[
i
Ωn

∆n
sin(∆nt)− δ Ωn

∆2
n

[1−cos(∆nt)]
]

σ12(0)ρn+1n(0)
}

(12.37)

only appears when there is also a coherent initial preparation characterized by
the corresponding off-diagonal density-matrix elements.

In particular, for exact resonance (δ=0) Eqs (12.36) and (12.37) simplify to

σinc
22 (t) = 1

2

∞

∑
n=0

{
[1 + cos(Ωnt)]σ22(0)ρnn(0)

+ [1 − cos(Ωnt)]σ11(0)ρn+1 n+1(0)
}

, (12.38)

σcoh
22 (t) = Re

[ ∞

∑
n=0

i sin(Ωnt)σ12(0)ρn+1 n(0)
]

. (12.39)

Let us assume that the atom is initially prepared incoherently, so that the
atomic excited-state occupation probability σ22(t) is given by σinc

22 (t). Fur-
ther, assuming that the atom is initially in the excited state [σab(0) = δabδa2],
Eqs (12.35), (12.38) and (12.39) reduce to

σ22(t) = σinc
22 (t) = 1

2

[
1 +

∞

∑
n=0

ρnn(0) cos(Ωnt)
]

. (12.40)

If the initial field is prepared in a photon-number state |k〉 [ρnn(0)= δnk], the
excited-state occupation probability oscillates with the corresponding Rabi
frequency Ωk:

σ22(t) = 1
2 [1 + cos(Ωkt)] . (12.41)
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In particular, if the cavity field is initially in the vacuum state (k=0), the atomic
occupation probability oscillates with the vacuum Rabi frequency Ω0. In this
case Eq. (12.41) corresponds to Eq. (10.57) and describes the effect of vacuum
Rabi oscillations in spontaneous emission in an ideal cavity (Q→∞).

12.2.2
Collapse and revival

In the case of arbitrary initial preparation of the field, Eq. (12.41) must be aver-
aged over the photon-number distribution ρkk(0) to obtain the result (12.40),
which represents a superposition of various Rabi oscillations. For example, let
us first assume that the cavity field is initially in a coherent state |α〉. Recall-
ing that the photon-number distribution of a coherent state is Poissonian [cf.
Eq. (3.60)], we obtain from Eq. (12.40)

σ22(t) = 1
2

[
1 +

∞

∑
n=0

〈n̂(0)〉n

n!
e−〈n̂(0)〉 cos(Ωnt)

]
. (12.42)

Note that 〈n̂(0)〉 = |α|2 is the mean photon number in the initial coherent
state |α〉. The dependence of the Rabi frequency on the photon number,
Ωn =2λ

√
n+1, Eq. (12.11), prevents, in general, the result of averaging from

being obtained in closed form. The problem may be solved approximately
if the mean number of photons is sufficiently large, 〈n̂(0)〉
 1, so that the
relative variance of the photon number becomes small:

〈[∆n̂(0)]2〉
〈n̂(0)〉2 � 1

〈n̂(0)〉 . (12.43)

In this case in Eq. (12.42) we may approximate Ωn =2λ
√

n+1 as

Ωn = 2λ
√
〈n̂(0)〉+ 1

{
1 +

1
2

n − 〈n̂(0)〉
〈n̂(0)〉+ 1

− 1
8

[
n − 〈n̂(0)〉
〈n̂(0)〉+ 1

]2

+ . . .
}

� 2λ
√
〈n̂(0)〉

[
1 +

n − 〈n̂(0)〉
2〈n̂(0)〉

]
. (12.44)

The n summation in Eq. (12.42) may now be carried out to obtain

σ22(t) � 1
2 Re

{
1 + e−〈n̂(0)〉 exp

[
2iλ
√
〈n̂(0)〉 t

]
exp
[
−iλ
√
〈n̂(0)〉 t

]

× exp
[
〈n̂(0)〉 exp

(
iλt√〈n̂(0)〉

)]}
. (12.45)

With regard to the double exponential in Eq. (12.45), we note that, for times t
satisfying the condition

λt �
√
〈n̂(0)〉 , (12.46)
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the inner exponential may be expanded up to terms of second order [recall
that 〈n̂(0)〉
1]. In this time regime we may therefore rewrite Eq. (12.45) as

σ22(t) � 1
2

{
1 + cos

[
2λ
√
〈n̂(0)〉 t

]
exp
(− 1

2 λ2t2)}. (12.47)

This equation reveals that for 〈n̂(0)〉 
 1, λ2t2 the excited-state occupation
probability oscillates with the effective Rabi frequency

Ωeff = 2λ
√
〈n̂(0)〉 (12.48)

and undergoes a collapse [Cummings (1965)] with a characteristic time τc in-
dependent of the mean photon number:

τc =
√

2
λ

. (12.49)

The collapse of the excited-state occupation probability is caused by de-
structive interference of the quantum Rabi oscillations at different frequen-
cies, Eq. (12.42). It has nothing to do with dissipative processes. This becomes
clear when we follow up the excited-state occupation probability in the fur-
ther course of time [λt �/ √〈n̂(0)〉]. The periodicity of the (slowly varying)
double exponential with the period

τr =
2π

λ

√
〈n̂(0)〉 , (12.50)

Eq. (12.45), suggests that the collapse of the excited-state occupation probabil-
ity is followed by a series of revivals at times

τ
(k)
r = kτr, k = 1, 2, 3, . . . . (12.51)

It should be pointed out that from Eq. (12.44) [together with Eq. (12.42)] the
application of Eq. (12.45) becomes questionable for times t with λt≥√〈n̂(0)〉.
Thus it is already invalid in the vicinity of the first revival.

The appearance of revivals may be established as follows. Considering the
dominant oscillations in the vicinity of the maximum of the Poisson distribu-
tion,

n ≈ 〈n̂(0)〉+ j, j � 〈n̂(0)〉, (12.52)

from Eq. (12.44) we may estimate the difference between two neighboring
Rabi frequencies to be

Ωn − Ωn−1 ≈ λ√〈n̂(0)〉 , (12.53)



12.2 Electronic-state dynamics 417

Fig. 12.1 Time evolution of the atomic excited-state occupation prob-
ability of an atom initially prepared in the upper state interacting with a
field initially prepared in a coherent state |α〉 of mean photon number
〈n̂(0)〉=5.

from which we can see that the value of the relative phase of the two Rabi

oscillations at time t+τ
(k)
r , with τ

(k)
r from Eq. (12.51), differs from the value at

time t by 2πk:

(Ωn − Ωn−1) τ
(k)
r ≈ 2πk, (12.54)

and hence(
Ωn − Ωn−j

)
τ

(k)
r ≈ 2πkj (12.55)

[recall the conditions (12.52)]. Thus superimposing the oscillations in the

vicinity of the maximum of the Poisson distribution at a time t + τ
(k)
r is ex-

pected to approximately yield the result of interference at the earlier time t.
Apart from the ignored effect of the absolute phase value, the phase matching
cannot be achieved for all (relevant) Rabi oscillations, because of the square-
root dependence of Ωn on n, and partially destructive interferences prevent
the revivals from being complete [Eberly, Narozhny and Sanchez-Mondragon
(1980)]. An example of the collapse-revival behavior of the excited-state occu-
pation probability is shown in Fig. 12.1.

Let us consider the revivals in the Jaynes–Cummings model in more detail.
With the help of the Poisson summation formula

∞

∑
n=0

fn =
∞

∑
k=−∞

∫ ∞

0
dn f (n)e2πikn + 1

2 f0 (12.56)



418 12 A single atom in a high-Q cavity

the sum over n in Eq. (12.40) can be converted into an infinite sum of integrals:

σ22(t) = 1
2

[
1 +

∞

∑
k=−∞

wk(t) + 1
2 p(0) cos(2λt)

]
, (12.57)

wk(t) = Re
{∫ ∞

−∞
dn p(n) exp[2iSk(n)]

}
, (12.58)

where p(n)≡ρnn(0) for n≥0 and p(n)≡0 for n<0, and

Sk(n) = πkn − λt
√

n + 1 . (12.59)

When p(n) is slowly varying compared with exp[2iSk(n)], the integration
over n, Eq. (12.58), can (approximately) be performed by expanding the phase
Sk(n) around the point of stationary phase nk [Fleischhauer and Schleich
(1993)]:

Sk(n) ≈ Sk(nk) +
1
2

d2Sk(n)
dn2

∣∣∣∣
n=nk

(n − nk)
2 , (12.60)

where nk is defined by

dSk(n)
dn

∣∣∣∣
n=nk

= πk − λt
2
√

nk + 1
= 0, (12.61)

which implies that√
nk + 1 =

λt
2πk

. (12.62)

For positive values of t, positive values of k provide a point of stationary
phase, and we have, on using Eq. (12.59),

Sk(nk) = −πk − λ2t2

4πk
,

d2Sk(n)
dn2

∣∣∣∣
n=nk

=
2π3k3

λ2t2 . (12.63)

Note that if k = 0, a point of stationary phase is only found for t = 0, and a
separate consideration is required.4 From the above, we may use Eq. (12.57)
in the approximate form (t≥0)

σ22(t) = 1
2

[
1 + w0(t) +

∞

∑
k=1

wk(t) + 1
2 p(0) cos(2λt)

]
, (12.64)

where wk(t) (k > 0) is obtained from Eq. (12.58) together with Eqs (12.60),
(12.62) and (12.63) as

wk(t) = Re
{

p(nk) exp
[
−i

λ2t2

2πk

] ∫ ∞

−∞
dn exp

[
2i

π3k3

λ2t2 n2
]}

= p
(

λ2t2

4π2k2 − 1
)

λt√
2π2k3

cos
(

λ2t2

2πk
− π

4

)
. (12.65)

4) See, e. g., Eq. (12.47).
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This result reveals that the photon-number statistics of the initial field es-
sentially determine the shape of the revivals as a function of time. In particu-
lar, if the photon-number distribution p(n) is (approximately) centered at the
mean number of photons, 〈n̂(0)〉, the envelope p[(λ2t2)/(4π2k2)−1] of wk(t)
is (approximately) centered at time

τ
(k)
r =

2πk
λ

√
〈n̂(0)〉+ 1 , (12.66)

which for 〈n̂(0)〉
 1 reduces to Eq. (12.51) (together with Eq. (12.50)). Note
that Eq. (12.65) implies that the photon number and the time are related ac-
cording to

n ↔ λ2t2

4π2k2 − 1. (12.67)

In the two-photon Jaynes–Cummings model, instead of Eq. (12.42), we have

σ
(2)
22 (t) = 1

2

[
1 +

∞

∑
n=0

〈n̂(0)〉n

n!
e−〈n̂(0)〉 cos

(
Ω(2)

n t
)]

, (12.68)

where Ω(2)
n is now given by Eq. (12.31). Provided that the mean number of

photons is large [〈n̂(0)〉
1], in Eq. (12.68) we may expand Ω(2)
n and disregard

terms of the order of magnitude of 〈n̂(0)〉−1 or smaller:

Ω(2)
n = 2λ(2)

(
n +

3
2
− 1

8n
± . . .

)
� 2λ(2)n + 3λ(2). (12.69)

In this case, carrying out the n summation, yields

σ
(2)
22 (t) � 1

2 Re
{

1 + e−〈n̂(0)〉 exp
(
i3λ(2)t

)
exp
[〈n̂(0)〉 exp

(
i2λ(2)t

)]}
. (12.70)

Although the structure of this result is similar to that of Eq. (12.45), there are
substantial differences. By expanding the inner exponential in the double ex-
ponential in Eq. (12.70) up to second order in time, we can easily see that the
characteristic collapse time depends on the mean number of photons:

τ
(2)
c =

1

λ(2)
√

2〈n̂(0)〉 , (12.71)

and the effective Rabi frequency is

Ω(2)
eff = 2λ(2)〈n̂(0)〉. (12.72)

From the periodicity of the double exponential, the kth revival time is found
to be independent of the mean number of photons:

τ
(2)
r

(k)
= kτ

(2)
r , τ

(2)
r =

π

λ(2) . (12.73)
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Fig. 12.2 Two-photon Jaynes–Cummings model: time evolution of the
atomic excited-state occupation probability of an atom initially prepared
in the upper state interacting with a field initially prepared in a coherent
state |α〉 of mean photon number 〈n̂(0)〉=5.

Further, from Eq. (12.69) [together with Eq. (12.68)], the error in Eq. (12.70) is
expected to be small as long as the time obeys the condition that

t � 4〈n̂(0)〉
λ(2)

. (12.74)

Hence Eq. (12.70) may be used to follow the time evolution of the excited-
state occupation probability over a few collapse-revival cycles, provided that
the mean number of photons is large enough. In this context, Eq. (12.70) may
be approximately rewritten as5

σ
(2)
22 (t) = 1

2


1 + ∑

k≥0
(−1)k cos

[
Ω(2)

eff

(
t − kτ

(2)
r
)]

exp


−
(

t − kτ
(2)
r

τ
(2)
c

)2



 ,

(12.75)

which may be regarded as an expansion with respect to the revival number k.
In Fig. 12.2 the collapse-revival behavior of the atomic excited-state occupa-
tion probability in the two-photon Jaynes–Cummings model is shown for the
case where the cavity field is initially in a coherent state |α〉, and the exact re-
sult (12.68) is compared with the approximation (12.75). Note that (apart from
the alternating sign) the revivals are almost completely due to the quasi-linear
dependence on n of the two-photon Rabi frequency, cf. Eq. (12.69).

5) The kth-order term is obtained by expanding σ
(2)
22 (t) around the kth

revival.
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12.2.3
Quantum nature of the revivals

It is worth noting that the revivals are a true quantum effect, which re-
sults from the discreteness of the photon-number states. If it is ignored
[〈n̂(0)〉→∞], the difference between neighboring Rabi frequencies is effec-
tively reduced to zero, and hence, according to Eq. (12.54), revivals cannot

occur for finite times τ
(k)
r .

To illustrate this, let us return to Eq. (12.42). When 〈n̂(0)〉
 1 the Poisso-
nian photon-number distribution can by replaced approximately by a Gauss-
ian distribution:

ρnn(0) =
〈n̂(0)〉n

n!
e−〈n̂(0)〉 � 1√

2π〈n̂(0)〉 exp
[
− (n − 〈n̂(0)〉)2

2〈n̂(0)〉
]

, (12.76)

where [recall Eq. (12.43)]

n − 〈n̂(0)〉 =
[√

n −
√
〈n̂(0)〉

][√
n +

√
〈n̂(0)〉

]
� 2
√
〈n̂(0)〉

[√
n −

√
〈n̂(0)〉

]
. (12.77)

Using Eqs (12.76) and (12.77), Eq. (12.42) takes the approximate form
(Ωn�2λ

√
n)

σ22(t) = 1
2

[
1+

∞

∑
n=0

1√
2π〈n̂(0)〉 exp

[
−2
(√

n−
√
〈n̂(0)〉

)2]
cos(2λ

√
n t)
]

,

(12.78)

which still allows for the revivals in good agreement with the exact formula.6

From inspection of Eq. (12.78) one might expect that for sufficiently large
〈n̂(0)〉 the summation over n can be performed in the sense of an integration:

σ22(t) = 1
2

[
1+
∫ ∞

0

dn√
2π〈n̂(0)〉 exp

[
−2
(√

n−
√
〈n̂(0)〉

)2]
cos(2λ

√
n t)
]
,

(12.79)

from which we obtain

σ22(t) = 1
2

[
1+
√

2
π

∫ ∞

0
dx

x√〈n̂(0)〉 exp
[
−2
(

x−
√
〈n̂(0)〉

)2]
cos(2λxt)

]

≈ 1
2

[
1+
√

2
π

∫ ∞

−∞
dx exp

[
−2
(

x −
√
〈n̂(0)〉

)2]
cos(2λxt)

]

= 1
2

[
1 + cos

(
2λ
√
〈n̂(0)〉 t

)
exp
(− 1

2 λ2t2)]; (12.80)

6) Note that Eq. (12.78) can also be handled with the help of the Pois-
son summation formula (12.56), so that Eqs (12.64) and (12.65) apply,
with a Gaussian in place of the Poissonian envelope.
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that is, we reproduce the approximate result (12.47). We can see that, if the
(discrete) photon nature of light is “smoothed” out, the revivals are indeed
lost and only the decay is preserved.

It is worth noting that during the collapse-revival cycles the quantum cor-
relations between atom and field may be changed substantially [Phoenix and
Knight (1988); Gea-Banacloche (1990)]. If the atom–field system evolving un-
der the Jaynes–Cummings Hamiltonian (12.1) [together with Eqs (12.2) and
(12.3)] is initially prepared in a pure state |Ψ(0)〉, it remains, of course, in a
pure state |Ψ(t)〉= Û(t)|Ψ(0)〉 for all times, which implies that

|Ψ(t)〉 = c(1)(t) |Ψ(1)
f (t)〉 ⊗ |Ψ(1)

a (t)〉+ c(2)(t) |Ψ(2)
f (t)〉 ⊗ |Ψ(2)

a (t)〉, (12.81)

where the subscripts a and f indicate the atomic and field states, respectively.

Using the time evolution operator Û in the form (12.22), the states |Ψ(i)
a 〉 and

|Ψ(i)
f 〉 and the coefficients c(i) (i = 1, 2) can be calculated in a straightforward

way. We therefore omit the calculations here and refer the reader to the liter-
ature [see, e. g., Phoenix and Knight (1991)]. In the general case the resulting
state |Ψ(t)〉 cannot be factored into a product of atom and field states, thus
the two subsystems develop due to the interaction into an entangled quan-
tum state (Section 8.5). Clearly, when one of the coefficients c(i) vanishes, the
atom and the field are not correlated and both subsystems are in pure states.
The calculations show that during subsequent collapses the atom and the field
may approach pure states at the times t=(2k+1)τr/2 (k=0, 1, 2, . . .), although
the approach becomes progressively less perfect. These times correspond to
half of the times between subsequent revival peaks.

12.2.4
Coherent preparation

So far we have considered atomic motion for an incoherent initial preparation.
To study effects that have their origin in a coherent initial preparation [Vogel,
Welsch and Leine (1987)], let us assume that the atom is initially prepared in a
coherent superposition of the two quantum states as follows:

σ22(0) = sin2 χ, σ11(0) = cos2 χ,

σ12(0) = 1
2 e−iϕ sin(2χ), σ21(0) = σ∗

12(0),
(12.82)

which can be achieved by pre-pumping the atom with a classical light field,
the parameters χ and ϕ being controlled respectively by the product of the
Rabi frequency and the interaction time and by the phase of the pre-pumping
field. With regard to the cavity mode, we assume that it is initially in a co-
herent state |α〉, so that the complete matrix elements of the initial cavity-field
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Fig. 12.3 Time evolution of the atomic excited-state occupation prob-
ability of an atom initially prepared in a coherent superposition of two
states interacting with a field initially prepared in a coherent state |α〉 of
mean photon number 〈n̂(0)〉=5, for χ=π/4, and ϕ− ϕα =0 and π/2.

density operator ρ̂(0)= |α〉〈α| are

ρnm(0) =
αn(α∗)m
√

n! m!
e−|α|2 =

√〈n̂(0)〉n+m
√

n! m!
ei(n−m)ϕα e−〈n̂(0)〉 (12.83)

[cf. Eq. (3.59)].
For example, let us choose χ = π/4, which is best suited, according to the

initial preparation of the atom, (12.82), to producing substantial coherence ef-
fects. Note that, in this case, both the ground and excited states of the atom are
occupied with probability one-half, and |σ12(0)| attains its maximum value of
one-half. From Eqs (12.35), (12.38) and (12.39), together with the initial condi-
tions (12.82) and (12.83), we obtain the result that

σ22(t) = σinc
22 (t) + σcoh

22 (t), (12.84)

σinc
22 (t) = 1

4

{
2 − e−n̄ +

∞

∑
n=0

〈n̂(0)〉n[n+1−〈n̂(0)〉]
(n + 1)!

e−〈n̂(0)〉 cos(Ωnt)
}

,

(12.85)

σcoh
22 (t) = 1

2 sin (ϕ − ϕα)
∞

∑
n=0

〈n̂(0)〉n

n!
e−〈n̂(0)〉

√
〈n̂(0)〉
n + 1

sin(Ωnt). (12.86)

From Eq. (12.86) the contribution of σcoh
22 (t) to σ22(t) is seen to depend sensi-

tively on the atomic initial phase ϕ relative to the phase ϕα of the initial co-
herent state |α〉, cf. Fig. 12.3. If ϕ − ϕα = (k + 1/2)π (k = 0, 1, 2, . . .), σcoh

22 (t)
contributes with maximum weight to σ22(t), whereas σcoh

22 (t) vanishes for
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ϕ−ϕα =kπ. That is, coherently prepared atoms “distinguish” sensitively be-
tween a coherent initial cavity field [ρnm(0) �=0 for n �= m] and an incoherent
initial cavity field [ρnm(0) = 0 for n �= m] which have equal photon-number
distributions ρnn(0).

12.3
Field dynamics

We have seen that the electronic-state dynamics typically consists of a collapse
of the Rabi-oscillating occupation probabilities, which is followed by a series
of revivals. Clearly, the dynamics of the electronic subsystem is unavoidably
connected with changes in the properties of the radiation-field mode.

12.3.1
Reduced density matrix

To study the time evolution of the field mode, we recall the general solution
for the atom–field density matrix given in Eq. (12.26), together with Eqs (12.22)
and (12.23). From these results we can easily derive the reduced density ma-
trix ρnm for the field mode by taking the trace with respect to the atomic de-
grees of freedom:

ρnm(t) = �1n,1m(t) + �2n,2m(t)

= U1n,1n(t − t′)[U1m,1m(t − t′)]∗�1n,1m(t′)

+ U2n,1(n+1)(t − t′)[U2m,1(m+1)(t − t′)]∗�1(n+1),1(m+1)(t′)

+ U2n,2n(t − t′)[U2m,2m(t − t′)]∗�2n,2m(t′)

+ U1n,2(n−1)(t − t′)[U1m,2(m−1)(t − t′)]∗�2(n−1),2(m−1)(t′)

+ U1n,1n(t − t′)[U1m,2(m−1)(t − t′)]∗�1n,2(m−1)(t′)

+ U2n,1(n+1)(t − t′)[U2m,2m(t − t′)]∗�1(n+1),2m(t′)

+ U2n,2n(t − t′)[U2m,1(m+1)(t − t′)]∗�2n,1(m+1)(t′)

+ U1n,2(n−1)(t − t′)[U1m,1m(t − t′)]∗�2(n−1),1m(t′), (12.87)

where the initial density-matrix elements �in,jm(t′) may again be written in
the factored form (12.34). Explicit expressions for the matrix elements of the
time-evolution operator may be taken from Eq. (12.22). Equation (12.87) then
enables us to study the time evolution of the quantum-statistical properties
of the cavity field for an arbitrary initial atomic-state preparation [Vogel and
Welsch (1989)].
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Let us consider the case where the atom is initially in the upper quantum
state [σab(t′)=δa2δb2], so that Eq. (12.87) reduces to

ρnm(t) = U2n,2n(t − t′)[U2m,2m(t − t′)]∗ρnm(t′)
+ U1n,2(n−1)(t − t′)[U1m,2(m−1)(t − t′)]∗ρn−1 m−1(t′), (12.88)

and from Eq. (12.22) we deduce the result (t′=0)

ρnm(t) = e−iω(n−m)t

×
{[

cos
( 1

2 ∆nt
)− i

δ

∆n
sin
( 1

2 ∆nt
)][

cos
( 1

2 ∆mt
)
+ i

δ

∆m
sin
( 1

2 ∆mt
)]

ρnm(0)

+
Ωn−1

∆n−1
sin
( 1

2 ∆n−1t
)Ωm−1

∆m−1
sin
( 1

2 ∆m−1t
)
ρn−1m−1(0)

}
. (12.89)

12.3.2
Photon statistics

Let us first consider the temporal evolution of the diagonal density-matrix
elements ρnn(t) determining the photon-number statistics. From Eq. (12.89)
we obtain

ρnn(t) =
[

cos2( 1
2 ∆nt

)
+
(

δ

∆n

)2

sin2( 1
2 ∆nt

)]
ρnn(0)

+
(

Ωn−1

∆n−1

)2

sin2( 1
2 ∆n−1t

)
ρn−1n−1(0), (12.90)

which in the case of exact resonance (δ=0) becomes

ρnn(t) = cos2( 1
2 Ωnt

)
ρnn(0) + sin2( 1

2 Ωn−1t
)
ρn−1 n−1(0). (12.91)

Typical examples of the photon-number distribution at various times
are shown in Figs 12.4 and 12.5. For comparison with the atomic motion
(Fig. 12.1), the atom initially prepared in the upper quantum state is assumed
to be resonantly interacting with a cavity field initially prepared in a coherent
state |α〉 of mean photon number 〈n̂(0)〉 = 5. In Fig. 12.4 the chosen times
are in the interval during which the (Rabi-oscillating) atomic excited-state
occupation probability collapses. We see that, in the beginning, the initially
prepared Poissonian photon-number distribution tends to a nonclassical, sub-
Poissonian distribution [〈[∆n̂(t)]2〉/〈n̂(t)〉<1, t >0]. In the further course of
time, particularly near the end of the collapse, the photon-number distribu-
tion becomes more and more structured and the sub-Poisson effect decreases.
The behavior of the photon-number distribution for times after the collapse
and before the first revival, is shown in Fig. 12.5. Although during this time
interval the atomic excited-state occupation probability σ22(t) is nearly con-
stant (cf. Fig. 12.1), from Fig. 12.5 the photon-number distribution is found to
change substantially. These changes, which mainly concern redistributions,
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ρnn

ρnnρnn

ρnn

nn

nn
Fig. 12.4 Time evolution of the photon-number distribution during the
collapse of the atomic excited-state occupation probability. The atom is
initially in the upper state and the initial field is in a coherent state |α〉 of
mean photon number 〈n̂(0)〉=5. The values of 〈[∆n̂(t)]2〉/〈n̂(t)〉 are
1 (λt=0), 0.717 (1), 0.887 (2) and 0.9715 (3).

ρnnρnn

ρnnρnn

n n

nn

Fig. 12.5 Time evolution of the photon-number distribution is shown
after the collapse of the atomic excited-state occupation probability and
before the first revival. The atom is initially in the upper state and the
initial field is in a coherent state |α〉 of mean photon number 〈n̂(0)〉=5.
The values of 〈[∆n̂(t)]2〉/〈n̂(t)〉 are 0.959 (λt=4), 0.953 (5), 0.949 (6)
and 0.975 (7).
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λt
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Fig. 12.6 Time evolution of leading photonic density matrix elements
ρnn(t). The atom is initially in the upper state and the initial field is in a
coherent state |α〉 of mean photon number 〈n̂(0)〉=5.

leave both the mean number of photons and the variance of the number of
photons almost constant. This is consistent with the 0.5:0.5 occupation proba-
bilities of the two atomic quantum states during the considered time interval,
which suggests that the atom gives, on average, half of its excitation energy to
the cavity field. In the case shown in Fig. 12.5 the value of the mean number
of photons is close to 5.5, according to the assumed initial value of the mean
number of photons, 〈n̂(0)〉=5. The given values of 〈[∆n̂(t)]2〉/〈n̂(t)〉 indicate
slightly sub-Poissonian radiation.

For deeper insight into the time evolution of the photon-number distribu-
tion, it may be helpful to consider the full time dependence of the leading
photonic density-matrix elements ρnn(t) [n ≈ 〈n̂(0)〉]. As can be seen from
Eq. (12.91), the time evolution of each density-matrix element ρnn is deter-
mined by a superposition of two oscillations with neighboring Rabi frequen-
cies Ωn and Ωn−1. The difference frequency may be regarded as a beat fre-
quency, provided that n is sufficiently large. In this case the motion of the
leading density-matrix elements ρnn effectively consists of Rabi oscillations
superimposed by a beating, as is illustrated in Fig. 12.6. From Eq. (12.54) the
beat period is seen to correspond to the revival time τr. Hence when the atomic
excited-state occupation probability changes only slightly, the photon-number
distribution may change substantially and vice versa, cf. Figs 12.1 and 12.6.
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12.4
The Micromaser

As previously mentioned, the Jaynes–Cummings model has been success-
fully applied to the study of the micromaser also called the single-atom Ryd-
berg maser [Meschede, Walther and Müller (1985); Rempe, Walther and Klein
(1987); Walther (1992)], in which a beam of long-living Rydberg atoms is in-
jected into a cooled, single-mode high-Q cavity at such a low rate that, at most,
one atom at a time is present inside the cavity, see the scheme in Fig. 12.7. In
order to obtain a well-defined time of interaction of the individual atoms with
the cavity field, the atomic beam is transmitted through a velocity selector be-
fore it is injected into the cavity. Further, before entering the cavity, the atoms
are pre-pumped by a laser to a highly excited Rydberg state, and the cooled
high-Q microwave cavity is tuned to resonance with a single atomic Rydberg
transition. Since the natural lifetime of a Rydberg state is very long [Haroche
(1984); Haroche and Raimond (1985)], in the time interval during which an
atom interacts with the cavity field, the atom can be regarded as a nearly un-
damped two-level system. In this way, one effectively deals with a single atom
interacting with a single cavity mode, as described by the Jaynes–Cummings
model. After the atom has passed the cavity, its state can be measured by ion-
ization, from which information on the properties of the cavity field may also
be obtained. A direct field measurement would require coupling out some
part of the cavity field, and as a consequence, the desired high quality of the
cavity would be lost.

atomic
beam

cavityvelocity
selector

laser
excitation classical

field state-selective
measurement

upper
state

lower
state

Fig. 12.7 Draft scheme of the elements of a micromaser, including
detection through state-selective field ionization. [After Wagner, Brecha,
Schenzle and Walther (1992).]
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Experiments with a two-photon Rydberg maser have also been performed
[Brune, Raimond, Goy, Davidovich and Haroche (1987)]. Since attempts are
usually made to enhance the atomic two-photon transition probability by
an intermediate level (detuned from the single-photon resonance), the two-
photon Jaynes–Cummings model as outlined in Sections 12.1 and 12.2 does
not apply directly. In this case the model of a three-level atom interacting
with a single-mode cavity field [Yoo and Eberly (1985)] seems to be more ap-
propriate.

A theory of the micromaser may be developed as follows [Filipowicz, Ja-
vanainen and Meystre (1986)]. From the scheme described, one may distin-
guish three characteristic time scales. The first is determined by the interac-
tion time τint, which corresponds to the time of flight of a single atom through
the microwave cavity. This time varies only slightly from atom to atom, be-
cause of the velocity selector employed. After the atom has left the cavity,
the field evolves freely up to the entrance into the cavity of the next atom in
the atomic beam. The corresponding time interval τfree determines the second
time scale. Because of the atom-number statistics (which are usually Poisso-
nian), this time interval may be regarded as a random variable. The require-
ment that, at most, one atom interacts with the cavity field, implies that τint
should be small compared with τfree: τint�τfree. With regard to the assumed
high-Q value of the cavity, τint should also be small compared with the life-
time τcav of a cavity photon (third time scale): τint � τfree < τcav, so that in
zeroth approximation, effects of damping of the cavity mode during the time
of flight of an individual atom through the cavity may be ignored.

Let us assume that, at time tk, the kth atom prepared in the upper quantum
state,

σab(tk) = δabδa2 , (12.92)

enters the cavity. Under the given conditions, the time evolution of the den-
sity matrix of the cavity field, ρnm(t), during the time interval tk, tk + τint
may be described within the framework of the Jaynes–Cummings model us-
ing Eq. (12.89) (δ=0):

ρnm(tk+τint) = exp[−iω(n − m)τint]
[
cos
( 1

2 Ωnτint
)

cos
( 1

2 Ωmτint
)
ρnm(tk)

+ sin
( 1

2 Ωn−1τint
)

sin
( 1

2 Ωm−1τint
)
ρn−1 m−1(tk)

]
. (12.93)

In particular, the diagonal density-matrix elements are

ρnn(tk+τint) = cos2( 1
2 Ωnτint

)
ρnn(tk) + sin2( 1

2 Ωn−1τint
)
ρn−1 n−1(tk).

(12.94)

Note that if the photonic density matrix is diagonal at time tk, it is also diago-
nal at time tk +τint, so that it is sufficient to consider only the diagonal matrix
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elements. This is the case when the initial density matrix of the cavity field is
diagonal:

ρnm(t1) = ρnn(t1)δnm , (12.95)

which typically describes the initial situation where the cavity field is in ther-
mal equilibrium (at temperature T):

ρnn(t1) = (ρth)nn =
exp
(
− h̄ω

kBT n
)

Tr
[
exp
(
− h̄ω

kBT n̂
)] . (12.96)

If τfree � τcav then ρnn(t) may be regarded as constant during the time inter-
val tk + τint, tk + τint + τfree, so that the (k + 1)th atom that enters the cavity
finds a cavity field with (diagonal) density matrix ρnn(tk+1) = ρnn(tk + τint).
In this case, Eq. (12.94) represents a recurrence relation, which may be solved
in a straightforward way to obtain the (diagonal) density-matrix elements of
the cavity field as functions of the number of atoms transmitted through the
cavity.

Let us suppose that the interaction time τint is chosen such that for a given
photon number n= p

τint = m
2π

Ωp
(12.97)

(m >0, integer). When the cavity field is initially a low-temperature thermal
field, so that ρnn(t1)≈0 for n≥ p, from inspection of Eq. (12.94) together with
Eq. (12.97) it can be seen that the photon-number states |p + l〉, l = 1, 2, 3, . . .
cannot be built up. For n= p+1, Eq. (12.94) is

ρp+1 p+1(tk + τint) = cos2( 1
2 Ωp+1τint

)
ρp+1 p+1(tk), (12.98)

which, under the initial condition that ρp+1 p+1(t1)=0, is solved by

ρp+1 p+1(t) = 0 (12.99)

for all times t. Hence for n= p+ l, l=1, 2, 3, . . . , Eq. (12.94) is solved by

ρp+l p+l(t) = 0, (12.100)

and for the maximum value of n, n= p, Eq. (12.94) takes the form

ρpp(tk + τint) = ρpp(tk) + sin2( 1
2 Ωp−1τint

)
ρp−1 p−1(tk). (12.101)

From these results one may expect that, after transmitting a sufficiently
large number of atoms through the cavity, so that the second term in
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ρnn

ρnnρnn

ρnn

nn

nn
Fig. 12.8 The photon-number statistics of a lossless micromaser for
Ω15τint =2π is shown for various numbers N of atoms transmitted
through the cavity.

Eq. (12.101) is approximately zero (and all matrix elements ρnn with n < p
are approximately zero), the cavity field tends to be in the photon-number
state |p〉.7 Typical examples of the photon-number statistics of the idealized
micromaser considered are shown in Fig. 12.8 for Ω15τint = 2π and various
values of the number N of atoms that have passed through the cavity. In this
figure the zero-temperature limit is considered, so that the initial state of the
cavity field is the vacuum state. With increasing number of atoms transmit-
ted through the cavity, the photon-number distribution is seen to be shifted
towards larger values of the number of photons. After N = 400 atoms have
passed through the cavity, the state of the field is seen to be very close to the
number state |n=15〉. When the target Fock state of the cavity field has been
reached in this manner the idealized micromaser would be trapped in this
state, which has also been called the trapping state.

Clearly, in a micromaser operating under more realistic conditions, a pure
photon-number state is hardly achievable. Cavity losses, together with the
effects of finite cavity temperature, give rise to smoothings, which lead, for
example, to violation of Eq. (12.100). However, it was possible to demon-

7) Applying Eq. (12.94) (n< p) together with (12.100) iteratively, in the
matrix elements with n< p, trigonometric functions are multiplied.
Since their absolute values are less than unity, after a sufficiently
large number of iterations (corresponding to the number of atoms
that have passed through the cavity) only the matrix element ρpp
survives.
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strate the sub-Poissonian character of the photon-number distribution of the
maser field experimentally [Rempe, Schmidt-Kaler and Walther (1990)]. Later
the parameters were significantly improved [Weidinger, Varcoe, Heerlein and
Walther (1999)]. A cavity Q factor of about 3 × 1010 could be realized, which
corresponds to an average lifetime of a photon in the cavity of 0.2 s. This
renders it possible to clearly demonstrate the signatures of trapping states in
micromaser experiments. To do this, the electronic states of the atoms have
been measured after the interaction with the cavity field. Two different ways
have been used to demonstrate the existence of trapping states. The first pos-
sibility is based on the detection of the electronic-state inversion as a function
of the interaction time τint. When the interaction time is close to the trapping-
state condition (12.97), the initially excited atoms cannot leave the cavity in
the electronic ground state, which would be accompanied by depositing more
photons to the cavity. The second possibility consists of the determination of
the variance of the emergent atoms in the lower state. For the micromaser in
the trapping state, one expects a sub-Poissonian statistics of the atoms in the
ground state, which is in agreement with experimental results.

Cavity losses must be taken into account if, for example, the time between
succeeding injections of atoms into the cavity is not small compared with
the decay time of the cavity field: τfree �/ τcav. In this case the time evolu-
tion of the density matrix of the cavity field during the time interval tk +τint,
tk +τint +τfree may be described within the framework of damping theory
(Chapters 5 and 9), by applying a quantum Langevin equation of the type
(9.151). In this case, the density-matrix elements of the cavity field obey the
following equations of motion:

ρ̇nn = w↓[(n + 1)ρn+1 n+1 − nρnn] + w↑[nρn−1 n−1 − (n + 1)ρnn] (12.102)

[cf. Eq. (5.110)], where the relaxation rates w↓ and w↑ may be represented as

w↓ = Γcav(nth + 1), w↑ = Γcav nth (12.103)

[cf. Eqs (5.88) and (5.89)]. Here, Γcav corresponds to γn in Eq. (9.152), and nth
is the mean number of excitations of a bosonic reservoir in thermal equilib-
rium. Provided that the cavity is cooled to a very low temperature (nth≈0),
Eq. (12.102) reduces to

ρ̇nn = Γcav[(n + 1)ρn+1 n+1 − nρnn]. (12.104)

The time evolution of the photon number distribution of the micromaser
field may then be calculated by iterative application of both Eq. (12.94) and
Eq. (12.102), and averaging over the ensemble of times between successive
entrances of atoms into the cavity [for details, see Filipowicz, Javanainen and
Meystre (1986); Meystre and Sargent III (1990)].
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12.5
Quantum-state preparation

In the context of the micromaser we have considered the demonstration of
trapping states, which is closely related to the realization of number states
of the cavity field, or a sub-Poissonian photon statistics. Atom–field interac-
tions in high-Q cavities are also suited for the preparation of other interesting
quantum states. In this section we will illustrate some of these possibilities by
considering the creation of entangled states of the Schrödinger-cat type and of
Einstein–Podolsky–Rosen (EPR) pairs of atoms.

12.5.1
Schrödinger-cat states

We begin with the possibilities of generating entangled quantum states of a
type of Schrödinger-cat state (8.101) [Brune, Haroche, Raimond, Davidovich
and Zagury (1992)]. In the experimental implementation by Brune, Hagley,
Dreyer, Maitre, Maali, Wunderlich, Raimond and Haroche (1996), the entan-
glement is realized between the cavity field and the electronic quantum states
of an atom passing through the cavity. A Rb atom is initially prepared in
a superposition of two (long-living) circular Rydberg states |1〉 and |2〉, by
transmitting it through a Ramsey zone8 consisting of a low-Q cavity in which
the atom undergoes a resonant π/2 pulse interaction with a microwave field.
Next, the atom enters the high-Q cavity which is tuned slightly off resonance
with respect to the atomic |1〉↔ |2〉 transition so that the atom and the field
cannot exchange energy. The cavity field is prepared by a pulsed source in a
coherent state |α〉, the mean photon number |α|2 can be varied from 1 to 10.
The atom–field coupling produces a phase shift of the field, by the single-atom
dispersion effect, which depends on the electronic state. In this manner the
phase of the coherent field in the cavity is entangled with the electronic state
of the atom after the interaction. Another low-Q Ramsey cavity is used to ap-
ply again a π/2 pulse and subsequently the atoms are counted in the states
|1〉 and |2〉 by two field ionization detectors. The two low-Q Ramsey cavities
are fed by the same source whose frequency is swept across the atomic transi-
tion frequency. The measured signal is the probability of finding the atom in
state |1〉 as a function of the frequency of the source.

Let us consider the preparation of the Schrödinger-cat state in more detail.
For this purpose we need the unitary time evolution operator (12.22) in the
limit of large detuning, δ
Ωn. Taking into account the leading terms therein,
we arrive at

Û(t) = exp
(
− i

h̄
Ĥ0t
)

Ûint(t), (12.105)

8) See Ramsey (1985).
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where the interaction part of the time evolution operator reads as

Ûint(t) = exp
(

i
λ2

δ
n̂t
)
|1〉〈1|+ exp

(
−i

λ2

δ
(n̂ + 1)t

)
|2〉〈2|. (12.106)

The initial preparation of the atom–field system is described by the quantum
state

|Ψ(0)〉 = 1√
2
(|1〉+ |2〉)|α〉. (12.107)

Due to the effect of the dispersive interaction the resulting time-evolved state
in the interaction picture, |Ψ(t)〉=Ûint(t)|Ψ(0)〉, is of the form

|Ψ(0)〉 = 1√
2

(∣∣1〉|αeiΦ〉+ e−iΦ|2〉∣∣αe−iΦ〉). (12.108)

The phase shift caused by the dispersive interaction is given by

Φ =
λ2

δ
t. (12.109)

The resulting state |Ψ(t)〉 is clearly entangled, the phases of the coherent states
being different in the two electronic states. It can be interpreted in the spirit
of Schrödinger’s Gedanken experiment (Section 8.5), where the two coher-
ent states in Eq. (12.108) replace – on a mesoscopic rather than a macroscopic
level – the states of the cat being dead and alive in Eq. (8.101).

12.5.2
Einstein–Podolsky–Rosen pairs of atoms

Another interesting possibility consists of the use of the cavity for preparing
an entangled state of two atoms, an Einstein–Podolsky–Rosen pair of atoms
[Hagley, Maitre, Nogues, Wunderlich, Brune, Raimond and Haroche (1997)].
The two spatially separated atoms enter the cavity successively. Now the cav-
ity is tuned on resonance with the atomic transition. Initially the system is
prepared in the uncorrelated state

|Ψ(0)〉 = |2〉1|1〉2|0〉. (12.110)

The first atom enters the initially empty cavity (state |0〉) in the excited
state |2〉1 and the second atom enters the cavity in the ground state, |1〉2.
Let us consider the effect of the interaction of the first atom on the quantum
state in the interaction picture. For exact resonance, the interaction part of the
unitary evolution operator (12.22) reads as

Ûint(t) = |1, 0〉〈1, 0|+
∞

∑
n=0

[
cos
( 1

2 Ωnt
)
(|1, n + 1〉〈1, n + 1|+ |2, n〉〈2, n|)

+ i sin
( 1

2 Ωnt
)
(|1, n + 1〉〈2, n|+ |2, n〉〈1, n + 1|)]. (12.111)
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Applying this evolution to the interaction between the first atom and the cav-
ity field for an interaction time t1 obeying the condition Ω0t1 =π/2, the state
vector is given by

|Ψ(t1)〉 = 1√
2
(|2〉1|1〉2|0〉 + i|1〉1|1〉2|1〉). (12.112)

It represents a superposition of atom 1 leaving the empty cavity in the excited
state and depositing a photon in the cavity and being in the ground state. In
any case, atom 2 is in the ground state.

Now the second atom interacts with the cavity for an interaction time
t2 =2t1. It can either absorb a photon from the cavity and leaves the cavity
in the excited state or it remains in the ground state when the cavity is empty.
The state at the time τ > t1 + t2 at which the two interactions are completed,
resulting from the action of the unitary evolution operator on the state |Ψ(t1)〉,
is given by

|Ψ(τ)〉 = 1√
2
(|2〉1|1〉2 − |1〉1|2〉2)|0〉. (12.113)

The result of these two interactions consists of a quantum state in which the
cavity is empty and decorrelated from the atoms. The atoms, however, leave
the cavity in the maximally entangled EPR state

|ΨEPR〉 = 1√
2
(|2〉1|1〉2 − |1〉1|2〉2). (12.114)

The entangled atoms prepared in the experiments are spatially separated by
distances of the order of centimeters.

It is worth noting that the method of preparing EPR pairs of atoms can be
extended to create entanglement between more than two atoms. Experiments
of this type have also been performed [Rauschenbeutel. Nogues, Osnaghi,
Bertet, Brune, Raimond and Haroche (2000)].

12.6
Measurements of the cavity field

Unfortunately, a high-Q cavity field cannot be detected directly. First, any
coupling out of photons would decrease the Q value of the cavity. Second,
the quantum statistical properties of the output field from a cavity may signif-
icantly differ from those of the internal field, cf. also Section 9. Thus to gain
insight into the properties of the intra-cavity field one needs indirect meth-
ods. For this purpose, appropriately prepared atoms are transmitted through
the cavity and their electronic quantum states are measured by state-sensitive
ionization. By using a Ramsey zone in front of the high-Q cavity and a second
one between the cavity and the detector, one may prepare and analyze coher-
ent superpositions of electronic states. In the following we will describe some
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measurements schemes and consider methods that allow one to obtain insight
into the full information on the quantum state of the cavity field.

12.6.1
Quantum state endoscopy

Let us consider a two-level (test) atom that resonantly interacts with the cavity
field mode according to the Jaynes–Cummings Hamiltonian (12.3). The atom
is initially prepared in an electronic superposition state, |±〉=(|1〉±e−iψ|2〉)/

√
2,

and the occupation of the excited electronic state after the interaction with the
field is measured by state-selective ionization. Repeating the procedure by us-
ing a sequence of equally prepared atoms and equal preparation of the cavity
mode, one obtains the occupation probabilities P±

2 (t) of the electronic state |2〉
as functions of the interaction time t. Performing these measurements with
two different initial preparations of the atoms in the states |±〉, the recorded
difference signal is of the form [Vogel, Welsch and Leine (1987)]

P+
2 (t)− P−

2 (t) = 2
∞

∑
n=0

an sin(Ωnt), (12.115)

where

an =
eiψ

2i
ρn n+1 + c.c.. (12.116)

The off-diagonal density-matrix elements ρn n+1 can be directly obtained from
the coefficients an for two phases ψ, such as ψ = 0 and ψ = π/2. Provided
that the interaction time t can be varied in a sufficiently large interval (0, T),
the Fourier transform of P+

2 (t)−P−
1 (t) consists of sharp peaks, whose values

yield the sought coefficients an as9

an =
2
T

∫ T

0
dt sin(Ωnt)[P+

2 (t)− P−
2 (t)] (12.117)

(T→∞). To measure the diagonal density-matrix elements ρnn, it is sufficient
to prepare the atom in the excited state, P2(t)|t=0 =1, and observe the atomic-
state inversion ∆P=P2−P1 =2P2−1,

∆P(t) =
∞

∑
n=0

ρnn cos(Ωnt). (12.118)

The photon statistics of the intra-cavity field, ρnn, can be obtained by Fourier
transforming the recorded data ∆P(t).

9) If T is not large enough, then the peaks in the Fourier integral con-
tain non-negligible contributions of the tails of the corresponding
sinc functions. In this case the coefficients an can be calculated from
a set of linear equations obtained from Eq. (12.115) for different
times.
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The described method directly yields insight in the photon statistics of the
cavity field and in the off-diagonal density matrix elements ρn n+1 of the field
density matrix. In general, the full information on the quantum state would
additionally require the elements �n n+k for k>1. One can overcome the lack
of information in special cases where the quantum state of the cavity field is
a priori known to be a pure state, |ψ〉= ∑n cn|n〉, such that �mn is given by
�mn =cmc∗n with cmc∗m+1 �= 0 ∀m.10 If this condition is fulfilled the determi-
nation of the coefficients an in Eq. (12.116) renders it possible to determine
the expansion coefficients cn of the pure quantum state, the corresponding
method has been called quantum state endoscopy [Bardroff, Mayr and Schle-
ich (1995); Bardroff, Mayr, Schleich, Domokos, Brune, Raimond and Haroche
(1996)]. In this case, Eq. (12.115) [together with Eq. (12.116)] can be taken at a
sufficiently large number of time points (and at least at two phases) in order
to obtain, after truncating the state at a sufficiently large photon number nmax,
a system of equations for the expansion coefficients cm, which can be solved
numerically.

Important parts of the described technique have already been realized in
experiments. In particular, precise measurements of the electronic-state occu-
pations as a function of the time of flight of the atom through the cavity have
been performed [Brune, Schmidt-Kaler, Maali, Dreyer, Hagley, Raimond and
Haroche (1996)], the corresponding atomic-state inversion being of the type as
given in Eq. (12.118). It has been demonstrated that the measured data may
indeed be Fourier-analyzed in order to determine the photon number distri-
bution.

12.6.2
QND measurement of the photon number

Another method of measuring the photon-number statistics is based on a
quantum-nondemolition (QND) approach [Brune, Haroche, Lefevre, Rai-
mond and Zagury (1990); Brune, Haroche, Raimond, Davidovich and Zagury
(1992)]. This can be realized by using three-level Rydberg atoms with states
|a〉, a = 0, 1, 2 (with E2 > E1 > E0). The transition |1〉↔ |2〉 is coupled to the
cavity field and the auxiliary |0〉↔|1〉 transition is far off resonance and does
not affect the cavity field. Moreover, the cavity mode is sufficiently detuned
from the electronic transition frequency ω21, so that the atom–field interaction
is of the dispersive type given in Eq. (12.106). Consequently, the interaction in-
troduces a phase shift of the electronic state |1〉 relative to |0〉, which depends
on the number of photons in the cavity. This phase shift can be measure by

10) If cmc∗m+1 is zero for some values of m, one may coherently displace
the quantum state to be determined in order to obtain the expansion
coefficient of the displaced state and finally one can transform back
to the original quantum-state coefficients.
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a Ramsey technique. It consists of coherent manipulations of the auxiliary
transition |0〉↔|1〉 before and after the interaction of the atom with the cavity
field together with a subsequent state-selective ionization. The interference
fringes observed in this manner, by using a velocity selected atom beam, de-
pend on the photon-number statistics of the cavity field and the latter can be
determined from the measured data.11

The method can be more easily realized experimentally when it is used for
detecting the presence of a single photon in the cavity. In this case one may
replace the (weak) dispersive atom–field coupling of the |1〉↔ |2〉 transition
with the (stronger) resonant one. Let us consider the situation for the atom
initially prepared in the lower state and the cavity containing one photon,
|1, 1〉. In this case the resonant interaction according to Eq. (12.111) represents
a coherent oscillation,

Ûint(t)|1, 1〉 = cos
( 1

2 Ω0t
)|1, 1〉+ i sin

( 1
2 Ω0t

)|2, 0〉, (12.119)

between the initial state and the atom being in the upper state, with the cavity
being in the vacuum state, |2, 0〉. By fixing the interaction time according to
τ = 2π/Ω0, the atom leaves the cavity in the ground state and the photon
remains in the cavity. However, Eq. (12.119) reveals that the phase of the state
undergoes a shift by π

Ûint(τ)|1, 1〉 = eiπ |1, 1〉. (12.120)

On the other hand, when the atom is initially in the ground state and the
field in the vacuum state, |1, 0〉, the resonant interaction leaves the initial state
unchanged. The phase shift caused by the presence of a photon in the cav-
ity is again observed by using the auxiliary |0〉↔ |1〉 transition in a Ramsey-
type ionization measurement. This resonant interaction scheme has been ex-
perimentally realized and it has been possible to see a single photon inside
a high-Q cavity without destroying it [Nogues, Rauschenbeutel, Osnaghi,
Brune, Raimond and Haroche (1999)].

12.6.3

Determining arbitrary quantum states

To determine arbitrary quantum states, a two-mode nonlinear atomic homo-
dyne detection scheme could be used [Wilkens and Meystre (1993)], in which
the signal cavity mode is mixed with a local-oscillator cavity mode according

11) This method of measuring the photon number statistics could also
be extended in order to determine the quantum state of the cavity
field in terms of the Wigner function. This requires one to coherently
displace the intra-cavity field before detecting the photon number
statistics; see Section 12.6.3.
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to the interaction Hamiltonian

Ĥint = h̄κ[σ̂+(â + âL) + (â† + â†
L)σ̂−]. (12.121)

Let assume that the local oscillator mode can be treated classically so that one
may replace the operator âL by a c number αL, âL 	→ αL. This corresponds to
a coherent displacement of the initial state of the cavity mode. In particular,
when |αL| is sufficiently large, then the atomic-state inversion ∆P(t) after the
interaction can be rewritten as

∆P(t) = 1
2

[
ei2κt|αL|Φ

(
ieiϕLκt

)
+ c.c.

]
. (12.122)

For |αL|→∞ the atomic occupation probabilities P2(1)(t) can be directly related
to the characteristic function Φ(β) of the Wigner function W(β) of the cavity
mode. Varying the interaction time and the phase ϕL of αL, the whole function
Φ(β) can be scanned, in principle. Knowing Φ(β), the Wigner function can
then be obtained by Fourier transformation. The scheme was also analyzed by
taking into account the quantized nature of the local oscillator. It was found
that the classical treatment of the local oscillator restricts the time scale to times
less than a vacuum Rabi period [Zaugg, Wilkens and Meystre (1993); Dutra,
Knight and Moya-Cessa (1993)].

To avoid this problem of the two-mode-scheme, one can also coherently
displace the quantum state of the cavity field before performing the measure-
ments. Thus the initial state of the cavity field ρ̂ is replaced by D̂†(α)ρ̂D̂(α).
The Jaynes–Cummings interaction with the (single-mode) cavity field, in place
of Eq. (12.118), now yields for the electronic-state inversion

∆P(t) =
∞

∑
n=0

ρnn(−α) cos(Ωnt), (12.123)

where ρnn(−α)=〈n|D̂†(α)ρ̂D̂(α)|n〉. The displaced diagonal matrix elements
ρnn(−α) can again be obtained from ∆P(t) by Fourier transformation and
from ρnn(−α) the quantum state of the cavity mode can be obtained by apply-
ing the methods described in Section 7.3.2. Alternatively, the quantum state
can also be reconstructed when the interaction time is left fixed and α= |α|eiϕ

is varied [Bodendorf, Antensberger, Kim and Walther (1998)].
It is interesting that one can even perform a direct measurement of the

Wigner function of the cavity field [Lutterbach and Davidovich (1997)].
A velocity-selected atomic beam interacts resonantly with two Ramsey zones
placed in front of and behind the high-Q cavity. The frequency of the high-Q
cavity is sufficiently detuned from the atomic resonance in order to avoid
electronic transitions, the corresponding time evolution operator is given
in Eq. (12.106). By applying a microwave generator to the cavity, the field
density operator ρ̂ of interest is coherently displaced, ρ̂ 	→ D̂†(α)ρ̂D̂(α). After
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preparing a superposition of the two electronic states in the first Ramsey zone,
during the transmission of the atoms through the displaced cavity field they
undergo phase shifts depending on the electronic states and the intra-cavity
photon statistics. In the second Ramsey zone the electronic states are again
transformed coherently. Eventually, electronic-state sensitive ionization can
be used to determine the electronic-state inversion. By appropriately fixing
the phases in the Ramsey zones and the interaction time of the atoms in the
cavity, the inversion is given by

∆P = Tr [D̂†(α)ρ̂D̂(α)(−1)n̂] = 1
2 πW(α). (12.124)

In this manner the measured electronic inversion directly represents the
Wigner function of the quantum state of the cavity field in a phase-space
point that is chosen by the coherent displacement of the field.
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13
Laser-driven quantized motion of a trapped atom

In many cases of atom–radiation interaction processes the atomic positions
can be considered as classically controllable parameters. However, there are
also cases where their center-of-mass motion must be treated quantum me-
chanically. Due to absorption and emission of photons an atom undergoes
kicks and thus its motional quantum state is changed by the corresponding
momentum transfers onto the atom. These quantum mechanical effects in
the interaction of atoms and light can be discarded, if the temperature is too
high for their observation. As an example one may estimate the de Broglie
wavelength, λ= h̄/mv, for atoms of mass m propagating with thermal veloc-
ity v=(3kBT/m)1/2. For H atoms at room temperature the resulting λ value is
smaller than the atomic Bohr radius. Consequently, the observation of quan-
tum effects of atomic motion requires a regime of extremely low tempera-
tures, which nowadays can be achieved by methods of laser cooling. This
has opened exciting new developments in modern physics and new areas of
research have been established, such as the field of atom optics.

Among the manifold studies on the quantized motion of ultra-cold atoms
we will consider the laser-induced dynamics of a single ion in a Paul trap.
Since trapping and observation of a single ion became possible [Neuhauser,
Hohenstatt, Toschek and Dehmelt (1980)], the further development of the ex-
perimental techniques has created interesting possibilities for preparing and
measuring quantum states [see, e. g., Monroe, Meekhof, King and Wineland
(1996); Leibfried, Meekhof, King, Monroe, Itano and Wineland (1996)]. The
phenomena under consideration show some resemblance to those studied in
the preceding chapter for the interaction of a single atom with a quantized
cavity field, as the quantized center-of-mass motion of an atom in a trap po-
tential can play a similar role to the cavity field before. However, the laser-
induced coupling of electronic and motional degrees of freedom of a trapped
atom will exhibit new types of nonlinear effect, which have no counterpart in
the interaction of an atom with photons in a cavity.
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13.1
Quantized motion of an ion in a Paul trap

To give an example of a trap, let us consider a quadrupole trap, also known
as a Paul trap [Paul, Osberghaus and Fischer (1958)], which is suitable for
studying the interaction of a single trapped ion with light. It typically con-
sists of a ring electrode and two end-cap electrodes as shown in Fig. 13.1.
Between the ring and end-cap electrodes a direct-current (dc) voltage and
a radio-frequency (rf) voltage of frequency ωrf are applied so that an ion of
charge Q in the center of the trap experiences the time dependent potential1

V(x1, x2, x3, t) = Q[Q11(t)x2
1 + Q22(t)x2

2 + Q33(t)x2
3]. (13.1)

The diagonal elements Qkk(t) of the traceless quadrupole tensor,

3

∑
k=1

Qkk(t) = 0, (13.2)

are given as

Qkk(t) = Qkk[ξdc + ξrf cos(ωrft)], (13.3)

with ξdc and ξrf being the contributions to the potential due to the dc and rf
voltage, respectively. It is noteworthy that static trapping of a charged particle
in a three-dimensional quadrupole field is impossible due to the validity of
Eq. (13.2), which is a direct consequence of the Laplace equation for the scalar
potential.

The nonrelativistic equations of the center-of-mass motion for an atom in a
time-dependent potential of the type (13.1) are obtained in the form of three
decoupled differential equations of the Mathieu type,

ẍk +
2QQkk

m
[ξdc + ξrf cos(ωrft)]xk = 0. (13.4)

The Mathieu equation has stable and unstable solutions depending on the pa-
rameters ξdc and ξrf [for stability diagrams see, e. g., Ghosh (1995)]. For a sta-
ble solution, the motion described by Eq. (13.4) consists of an oscillation with
the frequency ωrf, which is called micromotion, and a usually much slower os-
cillation with secular frequencies νk. Due to the different time scales of these
oscillations the micromotion can be neglected in an equation of motion that is
averaged over a period of the rf frequency. The resulting averaged equation
of motion then describes only the harmonic, secular motion, and the effective
potential reads

V(x1, x2, x3) =
3

∑
k=1

1
2 mν2

k x2
k , (13.5)

1) For simplicity we assume that the principal axes xk (k=1, 2, 3) of the
trap correspond to the Cartesian coordinates.
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x1

x3

Fig. 13.1 Draft scheme of a Paul trap: Between the end-cap and ring
electrodes dc and rf voltages are applied.

where the frequencies νk of the secular motion are given by

νk =

√
2
[(

QQkkξrf

mωrf

)2

− QQkkξdc

m

]
. (13.6)

Stable solutions are obtained for ξdc�ξrf, so that the dc term in Eq. (13.6) can
be ignored. Therefore, due to Eq. (13.2) the frequencies fulfill the condition

ν3 = ν1 + ν2 (13.7)

in the typical case when |Q33|=|Q11+Q22|. Moreover, in the case of rotational
symmetry of the trap with respect to the x3 axis two frequencies become equal,
ν1 =ν2.

The quantization of the motion of an atom in the (effective) potential (13.5)
is straightforward. The canonical (center-of-mass) positions and momenta, xk
and pk, are replaced by the corresponding Hermitian operators, x̂k and p̂k,
respectively, which obey the familiar commutation relations

[x̂k, p̂k′ ] = ih̄δkk′ , [x̂k, x̂k′ ] = [ p̂k, p̂k′ ] = 0. (13.8)

Annihilation and creation operators of vibrational quanta, âk and â†
k , can be

introduced in the usual way,

r̂ =
3

∑
k=1

∆xk ek(â†
k + âk), p̂ =

3

∑
k=1

i∆pk ek(â†
k − âk), (13.9)

where ek are the unit vectors in the directions of the principal axes of the trap,
and the widths of the ground-state wave functions, ∆xk and ∆pk, in position
and momentum basis, respectively, are given by

∆xk =

√
h̄

2mνk
, ∆pk =

√
h̄mνk

2
. (13.10)
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The Hamiltonian of the free motion of the atomic center-of-mass in the ef-
fective potential then results in the standard form of the three-dimensional
harmonic oscillator:

Ĥcm =
3

∑
k=1

h̄νk
(
â†

k âk + 1
2

)
. (13.11)

13.2
Interaction of a moving atom with light

The quantization of atoms interacting with light has been introduced in Sec-
tion 2.3. We start from the minimal-coupling Hamiltonian for a hydrogen-type
ion, with Qn (Qe) and mn (me), respectively, being the charge and the mass of
the nucleus (electron). With respect to the resonant interactions considered in
the following, we may disregard the Â2 term in Eq. (2.121) (for details, see
Section 2.5) and write

Ĥint = − ∑
a=n,e

Qa

ma
p̂aÂ(r̂a). (13.12)

In order to distinguish between interactions that rely on electronic transitions
and those that act directly on the center-of-mass of the atom, we introduce the
center-of-mass coordinate and momentum,

r̂ =
mer̂e + mnr̂n

m
, p̂ = p̂e + p̂n , (13.13)

and the relative coordinate and momentum,

r̂rel = r̂e − r̂n, p̂rel =
mnp̂e − mep̂n

m
, (13.14)

where m=mn +me is the total mass of the atom. Clearly, the usual commuta-
tion relations hold for these pairs of canonical coordinates, and the center-of-
mass and relative coordinates commute.

With the help of center-of-mass and relative coordinates the Hamilton-
ian (13.12) can be rewritten as a sum of two terms,

Ĥint = Ĥ(cm)
int + Ĥ(el)

int , (13.15)

where the Hamiltonian Ĥ(cm)
int contains only the center-of-mass momentum,

Ĥ(cm)
int = −Qn

m
p̂Â(r̂n)− Qe

m
p̂Â(r̂e), (13.16)

whereas Ĥ(el)
int contains the relative momentum,

Ĥ(el)
int =

Qn

mn
p̂relÂ(r̂n)− Qe

me
p̂relÂ(r̂e). (13.17)
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The two terms, Eq. (13.16) and (13.17), are responsible for different types of
interactions of the atom with radiation. Whereas the former describes the in-
teraction of the charged center-of-mass of the atom with radiation, the latter
describes the internal, electronic transitions that are typically induced by (op-
tical) radiation.

13.2.1
Radio-frequency radiation

Let us first consider the interaction Hamiltonian (13.16). Since an ion has
a nonvanishing total charge of Q = Qn + Qe, its center-of-mass motion in
the trapping potential can be resonantly driven by use of radio-frequency
fields with frequencies of the order of the vibrational trap frequencies, i. e.,
10–100 MHz. The wavelength of such a radio-frequency field is typically very
large compared with the spatial extension of the atomic center-of-mass wave
function in the trap potential. Therefore, the spatial dependence of the vector
potential in Eq. (13.16) can be neglected altogether and we obtain

Ĥ(cm)
int = −Q

m
p̂Â, (13.18)

where Â≡ Â(0) is the vector potential taken at the origin of the trap potential.
Performing a rotating-wave approximation (cf. Section 2.5.2) with respect to
the vibrational frequencies νk, we arrive at

Ĥ(cm)
int = −

3

∑
k=1

dkÊ(+)â†
k + H.c.. (13.19)

Here the positive-frequency part Ê(+) of the electric-field strength of the rf
field is typically considered as a classical field, Ê(+) �→ E(+)(t). The direct
coupling of the field to a trapped ion appears in the form of a dipole interac-
tion. The effective electric dipole moment of the ion in the vibrational ground
state is defined by

dk = Q∆xkek . (13.20)

It is the electric dipole moment produced by the vibrational ground-state fluc-
tuations of the ion. It is noteworthy that the corresponding unitary time evolu-
tion governed by the Hamiltonian (13.19) may represent a coherent displace-
ment of the atomic center-of-mass wave packet, provided that a monochro-
matic microwave field is used and tuned on resonance with the motional fre-
quency under consideration.

Clearly, such a dipole-type coupling to radiation in the radio-frequency
regime will also lead to a damping of the vibrational motion by spontaneous
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emission of quanta of radio-frequency radiation. However, the characteristic
damping rate corresponding to this process,

Γ(cm)
k =

ν3
k d2

k
3h̄πc3ε0

=
ν2

k Q2

6πmc3ε0
(13.21)

[Eq. (10.29) together with Eqs (13.20) and (13.10)], is negligibly small for such
frequencies.

13.2.2
Optical radiation

The interaction of an atom with optical radiation is described by (the second
part of) the interaction Hamiltonian (13.17). Using a traveling-mode expan-
sion of the vector potential according to Eq. (2.87),

Â(r̂a) = ∑
l,σ

Al,σ(r̂a)b̂l,σ + H.c., (13.22)

with b̂l,σ being the photon annihilation operators and the mode functions
given by

Al,σ(r̂a) =

√
h̄

2ε0cklV el,σeikl r̂a , (13.23)

we may rewrite the interaction Hamiltonian (13.17) in the form

Ĥ(el)
int = ∑

l,σ
Al,σ(r̂)M̂l b̂l,σ + H.c.. (13.24)

Here the (vector) operators M̂l are defined by

M̂l =
[

Qn

mn
exp

(
−ikl r̂rel

me

m

)
− Qe

me
exp

(
ikl r̂rel

mn

m

)]
p̂rel. (13.25)

Representing the interaction Hamiltonian (13.24) in the basis of the internal
(electronic) energy eigenstates |i〉 of the trapped atom yields (Âij = |i〉〈j|)

Ĥ(el)
int = ∑

ij
∑
l,σ

Al,σ(r̂)〈i|M̂l |j〉Âijb̂l,σ + H.c.. (13.26)

Clearly, Eq. (13.26) also holds for neutral atoms that are magneto-optically
trapped.

In the electric-dipole approximation the exponential operators in Eq. (13.25)
can be set equal to unity, leading to the familiar result

〈i|M̂l |j〉 = −iωij〈i|d̂|j〉 (13.27)
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(cf. Section 2.5.1), where ωij =ωi−ωj is the transition frequency between the
electronic states |i〉 and |j〉. In particular, for classically describable laser radi-
ation which is near resonant to an electronic transition |1〉 ↔ |2〉 and whose
electric field has a positive-frequency amplitude E(+)

L (t) and wave vector kL

[that is, Ê(+)(r̂) �→ E(+)
L (t)eikLr̂], the interaction Hamiltonian (13.26) then re-

duces, in rotating-wave approximation with respect to the electronic transi-
tion, to the familiar dipole coupling term

Ĥ(el)
int = −d21E(+)

L (t)eikLr̂Â21 + H.c., (13.28)

where d21 is the projection of the electric-dipole matrix element in the direc-
tion of the electric-field amplitude, and the exponentials eikLr̂ are responsi-
ble for the momentum recoil of the atom during absorption and emission of
photons of momentum h̄kL. Note that the basic structure of the interaction
Hamiltonian also holds for electric-dipole forbidden transitions, such as mag-
netic dipole or electric quadrupole transitions or other multipole transition.
Then only the electric dipole moment has to be replaced by the appropriate
expression for the type of transition under consideration.

13.3
Dynamics in the resolved sideband regime

For the realization of resonant interactions of a single trapped atom with laser
fields, the so-called resolved sideband regime is required – a regime able to
resolve the energy levels of the vibrational levels of the trapped atom. Besides
laser-induced electronic transitions, vibronic transitions, that is, transitions of
both the vibrational and electronic states, and pure vibrational transitions can
also occur, as will be shown in the following.

13.3.1
Nonlinear Jaynes–Cummings model

The interaction Hamiltonian (13.26) describes rather complex coupling effects
of quantized light, quantized atomic motion and electronic states, in general.
When the atom is driven by a strong, quasi-monochromatic laser field, then
the interaction Hamiltonian can be further simplified. First, the field opera-
tors can be replaced by c-numbers, as done when arriving at the Hamilton-
ian (13.28). Second, if the laser linewidth is small enough, one may address
individual vibronic transitions. Such interactions in the resolved (vibrational)
sideband regime allow one to further simplify the Hamiltonian by performing
a vibrational rotation-wave approximation, resulting in a nonlinear Jaynes–
Cummings model [Vogel and de Matos Filho (1995)]. It provides an exactly
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solvable model for various types of vibronic interaction in a strongly nonlin-
ear regime. In particular, in the Lamb–Dicke limit, when the quantized atomic
motion is only weakly affected by momentum transfer due to the emission and
absorption of photons, the model reduces to the standard Jaynes–Cummings
model [Blockley, Walls and Risken (1992)] used in Chapter 12 to describe the
atom–field interaction in a cavity.

Let us consider the resonant interaction of an electronic transition of the
trapped atom with a strong laser and focus on the electric-dipole approxima-
tion. In this case the Hamiltonian reads

Ĥ = Ĥ0 + Ĥint , (13.29)

where Ĥ0 describes the free internal (electronic) and external (center-of-mass)
motion according to Eq. (13.11), and Ĥint ≡ Ĥ(el)

int , with Ĥ(el)
int being given by

Eq. (13.28). The laser field is assumed to be monochromatic and its frequency
ωL is quasi-resonant with the transition frequency ω21 of the electronic transi-
tion |1〉 ↔ |2〉, i. e., ωL≈ω21. We further assume that the wave vector kL of the
driving laser has only a component along one principal axis of the trap, say the
x axis, so that only one motional degree of freedom appears in the interaction
Hamiltonian. In this case the interaction Hamiltonian simplifies to3

Ĥint = κÂ21ELe−iωLt ĝ(x̂) + H.c., (13.30)

where κ=−d21 and

ĝ(x̂) = eikLx̂. (13.31)

For a harmonic trap potential, the position operator x̂ can be expressed, ac-
cording to Eqs (13.9) and (13.10), in terms of the annihilation and creation
operators in the x direction, â and â† respectively, as

kLx̂ = η(â + â†), (13.32)

where the Lamb–Dicke parameter

η = kL∆x =
h̄kL

∆p
(13.33)

is a measure of the spread in position, ∆x, of the center-of-mass wave function
of the atom in the ground state of the trap potential relative to the wavelength

3) Note that this interaction Hamiltonian
can also be used to describe the Raman
excitation of an electric-dipole-forbidden
electronic transition [Toschek (1985); Lind-
berg and Javanainen (1986); Heinzen and
Wineland (1990)]. In this case κ is the Ra-

man coupling strength, the field EL is
replaced by the product E1E∗

2 of the com-
plex amplitudes of the two Raman lasers,
and ωL and kL are the frequency and wave
number, respectively, of the beat node of
the two lasers.
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λL = 2π/kL of the driving laser. Alternatively, η can be viewed as the ratio of
the photon momentum to the spread ∆p of the atomic momentum distribution
in the motional ground state. That is, in the Lamb–Dicke regime, where η is
small, the effect of the momentum transfer on the atomic wave packet due to
absorption or emission of a single photon is also small. By using the Baker–
Campbell–Hausdorff formula (C.27) we may rewrite Eq. (13.31), together with
Eq. (13.32), in the form

ĝ(x̂) = e−η2/2eiη â†
eiη â = e−η2/2

∞

∑
l,m=0

(iη)l+m

l!m!
â†l âm. (13.34)

Inserting this result into Eq. (13.30) and transforming to the interaction pic-
ture, ˆ̃Hint =Û†

0 (t)ĤintÛ0(t), yields

ˆ̃Hint = 1
2 h̄ΩL Â21e−η2/2

∞

∑
l,m=0

(iη)l+m

l!m!
â†l âme−i[ωL−ω21+(m−l)ν]t + H.c., (13.35)

where Û0(t) = exp(−iĤ0t/h̄), and ΩL =2κEL/h̄ describes the interaction of
the laser with the electronic transition |1〉 ↔ |2〉.3

The interaction Hamiltonian (13.35) consists of a variety of contributions,
which oscillate at multiples of the vibrational frequency ν. Let us now assume
that the laser is resonant with the kth vibrational sideband,

ωL = ω21 − kν, (13.36)

and we are in the resolved sideband regime, ν �ΩL, Γ, with Γ being a rep-
resentative measure of the linewidths of the vibronic transitions which result
from the natural linewidths and the linewidth of the irradiating laser. This
condition implies that one can address a series of vibronic transitions of equal
transition frequencies, in the chosen case the |1, n〉 ↔ |2, n−k〉 transitions, in-
dependently of all other transitions. Consequently, in the resolved-sideband
regime one can perform a vibrational rotating-wave approximation by ne-
glecting, in the interaction Hamiltonian, all those terms oscillating with the
vibrational frequency ν and multiples of it. Thus we obtain from Eq. (13.35),
by use of the condition (13.36) and choosing k ≥ 0, the approximate interac-
tion Hamiltonian

ˆ̃Hint = 1
2 h̄ΩL Â21 f̂k(n̂; η) âk + H.c., (13.37)

where the operator-valued function f̂k(n̂; η) reads

f̂k(n̂; η) = e−η2/2
∞

∑
l=0

(iη)2l+k

l!(l + k)!
: n̂l : . (13.38)

3) Note that |ΩL| corresponds to the Rabi frequency ΩR as defined by
Eq. (11.25).
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The interaction Hamiltonian (13.37) [together with Eq. (13.38)] represents a
nonlinear k-quantum Jaynes–Cummings model [Vogel and de Matos Filho
(1995)]. Since it describes the mutual coupling of a closed set of vibronic
states allowing for transitions |1, n〉 ↔ |2, n−k〉, it can be exactly diagonal-
ized in a similar way to the multi-photon Jaynes–Cummings model [see Sec-
tion 12.1, Eqs (12.27)–(12.32)]. Whereas in cavity QED the model describes
the emissions and absorptions of photons due to electronic transitions, here
it describes emission and absorption of k vibrational quanta when the atom
undergoes electronic transitions.

Besides describing multi-quantum emissions/absorptions, the nonlinear k-
quantum Jaynes–Cummings model depends in a nonlinear manner on the
vibrational excitation. Clearly, in order to observe the nonlinear effects, the
Lamb–Dicke parameter must not be too small. Let us consider a situation
where the Lamb–Dicke parameter is large enough so that the spatial extension
of the motional wave function is not small compared with the wavelength of
the driving laser field. For sufficiently large motional quantum numbers the
(rather extended) motional wave function therefore overlaps with a substan-
tially large fraction of the wavelength of the laser wave and it may simultane-
ously experience the positive and negative values of the electric field strength.
As a consequence, the Jaynes–Cummings-type interaction may, for appropri-
ately chosen vibrational excitations of the atom in the trap potential, effec-
tively average to zero. This behavior periodically occurs as a function of the
motional quantum number of the atom.

So far we have used the resonance condition (13.36) for the case k≥0, which
includes the irradiation of the carrier on the kth red sideband. For tuning the
laser at resonance with the kth blue sideband, k < 0, the interaction Hamil-
tonian (13.35) together with the resonance condition (13.36) in the vibrational
rotating-wave approximation leads to

ˆ̃Hint = 1
2 h̄ΩL Â21â†|k| f̂|k|(n̂; η) + H.c., (13.39)

which also describes the mutual coupling of the vibronic states of a closed set
of states: |1, n〉 ↔ |2, n+ |k|〉. Thus it can easily be diagonalized in the same
manner to the interaction Hamiltonian (13.37).

Let us consider the excitation of the first red vibrational sideband by choos-
ing k=1 in Eq. (13.37),

ˆ̃Hint = 1
2 h̄ΩL Â21 f̂1(n̂; η) â + H.c.. (13.40)

This interaction Hamiltonian describes the coupling of the transitions
|2, n〉 ↔ |1, n+1〉, similar to the standard Jaynes–Cummings model. It can
be diagonalized in the way as described in Section 12.1, provided that the
detuning δ of the laser is small compared with the motional frequency, δ�ν.
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Fig. 13.2 Absolute values of the Rabi frequencies Ωn,n+1 of the non-
linear one-quantum transition for various values of the Lamb–Dicke
parameter η. [After Vogel and de Matos Filho (1995).]

Moreover, the Rabi frequencies Ωn =2λ
√

n+1 are replaced with the vibronic
Rabi frequencies (assuming ΩL to be real)

Ωn,n+1 =
2
ih̄

〈2, n|Ĥ(1)
int |1, n + 1〉 = ΩL

η√
n + 1

L1
n(η2)e−η2/2. (13.41)

The dependence on n of |Ωn,n+1| is illustrated in Fig. 13.2. In the Lamb–
Dicke regime, where the atomic center-of-mass wave function is well local-
ized with respect to the wavelength of the driving laser field, i. e., η

√
n+1�1,

Eq. (13.41) simplifies to Ωn,n+1�ηΩL
√

n+1, which corresponds to the stan-
dard Jaynes–Cummings model. The conditions for the Lamb–Dicke regime
are well fulfilled for the curve shown for η = 0.01 in the figure. For some-
what larger Lamb–Dicke parameters the Rabi frequencies are increasing (as
functions of n) more slowly than in the Lamb–Dicke regime. When the Lamb–
Dicke parameter is further increased, see, e. g., the curve for η = 0.5, the Rabi
frequencies show an oscillating behavior. It represents the nonlinear effects
arising from the spatial extension of the atomic wave function.

The occupation probability of the excited electronic state, σ22(t), for the
laser-driven atom can be obtained from the results derived for the standard
Jaynes–Cummings model in Section 12.2 [by replacing again Ωn with the non-
linear Rabi frequencies Ωn,n+1, as given in Eq. (13.41)]. One may also ob-
serve collapse and revival phenomena. However, the nonlinear Rabi frequen-
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cies allow one to realize various kinds of revivals. For example, for η = 0.5
and around n = 10 the function Ωn,n+1 is almost linear in n. As is shown in
Section 12.2.2, the almost linear dependence on n of the Rabi frequency in the
two-photon Jaynes–Cummings model implies almost complete revivals. A
similar behavior is expected in the nonlinear (one-quantum) model, e. g., by
choosing η = 0.5 and preparing the motion initially in a coherent state |α〉 of
mean motional quantum number 〈n̂〉= |α|2 ≈ 10 [Vogel and de Matos Filho
(1995)]. This example shows that the nonlinearities in the trapped-ion model
can be used to considerably modify the dynamics known from the Jaynes–
Cummings model in cavity QED.

13.3.2
Decoherence effects

The nonlinear Jaynes–Cummings model was first realized in a trapped-ion
experiment [Meekhof, Monroe, King, Itano and Wineland (1996)], with the
Jaynes–Cummings transition being driven in a Raman configuration as illus-
trated in Fig. 13.3. After a (variably) chosen atom–field interaction time the
electronic ground-state occupation is measured by testing an auxiliary transi-
tion for the occurrence of fluorescence. To be more specific, the ion is driven
by a bichromatic laser field,

E(+)
L (x̂, t) �→ ELei(kLx̂−ωLt) + E ′

Lei(k′Lx̂−ω′
Lt), (13.42)

where EL, E ′
L are the field amplitudes, kL, k′L are the x components of the wave

vectors, and ωL, ω′
L are the frequencies of the two fields. For a sufficiently

large detuning ∆ of the two fields from the electronic state |3〉, the latter can
be eliminated. The resonance condition in the case when the Raman lasers
drive the first blue motional sideband is ωL −ω′

L = ω21 + ν. The interaction
Hamiltonian is of the form of Eq. (13.39) for k=−1, with ΩL representing now
the coupling strength of the Raman interaction. The transitions |1〉 ↔ |2〉 and
|1〉 ↔ |3〉 are (electric) dipole transitions with the spontaneous decay rates γ

and γ′, respectively. Note that the auxiliary state |3〉 is used to enhance the
coupling strength of the Raman scheme.

Even when the detuning ∆ is quite large, such as approximately 500 natural
linewidths in the experiment, from time to time an excitation of the auxiliary
state may occur. Due to the short lifetime of this state, compared with the time
scale of the Raman interaction, the excited atom will immediately undergo
a spontaneous decay towards either the state |1〉 or |2〉. Assuming equally
strong decay channels, γ≈γ′, the probabilities of the two transitions become
equal. Let us consider the case where the trapped atom is initially cooled to
the motional ground state in the electronic state |1〉, that is to the vibronic
state |1, 0〉. As long as no excitation of the auxiliary electronic state occurs, the
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Fig. 13.3 Raman excitation scheme of the |1〉 ↔ |2〉 transition.

Raman interaction leads to coherent oscillations of the vibronic |1, 0〉 ↔ |2, 1〉
transition.

To consider the effect of an excitation of the electronic state |3〉, let assume
that the Lamb–Dicke parameter η is sufficiently small. In the experiment
counter-propagating laser beams with an effective value of η of about 0.2
were used. For spontaneous emission this leads to values of about 0.1 for the
Lamb–Dicke parameters. In this case the leading transitions approximately
preserve the motional quantum state. Hence among the dominant vibronic
transitions including the auxiliary state |3〉 are either |1, 0〉 → |3, 0〉 → |2, 0〉 or
|2, 1〉 → |3, 1〉 → |1, 1〉. These two possibilities are of particular interest since
they switch the phase of the coherent oscillation of the electronic transition
|1〉 ↔ |2〉 by the value of π, which leads to a substantial decoherence effect
via dephasing. In addition, in the case of the first type of transition the system
is trapped in the motional ground state of the second electronic state, |2, 0〉. As
can be seen from Fig. 13.3, when the system is in this state it is no longer res-
onantly coupled by the Raman interaction to the electronic ground state |1〉.
The theoretical results found by quantum trajectory simulations [Di Fidio and
Vogel (2000)] are in agreement with the experimental ones,4 as can be seen
from Fig. 13.4. Both the damping of the coherent oscillation and the asymme-
try in the decay behavior are sufficiently well reproduced. The results show
that the discontinuous interruption of the coherent dynamics, by quantum
jumps between the laser-driven Jaynes–Cummings transition and the auxil-
iary electronic state, can be regarded as the main mechanism for the observed
decoherence. It turns out that a very small number of quantum jumps can
lead to significant damping effects.

4) For a more detailed experimental study of the decoherence effects,
see Ozeri, Langer, Jost, DeMarco, Ben-Kish, Blakestad, Britton, Chi-
averini, Itano, Hume, Leibfried, Rosenband, Schmidt and Wineland
(2005).
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Fig. 13.4 Damped dynamics of the Raman-driven trapped atom initially
prepared in the vibronic state |1, 0〉. The full lines represent the theory.
[After Di Fidio and Vogel (2000).] The dots are experimental data. [After
Meekhof, Monroe, King, Itano and Wineland (1996).]

Nevertheless there are open questions, particularly when the atom is ini-
tially in an excited vibrational state. In the experiment an increase in the de-
coherence rate with increasing excitation of the initial center-of-mass motion
of the trapped atom was observed. The measured dependence of the decoher-
ence rate Γ on the motional quantum number n was inferred from the experi-
mental data to be

Γn � Γ0(n + 1)0.7, (13.43)

where Γ0 is the damping rate for the atom initially in the motional ground
state. The value of Γ0 can be easily explained, together with the mentioned
asymmetric decay, by the mechanism of quantum jumps. One could try to
explain the relation (13.43) by combining the quantum jumps with additional
classical stochastic effects.5 However, any such noise may be expected to fur-
ther increase the value of the rate Γ0, contrary to the experimental result. Al-
together this situation reflects the difficulties in precisely understanding the
mechanisms of decoherence to an extent needed for applications of such sys-
tems in quantum information processing, even in the seemingly simple case
of a single trapped atom. Hence the study of mechanisms of decoherence is a
subject that requires further research.

13.3.3
Nonlinear motional dynamics

Let us consider a scheme that renders it possible to drive nonlinearly the
motional state of an atom in a trap potential, without significantly affect-
ing the electronic state. Two lasers of wave vectors kL, k′

L and frequencies

5) For such an attempt, see Budini, de Matos and Zagury (2002).
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ωL, ω′
L =ωL +δω (δω�ωL), drive the atom in a Raman scheme as shown

in Fig. 13.5. The two lasers are assumed to be sufficiently far detuned by
∆=ω21−ωL from the closest neighboring dipole transition |1〉 ↔ |2〉 in order
to avoid a population of the excited state |2〉. On the other hand, they should
be close enough, ∆/ω21�1, to get a sufficiently strong Raman coupling that
is dominated by this transition.

���

���

�

�� ���� ��

Æ�

|1〉

|2〉

ω′
L, k′

L ωL, kL

δω

∆

Fig. 13.5 Raman excitation scheme for driving the quantized motion in
a nonlinear manner.

Under these conditions one may adiabatically eliminate the excited elec-
tronic state from the equations of motion. Since the atom is assumed to be
initially in the electronic ground state, one may eventually trace over the elec-
tronic states, similar to the case of effective nonlinear interaction Hamiltonians
considered in Section 2.5.3. This yields an effective interaction Hamiltonian
which contains only the position operator r̂ of the motional subsystem of the
atom,

Ĥint = 1
2 h̄Ω e−i(δωt−δkr̂) + H.c., (13.44)

where δk = kL −k′
L. The effective two-photon coupling strength is given in

terms of the single-photon coupling strengths ΩL, ΩL′ of the two lasers as

Ω =
ΩLΩ′∗

L
2∆

. (13.45)

The phase ϕ of Ω = |Ω|eiϕ is determined by the phase difference of the two
lasers, so that it can be held very stable.

The further procedure is similar to that in Section 13.3.1, but now we deal
with three motional directions. By using Eq. (13.9), the term δkr̂=∑3

i=1 ηi(âi + â†
i )

can be decomposed into three terms corresponding to the motion along the
three principal axes of the trap, with ηi being the Lamb–Dicke parameters in
these directions. The corresponding exponentials in Eq. (13.44) can be fac-
torized for each degree of freedom according to Eqs (13.31) and (13.34). This
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yields an interaction Hamiltonian in the normally ordered form:

Ĥint = 1
2 h̄Ω e−iδωt e−(η2

1+η2
2+η2

3)/2

× ∑
mm′

∑
nn′

∑
ll ′

(iη1)m+m′
(iη2)n+n′

(iη3)l+l ′

m! m′! n! n′! l! l′! â†m
1 â†n

2 â†l
3 âm′

1 ân′
2 âl ′

3 + H.c. . (13.46)

It reveals that manifold nonlinear motional couplings can be induced by the
Raman scheme under study. It is worth noting that, compared to the situation
in nonlinear optics, here the strengths of the nonlinearities can be controlled
more easily by the values of the Lamb–Dicke parameters. This allows one to
realize rather strong nonlinearities.

Choosing the laser beat frequencies to be multiples of the three vibrational
frequencies,6

δω = s1ν1 + s2ν2, s1,2 = 0,±1,±2, . . . , (13.47)

we may apply the vibrational rotating-wave approximation. Further, we fo-
cus on the nondegenerate case in which the ratio ν2/ν1 cannot be expressed
in terms of a rational number p/q (p, q=1, 2, 3, . . . ).7 Transforming the inter-
action Hamiltonian (13.46) into the interaction picture, we then obtain, on dis-
carding those contributions that are oscillating with the vibrational frequen-
cies,

ˆ̃Hint = 1
2 h̄Ω ∑

n
ĝn−s1(â†

1, â1; η1) ĝn−s2(â†
2, â2; η2) ĝn(â†

3, â3; η3) + H.c., (13.48)

where the operator-valued function ĝk(â†, â; η) is defined by

ĝk(â†, â; η) =

{
â†|k| f̂|k|(n̂; η) if k ≥ 0,

f̂|k|(n̂; η) â|k| if k < 0,
(13.49)

with f̂k(n̂; η) from Eq. (13.38) [Wallentowitz and Vogel (1997)]. The interaction
Hamiltonian (13.48) governs, similar to nonlinear optics, a variety of nonlinear
phenomena. They are controlled by the resonance condition (13.47) and by the
Lamb–Dicke parameters.

Let us consider, for example, the quantum mechanical counterpart of an op-
tical parametric oscillator. The Lamb–Dicke parameter η3 can be set equal to
zero by using a laser-beam geometry in which the projection of the difference
wave vector δk on the x3 axis becomes zero. In this case only the x1 and x2 mo-
tional components couple to each other. By choosing the detuning [Eq. (13.47)]
as δω=2ν1−ν2 (s1=2, s2=−1), the interaction Hamiltonian (13.48) reduces to

ˆ̃Hint = 1
2 h̄Ω f̂2(n̂1; η1)â2

1 â†
2 f̂1(n̂2; η2) + H.c.. (13.50)

6) This choice is the most general one since for a quadrupole potential
the relation ν3 =ν1 +ν2 is valid, cf. Eq. (13.7).

7) As long as the Lamb–Dicke parameters are sufficiently small this
assumption must be fulfilled for small numbers p, q only.
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In contrast to an ordinary optical parametric oscillator, here the coupling
constant is given in terms of the excitation-dependent operator functions f̂1
and f̂2. For sufficiently small Lamb–Dicke parameters, η1,2�1, Eq. (13.50) can
be further simplified to obtain

ˆ̃Hint = − i
2 h̄η2

1 η2Ωâ2
1 â†

2 + H.c. (13.51)

[Agarwal and Banerji (1997)], which corresponds to the standard form of the
interaction Hamiltonian of an optical parametric oscillator.

An optical parametric oscillator usually requires a strong pump mode in
order to get a sufficiently strong coupling. In this case one may replace, in
the so-called parametric approximation, the pump-mode operator â†

2 with a
c number α∗2. The unitary time evolution then corresponds to the action of
the squeeze operator (3.102). On the other hand, the interaction Hamilton-
ian (13.51) for a trapped atom allows one to realize the parametric dynamics
in the quantum regime. However, even for small values of the Lamb–Dicke
parameters the applicability of this interaction Hamiltonian is limited to suffi-
ciently low excitations of the involved vibrational modes. In fact, the validity
of Eq. (13.51) requires that η2

i Ni�1 (i=1, 2), where Ni is an upper limit for the
excitation of the ith motional mode. Whenever higher excited motional states
become relevant, the dynamics must be described by the interaction Hamil-
tonian (13.50) containing the nonlinear excitation-dependence of the coupling
strength.

To illustrate the effect of the nonlinear excitation-dependence of the cou-
pling strength as given in the interaction Hamiltonian (13.48), let us assume
that the difference wave vector δk points in the x1 direction so that η2 = η3 =0.
Furthermore, assuming the Raman detuning of the two lasers is chosen such
that a k quantum transition is directly driven, δω=kν (k≥0), we may approx-
imate Eq. (13.48) by

ˆ̃Hint = 1
2 h̄Ω f̂k (n̂; η) âk + H.c.. (13.52)

In particular, when the first vibrational sideband (k = 1) is excited, then this
interaction Hamiltonian further simplifies to

ˆ̃Hint = 1
2 h̄Ω f̂1(n̂; η)â + H.c., (13.53)

which in the Lamb–Dicke regime reduces to

ˆ̃Hint = 1
2 ih̄Ωηâ + H.c. . (13.54)

In this case the corresponding unitary time evolution operator

Ûint(t) = D̂
(− 1

2 ηΩ∗t
)

(13.55)
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Fig. 13.6 Time evolution of a coherent state which is initially positioned
on the boundary between two phase-space zones. The Lamb–Dicke
parameter is η =0.2 and the dimensionless times η|Ω|t are 0 (a), 4 (b),
8 (c), and 16 (d). The contours represent the Q function and the dashed
lines indicate the partitioning of the phase space. [After Wallentowitz
and Vogel (1997).]

leads to a coherent displacement of the motional quantum state [for an exper-
imental implementation, see Monroe, Meekhof, King and Wineland (1996)].

The effect of the interaction Hamiltonian (13.53) can be thought of as a non-
linearly modified displacement [Wallentowitz and Vogel (1997)], the c-number
displacement variable being replaced by an operator proportional to f̂1 (n̂; η).
To get some insight into the modification, one may consider the expectation
value 〈α| f̂1(n̂; η)|α〉 = f1(|α|2; η) as a function of the phase-space amplitude
|α|, which typically oscillates with |α|. As a result, the “nonlinear displace-
ment” collapses at the amplitudes defining the zeros of f̂1(|α|2; η). Effectively
this leads to a partitioning of the phase-space into adjacent zones. Due to the
changing sign of the function f1 the direction of the displacement changes
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when crossing the zeros of f1. An example is shown in Fig. 13.6, where the
initial coherent state is located on the boundary between two phase-space
zones. Consequently, the “nonlinear displacement” acts in opposite directions
in the two neighboring zones. This leads to a coherent splitting of the quan-
tum state which is accompanied by quantum interference effects. Note that,
in the shown Q function, the interference fringes are smoothed out.

There are various possibilities for using the nonlinear, dynamic phase-space
partitioning for the generation of nonclassical effects in the atomic center-of-
mass motion. For example, starting from the motional ground state, one can
realize a displacement that eventually squeezes the quantum state onto the cir-
cle in phase space representing the first zero of the function f1(|α|2; η). In this
manner one may generate a strongly amplitude-squeezed state [Wallentowitz
and Vogel (1997)]. For a Lamb–Dicke parameter of η =0.25 a noise reduction
of 〈∆n̂2〉/〈n̂〉=0.006 can be obtained. On the basis of the interaction Hamil-
tonian (13.52) for a two-quantum excitation, k=2, the time-evolution operator
represents a nonlinear generalization of the squeeze operator [Wallentowitz
and Vogel (1998)]. For a three-quantum excitation, k = 3, one may generate
motional quantum states displaying star-like structures [Wallentowitz, Vogel
and Knight (1999)].

13.4
Preparing motional quantum states

Trapped atoms offer exciting possibilities for preparing and manipulating
quantum states, with special emphasis on highly nonclassical states. It is well
known that nonclassical states very sensitively respond to any kind of distur-
bance, in general. Although the vibrational frequencies of an atom in a Paul
trap are typically in the MHz range, so that direct radiative damping is ex-
tremely small, there are other decoherence mechanisms such as, for example,
unwanted quantum jumps discussed in Section 13.3.2. As already mentioned
therein, there are a number of open problems whose solution is a big challenge
to research.

13.4.1
Sideband laser-cooling

In order to prepare a trapped atom in a desired motional quantum state, it
should be initially prepared in the ground state, which can be achieved by
laser cooling [Meekhof, Monroe, King, Itano and Wineland (1996); Monroe,
Meekhof, King and Wineland (1996)]. In a first step, the atom is usually pre-
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cooled via Doppler cooling.8 The result typically consists of a thermal distri-
bution of vibrational number states with a mean number of a few quanta. A
dipole-allowed transition |1〉 ↔ |2〉 of the atom is driven by a laser that is
detuned by ∆ = ω21 −ωL to the red of the electronic resonance (∆ > 0). Due
to thermal motion the (initially hot) atom is moving forth and back in the trap
potential. Whenever the atom is moving towards the incident laser beam, due
to the Doppler effect, the laser is tuned closer to resonance. Consequently,
the probability of absorbing a laser-photon is enhanced by the atomic motion.
After absorbing a laser photon of frequency ωL = ω21 + ∆ the atom is in the
excited state |2〉 and it is subsequently decaying with rate Γ. The frequency
ωem of the emitted photon is approximately given by ωem ≈ ω21, within an
uncertainty of the size of the natural linewidth Γ, and therefore a net loss of
energy appears. During a series of such absorption-emission cycles the atomic
motion is cooled down to a limit determined by the frequency spread of the
emitted photons, ∆ωem ≈ Γ/2. The so-called Doppler limit for the tempera-
ture T of the atom’s external motion is therefore given by kBT= h̄Γ/2.

This limit can be overcome by applying resolved sideband cooling in a next
step [Wineland and Dehmelt (1975)]. For this purpose the decay rate Γ must
be small compared with the vibrational frequency:

Γ � ν. (13.56)

In the Lamb–Dicke regime, the laser is incident in the direction of atomic mo-
tion to be cooled and it is tuned on resonance with the first red motional side-
band, ωL = ω21− ν. The absorption of a laser photon of frequency ωL by the
atom is accompanied by the annihilation of a vibrational energy quantum. The
absorption is followed by the spontaneous emission of a photon of frequency
ω21. Hence, one vibrational energy quantum h̄ν is absorbed per scattering
event, on average. The cooling process proceeds until the mean vibrational
quantum number attains its minimum value

〈n〉min =
(

Γ
2ν

)2

. (13.57)

Under the condition (13.56) this implies that 〈n〉min � 1. Thus the atom can
effectively be cooled into its vibrational ground state. Since for typical trap
frequencies in the MHz range the condition (13.56) can hardly be fulfilled by
using a dipole transition, one can think of using a dipole-forbidden transition.
In this case, however, Γ is too small in general to realize noticeable light scat-
tering required for fast enough cooling. This problem can be overcome by

8) For details, see, e. g., Wineland, Drullinger and Walls (1978);
Neuhauser, Hohenstatt, Toschek and Dehmelt (1978); for a review,
see Stenholm (1986).
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driving the first resolved sideband of a dipole-forbidden transition and short-
ening its lifetime via a coupling by radiation to a fast-decaying level.

Experimentally, resolved-sideband cooling was demonstrated for the first
time by using a 198Hg+ ion [Diedrich, Bergquist, Itano and Wineland (1989)],
where the trapped ion was prepared in the vibrational ground state with a
probability of about 95%. Later on, resolved-sideband Raman cooling was
performed on a trapped 9Be+ ion [Monroe, Meekhof, King, Jefferts, Itano and
Wineland (1995)], where the quantized motion (in one dimension) could be
cooled to the motional ground state with a probability of 98%. In the exper-
iment the direct drive of the resolved sideband is replaced by a stimulated
Raman drive, which allows one to use transitions between metastable levels
(such as hyperfine or Zeeman electronic ground states). Optical frequency
modulators render it possible to realize very small effective laser linewidths.
The internal state of the atom is recycled by spontaneous Raman transitions.

13.4.2
Coherent, number and squeezed states

Let us first consider the preparation of coherent motional states and the co-
herent displacement of a given motional state. One way consists of a direct
drive of the center-of-mass of the atom. Consider a classical, monochromatic
microwave which resonantly drives a single motional mode, say mode 1.
In the interaction Hamiltonian (13.19) we may thus make the replacement
dkÊ(−) �→ δk1d1E0ei(ν1t−ϕ0), leading in the interaction picture to

ˆ̃H(cm)
int = −d1E0e−iϕ0 â1 + H.c.. (13.58)

The corresponding unitary time evolution yields a coherent displacement,

Û(cm)
int (t)≡ D̂(α), where α = id1E0eiϕ0 t/h̄ is the complex displacement ampli-

tude. Its absolute value can be controlled by the interaction time and/or the
field amplitude E0, the phase is controlled by the phase ϕ0 of the microwave.
Experimentally the method can be realized by applying a sinusoidally vary-
ing potential at the trap oscillation frequency on one of the trap compensation
electrodes for a fixed time, as was demonstrated by Meekhof, Monroe, King,
Itano and Wineland (1996). The achieved displacement α≈1.7 of the motional
ground state shows that the method is useful for typical experiments in a mi-
croscopic regime.

Alternatively, coherent displacements can be realized by a Raman drive of
the atomic motion, cf. Section 13.3.3. By resonantly driving the first motional
sideband in the Lamb–Dicke regime, according to Eq. (13.55), the unitary time
evolution operator represents a coherent displacement operator. In the experi-
ments by Monroe, Meekhof, King and Wineland (1996) coherent displacement
amplitudes up to α≈3 were realized in this way. Note that in such a scheme,
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for larger displacement amplitudes, the nonlinear effects inherent in the inter-
action Hamiltonian (13.53) may become important.

Number states, whose generation is difficult for radiation-field modes, can
be easily obtained for the quantized motion of a trapped atom [Meekhof, Mon-
roe, King, Itano and Wineland (1996)]. The first step of the preparation is the
cooling to the vibrational ground state. Suppose the atom is initially in the
state |1, 0〉, that is in both its electronic and vibrational ground state. Now one
can successively apply two interactions of the nonlinear Jaynes–Cummings
type, cf. Section 13.3.1. First, one applies a π pulse on the first blue side-
band. This interaction is described by the interaction Hamiltonian (13.39) for
k=−1 and it flips the atom into the first number state in the excited electronic
state, |2, 1〉. Second, one applies a π pulse on the first red sideband, cf. the in-
teraction Hamiltonian (13.40). In this example one would prepare the second
vibrational number state in the electronic ground state, |1, 2〉. In a similar man-
ner one can prepare higher vibrational number states by repeatedly applying
appropriate sequences of laser pulses.

Motional squeezed states can be obtained by applying a Raman drive of the
atomic motion, cf. Section 13.3.3. Consider a Raman excitation of a vibrational
two-quantum resonance as described by the interaction Hamiltonian (13.52)
for k=2. For a sufficiently small Lamb–Dicke parameter simplifies to

ˆ̃Hint = − 1
4 h̄Ωη2 â2 + H.c.. (13.59)

In this case the unitary time evolution operator agrees with the squeeze op-
erator, Ûint(t) ≡ Ŝ(ξ), the absolute value of the squeeze parameter being
|ξ|= |Ω|η2t/2. Applying this interaction to an atom which was initially cooled
to its vibrational ground state, one prepares a vibrational squeezed ground
state [Meekhof, Monroe, King, Itano and Wineland (1996)]. Since highly ex-
cited number states contribute to the squeezed ground state whenever a sig-
nificant squeezing effect occurs, one may quickly approach the limits of the
approximate interaction Hamiltonian (13.59).9

13.4.3
Schrödinger-cat states

The combination of methods for preparing relatively elementary quantum
states allows one also to prepare more complicated quantum states, such as
entangled states (Section 8.5). Let us consider the preparation of a trapped
atom in an entangled state of the Schrödinger-cat type, with the motional
states being entangled with the electronic ones [Monroe, Meekhof, King and
Wineland (1996)]. Of course, such a cat state is not truly macroscopic. The

9) For the nonlinear effects which may occur under more general con-
ditions, see Wallentowitz and Vogel (1998).
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Fig. 13.7 The atomic energy level scheme of 9Be+ which is relevant for
the preparation of entangled Schrödinger-cat states.

basic energy level scheme of the atom is shown in Fig. 13.7. The two states |1〉
and |2〉 are formed by two highly stable hyperfine ground states. The state |3〉
provides the Raman coupling10 for the three lasers a, b and c. Let us assume
that the Raman lasers b and c only affect the quantized motion in the state |2〉,
which can be achieved by appropriate polarizations of the lasers.

The state preparation consists of the following steps. Initially the atom is
in the vibrational and electronic ground state |1, 0〉 = |1〉|0〉m.11 In the first
step the laser pair a,b is on and the interaction time is chosen to apply a π/2
rotation of the electronic states, resulting in

|Ψ1〉 = 1√
2

(|1〉|0〉m − ie−iµ|2〉|0〉m
)
, (13.60)

where µ is the phase difference of the laser pair. The second step is the coher-
ent displacement of the motional state by the Raman drive of the type given in
Eqs (13.54) and (13.55), acting in the excited electronic state. This interaction
is driven by the laser pair b,c (of phase difference −φ/2) and yields

|Ψ2〉 = 1√
2

(|1〉|0〉m − ie−iµ|2〉∣∣αe− i
2 φ

〉
m

)
. (13.61)

The third step consists of a π pulse on the vibrationless transition, the carrier
(lasers a,b, phase χ), which basically exchanges the motional states in the two
electronic states,

|Ψ3〉 = 1√
2

(
ei(χ−µ)|1〉∣∣αe− i

2 φ
〉

m + ie−iχ|2〉|0|〉m
)
. (13.62)

10) The interaction Hamiltonians given in Sections 13.3.1 and 13.3.3
apply.

11) Here we distinguish motional states from electronic ones by the
subscript m.
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In the fourth step the motional state in the excited electronic state is again
displaced (lasers b,c, phase φ/2), resulting in the Schrödinger-cat-like state

|Ψ4〉 = 1√
2

(
ei(χ−µ)|1〉∣∣αe− i

2 φ
〉

m + ie−iχ
∣∣2〉|αe

i
2 φ

〉
m

)
. (13.63)

This is an entangled state with two independent coherent states being cor-
related to the electronic states. Needless to say that the state (13.63), which
is of the same type as the radiation-field state (12.108) generated in a cavity,
corresponds to a Schrödinger-cat state on a mesoscopic level rather than a
macroscopic one.

One can proceed and perform a fifth step which consists of a π/2 pulse on
the carrier (lasers a,b, phase 0) and yields, up to a normalization constant,

|Ψ5〉 ∼ |1〉(∣∣αe−
i
2 φ

〉
m − eiδ∣∣αe

i
2 φ

〉
m

)− i|2〉(|αe−
i
2 φ〉m + eiδ∣∣αe

i
2 φ

〉
m

)
, (13.64)

where δ=µ−2χ+π. The state |Ψ5〉 can be used to prepare a coherent super-
position of two motional coherent states. This can be done in the sixth step by
a reduction of the electronic state via conditional measurement. For example,
one may measure the fluorescence by irradiating a transition from the state
|2〉 to an auxiliary state |4〉. When no fluorescence is observed, the atom is re-
duced to the electronic state |1〉 and the resulting purely motional state |Ψ6〉m
is

|Ψ6〉m ∼ (∣∣αe−
i
2 φ

〉
m − eiδ∣∣αe

i
2 φ

〉
m

)
. (13.65)

Special cases of these kinds of states12 are the even and odd coherent states
defined by Eq. (13.68).

13.4.4
Motional dark states

States which are produced by the methods in Sections 13.4.2 and 13.4.3 are
not very long-lived in general. From Section 11.3.3, we know that a three-
level system can be prepared in long-lived states – the dark states. As we will
see, the basic idea of dark states can be transferred to trapped atoms, where it
offers the possibility of preparing long-lived motional states, such as squeezed
states [Cirac, Parkins, Blatt and Zoller (1993)], even and odd coherent states
[de Matos Filho and Vogel (1996a)], nonlinear coherent states [de Matos Filho
and Vogel (1996b)], pair coherent states [Gou, Steinbach and Knight (1996)],
and others.

Let us consider a trapped atom, two electronic states of which are driven
by one or several lasers in the resolved sideband regime. In the rotating wave
approximation, each interaction may be described separately by a nonlinear

12) They are often also called states of Schrödinger-cat type.
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Jaynes–Cummings interaction Hamiltonian, such as is given in Eqs (13.37) and
(13.39).13 The sum of these interactions eventually yields the total interaction
Hamiltonian. For the preparation of dark states, the decay of the upper elec-
tronic state to the ground state by radiative damping is of great importance.
These electronic transitions are accompanied by kicks due to the momentum
transfer of the emitted photons on the atom, which act on the quantum state
of the atomic center-of-mass motion. The master equation describing the vi-
bronic dynamics of the trapped atom can be obtained by specifying the gen-
eral master equation (5.59). Using for the system–reservoir coupling the in-
teraction of the atom with a reservoir of radiation modes, Eq. (13.26), one can
derive the following master equation in the interaction picture:

d�̂

dt
= − i

h̄
[ ˆ̃Hint, �̂] + 1

2 Γ(2Â12�̂r Â21 − Â22�̂ − �̂Â22), (13.66)

where

�̂r = 1
2

∫ 1

−1
ds W(s)eiηs(â+â†)�̂e−iηs(â+â†), (13.67)

accounts for the changes in the motional state due to the momentum recoil of
the atom during the emission of photons, with the function W(s) representing
the angular distribution of the spontaneous emission. The density operator �̂

describes the combined vibronic quantum state including the center-of-mass
motion in the direction under study. It is obtained by tracing over the motional
degrees of freedom which are not of interest.

We begin with the generation of even and odd coherent states. Quite gener-
ally, they are defined as superpositions of two coherent states whose complex
amplitudes point in opposite directions in the phase space:

|α〉± = N±(|α〉 ± | − α〉) (13.68)

(N±, normalization constants) [Dodonov, Malkin and Man’ko (1974); Peřina
(1984)]. Note that only even (odd) number states contribute to the number sta-
tistics of |α〉+ (|α〉−). The quantum interference caused by the superposition
of the coherent states is of particular interest. For example, the quadrature
distributions of |α〉± which correspond to the position distributions are

p±(x) = |N±|2[|〈x|α〉|2 + |〈x| − α〉|2 ± 2Re(〈α|x〉〈x| − α〉)]. (13.69)

The first two terms are the position distributions of the two coherent states
| ± α〉, whereas the third term represents the quantum interference between
these states.

13) For simplicity we will consider, in the following, only dark states in
one vibrational mode.
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Motional even/odd coherent states can be obtained as dark states in the fol-
lowing manner [de Matos Filho and Vogel (1996a)]. A trapped atom is driven
in the resolved sideband regime by two lasers, the first one is in resonance
with the (red) second sideband and the second one resonantly drives the car-
rier. These interactions are described by the interaction Hamiltonian (13.37)
for k=0, 2. In particular, in the case of the Lamb–Dicke parameter being suffi-
ciently small, the following simplifications can be made. First, the kicks due to
spontaneous emission can be discarded, �̂r� �̂. Second, the interaction Hamil-
tonian can be simplified by taking into account only the leading terms in the
series (13.38). In this case the master equation (13.66) approximates to

d�̂

dt
= − i

h̄
[ ˆ̃Hint, �̂] + 1

2 Γ(2Â12�̂Â21 − Â22�̂ − �̂Â22), (13.70)

and the effective interaction Hamiltonian is of the form

ˆ̃Hint = − 1
2 h̄η2Ω2 Â21

(
â2 − 2Ω0

η2Ω2

)
+ H.c., (13.71)

where Ωk (k = 0, 2) is the driving-laser coupling strength with regard to the
kth sideband. Now we are interested in a steady-state solution, �̂s, of the type

�̂s = |1〉|ψ〉〈ψ|〈1|. (13.72)

When such a stationary state exists, the atom ends in its electronic ground
state and it stops to fluoresce despite the lasers continuously driving the sys-
tem. Thus the atom is prepared in a motional dark state. It remains to derive
the properties of the motional quantum state |ψ〉 under these conditions. In
the steady-state regime in which we are interested, we may set the temporal
derivative of the density operator equal to zero in Eq. (13.70). Inserting the
ansatz (13.72) into the master equation, we can see that the relaxation term
vanishes identically. Physically, this is obvious since an atom in the ground
state cannot spontaneously decay. The remaining condition for a steady-state
solution reduces to [Ĥint, �̂s] = 0, which is fulfilled if the motional quantum
state obeys the eigenvalue equation

â2|ψ〉 =
2Ω0

η2Ω2
|ψ〉. (13.73)

The complex eigenvalue can be well controlled by the relative amplitudes and
the phase difference of the two lasers, which can be held very stable by using
electro/acousto-optical modulation techniques to derive the two fields from
the same laser.

It is not difficult to see that the recurrence relation resulting from Eq. (13.73)
in the number-state basis couples between even or odd number states only.
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Fig. 13.8 Wigner function W(α) and position distribution p(x, t) for an
atom whose motional steady-state is close to an even coherent state.
Initially the atom was prepared in the vibrational ground state, the pa-
rameters for the atom–field interaction are η =0.05, 2Ω0/η2Ω2 =4, and
η2Ω2 =1.4Γ [τ =ν/(2π)]. [After de Matos Filho and Vogel (1996a).]

Further, the relaxation effects in the approximate master equation (13.70) do
not alter the motional state. Last but not least, the interaction Hamiltonian
(13.71) also couples only between even or odd number states. Thus we may
imagine the following scenario. Let us assume that we have initially cooled
the atom to its vibrational ground state. Subsequently we switch on the in-
teraction with the two lasers according to the interaction Hamiltonian (13.71).
For nonvanishing coupling strengths Ωk the vibrational ground state does not
fulfill the eigenvalue equation (13.73). Consequently, the atom cannot be in its
steady state and the motional quantum state is modified by scattering photons
until it fulfills Eq. (13.73). Since this process couples only even number states,
the steady state is expected to be given by the even coherent state

|ψ〉 = |α〉+ , α =

√
2Ω0

η2Ω2
. (13.74)

The example in Fig. 13.8 clearly shows that in this way motional dark states
can be generated which are indeed close to even coherent states. Both the
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Wigner function and the position distribution in the figure show the typical
features of an even coherent state. Note that, if the two main peaks of the
position distribution approach each other, quantum interference fringes are
observed. It should be pointed out that odd coherent states can be prepared
in a similar manner if one starts with the atom being initially excited in its first
vibrational number state.

Another interesting possibility consists of the preparation of nonlinear co-
herent states [de Matos Filho and Vogel (1996b)] which are defined as the
right-hand eigenstates of the non-Hermitian operator f̂ (n̂)â,

f̂ (n̂)â|χ; f 〉 = χ|χ; f 〉, (13.75)

where f̂ (n̂) is a function of the number operator. The notation |χ; f 〉 indi-
cates that the properties of the states sensitively depend on the chosen func-
tion f̂ (n̂). Note that for f̂ (n̂)=1 the ordinary coherent states are obtained. In
general one may expect that, due to the function f̂ (n̂), the states |χ; f 〉 feature
coherence properties which are more or less modified in the case when higher
number states contribute to them. It is straightforward to represent them in
the number-state basis, since the definition (13.75) yields a simple recurrence
relation connecting only two elements, 〈n|χ; f 〉 and 〈n + 1|χ; f 〉. One finds
that14

|χ; f 〉 = ∑
n
|n〉〈n|χ; f 〉, (13.76)

where

〈n|χ; f 〉 = N g(n)√
n!

(13.77)

with

g(n) = δn,0 + (1 − δn,0)
n−1

∏
k=0

[ f (k)]−1. (13.78)

To generate nonlinear coherent states as motional dark states of a trapped
atom, the atom is simultaneously driven on the carrier and the first (red) vi-
brational sideband. Here the Lamb–Dicke parameter can become rather large,
so that we use the interaction Hamiltonians of the type (13.37) for k = 0, 1.
Their combination yields the total interaction Hamiltonian

Ĥint = 1
2 h̄Ω1e−η2/2 Â21

(
F̂ +

Ω0

Ω1

)
+ H.c., (13.79)

14) For more details on the properties of the nonlinear coherent states,
see, e. g., Man’ko, Marmo, Sudarshan and Zaccaria (1997); Man’ko,
Marmo, Porzio, Solimeno and Zaccaria (2000).
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with the operator F̂ being given by

F̂ =
∞

∑
l=0

(iη)2l+1

l!(l + 1)!
â†l âl+1 +

Ω0

Ω1

∞

∑
l=1

(iη)2l

(l!)2 â†l âl . (13.80)

Searching for a steady state of the form (13.72) that is solution to the full master
equation (13.66) results in in the eigenvalue equation

F̂|ψ〉 = −Ω0

Ω1
|ψ〉. (13.81)

Comparing Eqs (13.81) and (13.75), we conclude that

|ψ〉 = |χ; f 〉, (13.82)

where

χ =
iΩ0

ηΩ1
(13.83)

and

f̂ (n̂) =
∞

∑
n=0

L1
n(η2)

(n + 1)L0
n(η2)

|n〉〈n| . (13.84)

Since the Laguerre polynomials Lk
n(η2) are oscillating functions of n (with

different periodicities for k=0 and k=1), the expansion coefficients (13.77) are
oscillating functions of n either, where the oscillation period decreases with in-
creasing value of η. It turns out that, for moderate values of η, the state |ψ〉 can
be localized within a single peak of the structured coefficients, which yields
an amplitude-squeezed state displaying coherence properties. By changing
the eigenvalue χ, which is well controlled by the driving lasers, one may pre-
pare a coherent superposition of two sub-states which are placed in the same
direction from the origin of the phase space.15

For weak interactions of the lasers with the atom, the master equation
(13.66) can be simplified by adiabatically eliminating the electronic degrees of
freedom, because the atom is almost always confined in the electronic ground
state. As a result, the damping term in Eq. (13.66), i. e., the second term
on the right-hand side, changes to a new one whose structure is also deter-
mined by the driving laser configuration. In this manner one can engineer
the coupling of the motional subsystem with an effective reservoir [Poyatos,
Cirac and Zoller (1996); for an experimental demonstration, see Myatt, King,
Turchette, Sackett, Kielpinski, Itano, Monroe and Wineland (2000)].

15) For a realization of more general nonlinear coherent states, see Kis,
Vogel and Davidovich (2001).
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13.5
Measuring the quantum state

When one is able to prepare well-defined quantum states of trapped atoms,
one also needs methods to measure them. Based on the concepts of quantum-
state reconstruction developed in Chapter 7, in the following we will con-
sider measurement schemes specific to reconstructing the quantum state of a
trapped atom.

13.5.1
Tomographic methods

Let us begin with the reconstruction of the motional quantum state of a
trapped atom by directly measuring the characteristic function of the phase-
dependent quadrature distribution [Wallentowitz and Vogel (1995, 1996)]. For
this purpose a weak electronic transition |1〉↔|2〉 of the atom is simultane-
ously driven in the resolved-sideband regime by two classical laser fields, as
schematically shown in Fig. 13.9. The laser frequencies ωb/r are tuned to the
first blue/red motional sidebands, ωb/r=ω21±ν. The two interactions are de-
scribed by interaction Hamiltonians of the Jaynes–Cummings type, Eq. (13.39)
for |k|=1 for the blue sideband and Eq. (13.40) for the red one. Assuming that
the coupling strengths of the two driving laser fields are equal and that the
system is driven in the Lamb–Dicke regime, the total interaction Hamiltonian
is of the form

ˆ̃Hint = 1
2 h̄(ΩÂ12 + Ω∗ Â21)x̂(ϕ), (13.85)
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Fig. 13.9 Excitation scheme for the tomographic reconstruction of the
motional quantum state of a trapped atom.
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where Ω is the sum of the vibronic coupling strengths of the two driven tran-
sitions, and ϕ is the phase difference of the two lasers which can be controlled
precisely. This interaction Hamiltonian is proportional to the phase-sensitive
quadrature x̂(ϕ), which yields the information desired for the tomographic
reconstruction of the motional quantum state. The coupling of this observable
to the electronic transition |1〉↔ |2〉 renders it possible to map the informa-
tion onto the populations of the corresponding electronic states. To detect the
electronic-state populations of the weak transition one usually measures the
fluorescence on a strong auxiliary transition |1〉↔|3〉, which yields an overall
quantum efficiency being very close to unity.16 To be more specific, the inter-
action of the atom with the bichromatic laser field is switched on for an inter-
action time t. After this interaction the |1〉↔|3〉 transition is irradiated and the
fluorescence is recorded. Repeating these measurements, the statistics of the
occurrence of fluorescence give the occupation probability σ11(t)≡σ11(t; ϕ) of
the atom in the ground state |1〉 right after the interaction time t,

σ11(t; ϕ) = Tr[Â11Ûint(t; ϕ)�̂(0)Û†
int(t; ϕ)], (13.86)

where Ûint(t)≡ Ûint(t; ϕ) is the unitary time evolution due to the interaction
(13.85) for chosen ϕ, and �̂(0) is the initial density operator of the vibronic
system, which is commonly assumed to be factorized into a product of the
vibrational and electronic density operators ρ̂(0) and σ̂(0), respectively. For
calculating the trace in Eq. (13.86) it is advantageous to represent ρ̂(0) in the
basis of the eigenstates |x, ϕ〉 of the x̂(ϕ). When the atom is initially in the
electronic ground state, σ̂(0)= Â11, then Eq. (13.86) leads to

σ
(inc)
11 (t) = 1

2 [1 − ReΨ(τ, ϕ)] (13.87)

(τ = |Ω|t), where Ψ(τ, ϕ) is the characteristic function of the quadrature dis-
tribution p(x, ϕ) [cf. Eq. (7.10)] of the motional quantum state. Hence the
recorded fluorescence statistics directly yield insight into the real part of the
characteristic function of the quadrature distribution. To obtain the imaginary
part of Ψ(τ, ϕ), one can prepare the atom initially in a coherent superposition
of the two electronic states, such that σ11(0) = |σ12(0)|= 1

2 . This preparation
requires the application of a π/2 pulse in the Lamb–Dicke regime onto an
atom in the electronic ground state. By appropriately adjusting arg[σ12(0)],
the resulting signal reads

σ
(coh)
11 (τ; ϕ) = 1

2 [1 + ImΨ(τ, ϕ)]. (13.88)

16) For highly efficient measurements of this type, see Nagourney, Sand-
berg and Dehmelt (1986); Sauter, Neuhauser, Blatt and Toschek
(1986); Bergquist, Hulet, Itano and Wineland (1986).
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Combining the two types of measurement, we obtain the full characteristic
function:

Ψ(τ, ϕ) = 2
[
σ

(inc)
11 (τ; ϕ)− 1

2

]
+ 2i

[
σ

(coh)
11 (τ; ϕ)− 1

2

]
. (13.89)

Performing the measurements for sufficiently many values of the difference
phase ϕ between the two driving lasers within a π interval, one can readily
derive various forms of representations of the motional quantum state of the
atom, see Chapter 7. For example, the reconstruction of the density matrix in
a quadrature-state basis reduces to a single Fourier integral of the measured
fluorescence signal. Alternatively, it is possible to directly sample the density
matrix in the number basis from the measured signal.

A related method of tomographic reconstruction of the motional quantum
state is based on pulsed atom–laser interactions in the Lamb–Dicke regime
[D’Helon and Milburn (1996)]. Here, the |1〉↔ |2〉 transition is driven by a
standing-wave laser pulse tuned to ω21. Its duration τP is much shorter than
the vibrational period, ντP � 1. Moreover, the center of the trap potential
must coincide with a node of the standing wave. To derive the desired atom–
field interaction, one transforms the interaction Hamiltonian (13.30) to the in-
teraction picture.17 In the Lamb–Dicke approximation the operator-valued
(standing-wave) mode function therein can be approximated according to
ĝ(x̂) = sin(kLx̂)� kL x̂. The resulting interaction Hamiltonian is very similar
to that in Eq. (13.85) and reads as

ˆ̃Hint = 1
2 h̄[Ω(t)Â12 + Ω∗(t)Â21]x̂(t), (13.90)

where x̂(t) is the freely evolving position operator of the center-of-mass
motion. The laser pulse shape is included in the time-dependent coupling
strength Ω(t). Due to the shortness of the driving pulse its action at time t
consists of a unitary kick,

K̂ = T exp
[
− i

h̄

∫
dt′ ˆ̃Hint(t′)

]
� exp

[
− i

2
(
θÂ12 + θ∗ Â21

)
x̂(t)

]
, (13.91)

with θ =
∫

dt′Ω(t′) being the pulse area. Its effect on the state is formally
the same as that of the unitary operator for the interaction (13.85). Thus the
characteristic function Ψ(θ, νt) is obtained in a similar way to the previous

scheme, cf. Eq. (13.89), by two types of measurement of σ
(inc)
11 and σ

(coh)
11 right

after the application of the standing-wave pulse. Instead of controlling the
scaled interaction time τ and the phase difference ϕ between two lasers, in the
present scheme, control of the pulse area θ and of the (freely evolving) phase
νt is required.

17) In this interaction Hamiltonian the vibrational rotating-wave ap-
proximation has not been performed. The pulse envelope is in-
cluded via a time-dependence of EL, EL �→ EL(t).
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An approximate quadrature measurement can be performed by using the
fact that a squeezed coherent state approaches a quadrature eigenstate in the
limit of infinitely strong squeezing,

|x, ϕ〉 ∼ lim
|ξ|→∞

D̂
(
xeiϕ/

√
2
)
Ŝ
(|ξ|ei2ϕ

)|0〉, (13.92)

see Section 3.4. The quadrature distribution p(x, ϕ) can be asymptotically ob-
tained as

p(x, ϕ) ∼ lim
|ξ|→∞

〈0|ρ̂′|0〉, (13.93)

where ρ̂′ is a coherently displaced and squeezed version of the density opera-
tor ρ̂≡ ρ̂(0) to be determined,

ρ̂′ = Ŝ†(|ξ|ei2ϕ
)

D̂†(xeiϕ/
√

2
)
ρ̂D̂

(
xeiϕ/

√
2
)
Ŝ
(|ξ|ei2ϕ

)
. (13.94)

From Eqs (13.93) and (13.94) it can be seen that, provided the quantum state
to be measured can be strongly squeezed and coherently displaced, the quad-
rature distributions could be obtained from the occupation probability of the
vibrational ground state measured after these manipulations. The phase con-
trol of the quadrature is based on the free evolution of the vibrational system.
One could think of the following scenario [Poyatos, Cirac and Zoller (1996)].
(i) Wait for a time t such that ϕ = νt. (ii) Perform a sudden displacement of
the center of the trap to the right for a distance d such that x =

√
mν/(2h̄) d.

(iii) Change the trap frequency instantaneously from ν to a lower ν′.18 (iv) De-
termine the population of the vibrational ground state.19 After determining
p(x, ϕ) in this manner, standard methods for the tomographic reconstruction
of the quantum state [Chapter 7] can be applied. Note that the accuracy of the
method is limited by the achievable squeeze parameter |ξ|= ln(ν/ν′)/2.

13.5.2
Local methods

Motional quantum states of a trapped atom can also be determined by lo-
cal methods as introduced in Section 7.4. For this purpose the state to
be reconstructed is first coherently displaced, ρ̂ �→ ρ̂(−α) = D̂†(α)�̂D̂(α).
Then the Jaynes–Cummings dynamics is measured, where the number sta-
tistics, Pn =ρnn, occurring in the expression for the measured electronic-
state occupation, σ11(t), is replaced by the displaced number distribution,

18) A sudden change in the trap frequency leads to squeezing with the
squeeze parameter being |ξ| = ln(ν/ν′)/2 [Janszky and Yushin
(1986)]. Here a strong change in the trap frequency is needed since
the measurement scheme requires strong squeezing.

19) It can be obtained from the measured Jaynes–Cummings revivals
[Meekhof, Monroe, King, Itano and Wineland (1996)].
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Fig. 13.10 Reconstructed Wigner function of the vibrational number
state |n=1〉 for a trapped 9Be+ ion. [After Leibfried, Meekhof, King,
Monroe, Itano and Wineland (1996).]

Pn(−α)=ρnn(−α)=〈n, α|�̂|n, α〉. Inverting the expression for σ11(t), which
is given as a linear combination of the Pn(−α) for all relevant n, eventu-
ally yields the displaced number statistics. By changing α in a succession
of ensemble measurements, the complete information on the original (un-
shifted) motional quantum state can be obtained from the measured data.
In particular, applying the methods introduced in Section 7.4, a pointwise
reconstruction of phase-space functions is possible. This was successfully
demonstrated by reconstructing the Wigner function W(α) of a single 9Be+

ion stored in a rf Paul trap [Leibfried, Meekhof, King, Monroe, Itano and
Wineland (1996)]. In the experiment, the relevant oscillation frequency in the
trap potential is ν/2π≈11.2 MHz, and the transition between the states |1〉
and |2〉 is a stimulated Raman transition between the hyperfine ground states
2S1/2 (F = 2, mF =−2) and 2S1/2 (F = 1, mF =−1), respectively, separated by
about 1.25 GHz. The coherent displacements of the initially prepared mo-
tional quantum states are realized by applying classical, spatially uniform rf
fields. The example in Fig. 13.10 shows the reconstructed Wigner function of
the number state |n=1〉.

The method can be further simplified in order to measure the Wigner func-
tion directly [Lutterbach and Davidovich (1997)]. For this purpose the laser
driving the Jaynes–Cummings dynamics is tuned in resonance with the elec-
tronic transition, so that the interaction Hamiltonian (13.37) for k=0 applies.
Let us assume that the state of the system, after a well-defined coherent dis-
placement of the motional state, is given by �̂= ρ̂(−α)⊗|2〉〈2|. Now the reso-
nant interaction is switched on for the interaction time t. After the interaction
the electronic-state occupation is tested by a fluorescence measurement. The
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Fig. 13.11 From the displaced number statistics, reconstructed
absolute values of density-matrix elements of an approximate
1/

√
2(|n=0〉− i|n=2〉) motional quantum state. The state was dis-

placed by |α|=0.79 for eight phases on a circle. [After Leibfried,
Meekhof, King, Monroe, Itano and Wineland (1996).]

electronic inversion reads as

σ22(t) − σ11(t) =
∞

∑
n=0

cos(|Ωn,n|t)Pn(−α), (13.95)

where

Ωn,n = ΩLe−η2/2Ln(η2) = ΩL
[
1 − η2(n + 1

2

)
+ O(η4n2)

]
. (13.96)

For a sufficiently small Lamb–Dicke parameter, η�√
n+1, the terms O(η4n2)

can be disregarded. Fixing the interaction time by t = π/(η2ΩL), from
Eq. (13.95) we obtain

σ22(t)− σ11(t) = sin
(

π

η2

) ∞

∑
n=0

(−1)nPn(−α) =
π

2
sin

(
π

η2

)
W(α). (13.97)

We can see that the electronic-state inversion is directly proportional to the
Wigner function of the initial state of the atomic center-of-mass motion in a
given phase-space point, which is defined by the displacement amplitude α.
The applicability of this method can be extended by engineering the vibronic
interaction Hamiltonian [de Matos Filho and Vogel (1998)], which allows one
to linearize the n dependence of the coupling strength under less restrictive
conditions than in Eq. (13.96).

Finally, it should be mentioned that the density matrix in the number-state
basis, ρmn, can be obtained from the displaced number statistics on a circle
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according to the theory given in Section 7.3.2. This was also demonstrated
in the above-mentioned experiment [Leibfried, Meekhof, King, Monroe, Itano
and Wineland (1996)]. An example is shown in Fig. 13.11.

13.5.3
Determination of entangled states

Up to now we have considered methods that allow one to determine the
information on the quantum state of the motional subsystem of a trapped
atom. As we have seen in Section 13.4.3, however, the system may also be
prepared in an entangled vibronic state. A measurement of the full informa-
tion on the combined quantum state of the vibronic system may be realized
by employing the interaction Hamiltonian (13.37) for k =0 [Wallentowitz, de
Matos Filho and Vogel (1997)]. In the first step, the initially prepared vibronic
state �̂ is coherently displaced in the phase space of the motional subsys-
tem, �̂ �→ �̂(−α)= D̂†(α)�̂D̂(α). Subsequently, the driving laser on the carrier
which realizes the interaction (13.37), is switched on for an interaction time t.
This procedure is followed by probing the atom for fluorescence on a strong,
auxiliary transition. Provided the atom is detected in the excited electronic
state |2〉 (no fluorescence), the density operator �̂(t) of the system is reduced
to

�̂(t) = |2〉〈2| ⊗ ρ̂(t), (13.98)

where ρ̂(t)∼〈2|�̂(t)|2〉 is the corresponding density operator of the motional
subsystem. Its diagonal elements in the number-state basis, due to the inter-
action (13.37) for k=0, read as

ρnn(t) = Im [�nn
12 (−α)] sin(Ωnnt)

+ �nn
22 (−α) cos2( 1

2 Ωnnt
)
+ �nn

11 (−α) sin2( 1
2 Ωnnt

)
. (13.99)

The result reveals that, for appropriately chosen interaction times t, one can
map the displaced vibronic density-matrix elements �nn

ab (−α) onto the reduced
vibrational number statistics ρnn(t). The latter can be measured by employing
the same interaction on the carrier as in the case of a quantum nondemolition
measurement of the reduced motional number statistics [de Matos Filho and
Vogel (1996c); Davidovich, Orszag and Zagury (1996)].20

Suppose that one has determined the displaced vibronic density-matrix el-
ements �nn

ij (−α) (i=1, 2; j=1, 2) as functions of the displacement amplitude α.
They contain the full information on the (initial) quantum state of the com-
bined vibronic system. It may be advantageous to represent the vibronic

20) The interaction Hamiltonian (13.37) for k=0 commutes with the
vibrational number operator.
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quantum state in terms of the Wigner-function matrix Wij(α) [Wallentowitz,
de Matos Filho and Vogel (1997)],

Wij(α) =
2
π

∞

∑
n=0

(−1)n�nn
ij (−α). (13.100)

This Wigner-function matrix has the following properties. Its trace with re-
spect to the electronic subsystem is the (reduced) motional Wigner function,

W(α) = ∑
i=1,2

Wii(α). (13.101)

Moreover, integration of Wij(α) with respect to the motional phase-space am-
plitude α yields the (reduced) electronic density matrix σij,

σij =
∫

d2α Wij(α). (13.102)

The method under consideration is suited to the determination of the Wigner-
function matrix of entangled states of the Schrödinger-cat type, such as the
state |Ψ4〉 given in Eq. (13.63).

The method can be extended to determine the composed quantum state of
the electronic subsystem and two vibrational modes [Wallentowitz, de Matos
Filho, Gou and Vogel (1999)]. In particular, by taking the trace of the quantum
state with respect to the electronic degrees of freedom, one readily obtains the
complete information on entangled states of two vibrational modes. This ren-
ders it possible to apply the entanglement criteria considered in Section 8.5.2
to the data recorded in this manner.
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A
The medium-assisted Green tensor

A.1
Basic relations

The Green tensor Gij(r, r′, ω) in Eq. (2.207) has the properties

G∗
ij(r, r′, ω) = Gij(r, r′,−ω∗), (A.1)

Gji(r′, r, ω) = Gij(r, r′, ω), (A.2)
∫

d3s
ω2

c2 Im ε(s, ω) Gik(r, s, ω)G∗
jk(r′, s, ω) = Im Gij(r, r′, ω). (A.3)

Obviously, Eq. (A.1) is a direct consequence of the corresponding relation
(2.179) for the permittivity. To prove the reciprocity relation (A.2), we note
that the Green tensor G(r, r′, ω) as a function of r and r′ can be regarded as be-
ing the matrix elements in a position basis of a (tensor-valued) Green operator
Ĝ= Ĝ(ω) in an abstract 1-particle Hilbert space:

G(r, r′, ω) = 〈r|Ĝ|r′〉, (A.4)

where the matrix elements of the position operator r̂ are given by

〈r|r̂|r′〉 = rδ(r − r′), (A.5)

and the matrix elements of the associated momentum operator p̂ read

〈r|p̂|r′〉 =
1
i

∇δ(r − r′) (A.6)

([x̂i, p̂j]= iδij). Let Ĥ = Ĥ(ω) be the tensor-valued operator

Ĥ = ip̂ × ip̂ ×−q̂2 Î = p̂2 Î − p̂ ⊗ p̂ − q̂2 Î (A.7)

( Î, unit operator), where

q̂2 =
ω2

c2 ε(r̂, ω). (A.8)
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Equation (2.207) then corresponds to the operator equation

ĤĜ = Î, (A.9)

as can be easily seen. From Eq. (A.9) it then follows that the equation

Ĝ = Ĥ−1 (A.10)

is valid, and thus we find, after multiplying it from the right by Ĥ,

ĜĤ = Î. (A.11)

Writing down Eqs (A.9) and (A.11) in the position basis, a comparison of the
two equations immediately shows that the Green tensor obeys Eq. (A.2).

In order to prove Eq. (A.3), we introduce operators Ô+ defined by

(Ô+)ij = (Ôji)† ≡ Ô†
ji . (A.12)

From Eq. (A.9) it then follows that

Ĝ+Ĥ+ = Î. (A.13)

Multiplying Eq. (A.9) from the left by Ĝ+ and Eq. (A.13) from the right by Ĝ
and subtracting the resulting equations from each other, we find

Ĝ+(Ĥ − Ĥ+)Ĝ = Ĝ+ − Ĝ. (A.14)

From Eq. (A.7) it is easily seen that

(Ĥ − Ĥ+) = Î
(
q̂2† − q̂2). (A.15)

Representing Eq. (A.14) [together with Eq. (A.15)] in the position basis and
recalling the reciprocity relation (A.2), we eventually arrive at Eq. (A.3).

A.2
Asymptotic behavior

The Green tensor Gij(r, r′, ω) is holomorphic in the upper half-plane of com-
plex ω, because of the holomorphic behavior of ε(r, ω). In order to study the
behavior of Gij(r, r′, ω) for |ω|→∞ and |ω|→0, we first introduce the tensor-
valued projection operators

Î⊥ = Î − Î‖, Î‖ =
p̂ ⊗ p̂

p̂2 (A.16)

and decompose Ĥ, Eq. (A.7), as

Ĥ = (p̂2 − q̂2) Î⊥ − q̂2 Î‖. (A.17)
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Applying the Feshbach formula1, we then may decompose the Green tensor
operator Ĝ= Ĥ−1, Eq. (A.10), as

Ĝ = Ĥ−1 = Î‖( Î‖Ĥ Î‖)−1 Î‖

+ [ Î⊥− Î‖( Î‖Ĥ Î‖)−1 Î‖ĤÎ⊥]K̂[ Î⊥− Î⊥Ĥ Î‖( Î‖Ĥ Î‖)−1 Î‖], (A.18)

where

K̂ = [ Î⊥Ĥ Î⊥ − Î⊥Ĥ Î‖( Î‖Ĥ Î‖)−1 Î‖Ĥ Î⊥]−1. (A.19)

It is not difficult to prove that

Î‖Ĥ Î‖ = − Î‖ q̂2 Î‖, Î‖Ĥ Î⊥ = − Î‖q̂2 Î⊥, (A.20)

Î⊥Ĥ Î‖ = − Î⊥ q̂2 Î‖, Î⊥Ĥ Î⊥ = Î⊥
(
p̂2 − q̂2) Î⊥. (A.21)

Combining Eqs (A.18)–(A.21) and using Eq. (A.8), we obtain for Ĝ, the expres-
sion

Ĝ = − c2

ω2 Î‖( Î‖ ε̂ Î‖)−1 Î‖

+ [ Î⊥ − Î‖( Î‖ ε̂ Î‖)−1 Î‖ ε̂ Î⊥]K̂[ Î⊥ − Î⊥ ε̂ Î‖( Î‖ ε̂ Î‖)−1 Î‖], (A.22)

where [ε̂=ε(r̂, ω)]

K̂ =
[

Î⊥
(

p̂2 − ω2

c2 ε̂

)
Î⊥ +

ω2

c2 Î⊥ ε̂ Î‖( Î‖ ε̂ Î‖)−1 Î‖ ε̂ Î⊥
]−1

. (A.23)

Now the desired limiting processes can be performed easily. For |ω|→0 we
find [ε̂(0)=ε(0)(r̂)≡ε(r̂, ω = 0)]

lim
|ω|→0

ω2

c2 Ĝ = − Î‖( Î‖ ε̂(0) Î‖)−1 Î‖ (A.24)

and

lim
|ω|→0

q̂2Ĝ = −ε̂(0) Î‖( Î‖ ε̂(0) Î‖)−1 Î‖. (A.25)

For |ω|→∞ we arrive at, on recalling that Î‖ Î⊥ = Î⊥ Î‖ =0 and ε(r, ω)→ 1 if
|ω|→∞,

lim
|ω|→∞

ω2

c2 Ĝ = lim
|ω|→∞

q̂2Ĝ = − Î. (A.26)

1) See, e. g., Newton, R.G. (1982) Scattering Theory of Waves and Particles
(Springer, Berlin).
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Obviously, the first term on the right-hand side of Eq. (A.22) is the singular
part of Ĝ for |ω|→0. Performing in that term the Taylor expansion

ε(r̂, ω) = ε(0)(r̂) + ω ε(1)(r̂) + . . . , (A.27)

where ε(0)(r̂) is real and ε(1)(r̂) is imaginary [see Eq. (2.179)], we find that

Re Gij(r, r′, ω) ∼ ω−2 (|ω| → 0), (A.28)

Im Gij(r, r′, ω) ∼ ω−1 (|ω| → 0). (A.29)
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B
Equal-time commutation relations

In order to prove the familiar equal-time commutation relations for the
medium-assisted electromagnetic field (Section 2.4.2), let us first consider the
commutation relations of the electric-field strength and the vector potential.
Using Eqs (2.213) and (2.218) together with Eqs (2.211) and (2.220), recalling
the commutation relations (2.208) and (2.209), and applying the integral rela-
tion (A.3), after some algebra we derive

[Êk(r), Êk′(r′)] = [Âk(r), Âk′(r′)] = 0, (B.1)

[ε0Êk(r), Âk′(r′)] =
2ih̄
π

∫
d3s

∫ ∞

0
dω

ω

c2 Im Gkl(r, s, ω) δ⊥lk′(s − r′). (B.2)

In Eq. (B.2) the ω-integral can be performed by applying the rule
∫ ∞

0
dω . . . = lim

ε→0

∫ ∞

ε
dω . . . . (B.3)

Recall that, according to Eq. (A.29), Im Gil(r, s, ω) behaves as ω−1 as ω ap-
proaches zero. Thus we may transform, on using Eqs (A.1), (A.4) and (A.16),
the ω-integral into a principal-part (P) integral, so that Eq.(B.2) reads

[ε0Êk(r), Âl(r′)] =
h̄
π

∫
d3s P

∫ ∞

−∞

dω

ω

ω2

c2 〈r|Ĝ(ω)|s〉〈s| Î⊥|r′〉. (B.4)

Note that 〈r| Î⊥(‖)|r′〉=δ⊥(‖)(r−r′).
The evaluation of the ω-integral in Eq. (B.4) can be performed by means of

contour-integral techniques. Since Gkm(r, s, ω) is a holomorphic function of
ω in the upper complex frequency half-plane with the asymptotic behavior
according to Eq. (A.26), the ω-integrals can be calculated by contour integra-
tion along an infinitely small half-circle |ω|= ρ, ρ→0, and an infinitely large
half-circle |ω|=R, R→∞, in the upper complex half-plane,

P
∫ ∞

−∞
dω . . . = lim

ρ→0

∫
|ω|=ρ

Im ω>0

dω . . . − lim
R→∞

∫
|ω|=R

Im ω>0

dω . . . . (B.5)

From Eq. (A.24) it follows that

lim
|ω|→0

ω2

c2 ĜÎ⊥ = − Î‖( Î‖ ε̂(0) Î‖)−1 Î‖ Î⊥ = 0 (B.6)
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( Î‖ Î⊥ = 0), and therefore the integral over the small half-circle vanishes. Fi-
nally, from Eq. (A.26) we see that

lim
|ω|→∞

ω2

c2 ĜÎ⊥ = − Î⊥. (B.7)

Hence,

P
∫ ∞

−∞

dω

ω

ω2

c2 〈r|Ĝ(ω) Î⊥|r′〉 = iπδ⊥(r − r′), (B.8)

and the sought commutator reads

[ε0Êk(r), Âl(r′)] = ih̄δ⊥kl (r − r′). (B.9)

The corresponding commutation relations for the displacement field
[Eq. (2.215) together with Eqs (2.216) and (2.211)] can be derived in a quite
similar way. As expected, the result is

[D̂k(r), D̂k′(r′)] = 0, (B.10)

[D̂k(r), Âk′(r′)] = ih̄δ⊥kk′(r − r′), (B.11)

because the polarization P̂(r)=D̂(r)− ε0Ê(r) is related to the degrees of free-
dom of the matter and it should therefore commute with the radiation field
operators. Recalling the relations ∇ × Â = B̂, Π̂ = −ε0Ê⊥, −∇ϕ̂ = Ê‖, and
P̂ = D̂− ε0Ê and using the commutation relations (B.1), (B.9)–(B.11), it is not
difficult to derive further commutation relations, e. g.,

[ε0Êk(r), B̂l(r′)] = −ih̄ εklm ∂r
mδ(r − r′), (B.12)

[Âk(r), Π̂l(r′)] = ih̄ δ⊥kl (r − r′), (B.13)

[ϕ̂(r), ϕ̂(r′)] = [ϕ̂(r), Âk(r′)] = [ϕ̂(r), Êk(r′)] = [ϕ̂(r), D̂k(r′)] = 0. (B.14)

It should be pointed out that the commutation relations given above are also
valid when additional charged particles are present. Needless to say, quanti-
ties of the medium-assisted electromagnetic field and quantities of the addi-
tional charged particles, commute.
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C
Algebra of bosonic operators

C.1
Exponential-operator disentangling

Let us briefly summarize some basic rules of bosonic operator algebra.1 For
simplicity, we restrict our attention to operator functions F̂(â, â†) of a single
harmonic oscillator,

[â, â†] = 1. (C.1)

The extension to multi-mode systems is straightforward. Note that operator
functions are understood in the sense of power-series expansions in the oper-
ators â and â†. Let us first consider an expression of the type

Ĝ(z; â, â†) = eâzF̂(â, â†)e−âz, (C.2)

where z is a c-number variable. Expanding F̂(â, â†) in a power series and per-
forming the exponential-operator transformations step by step, by inserting
the identity operator Î = eâze−âz into any pair of neighboring boson operators,
we readily verify that

Ĝ(z; â, â†) = F̂(â, eâz â†e−âz). (C.3)

We now differentiate Ĝ as given in Eq. (C.2) and use Eq. (C.3) to obtain

dĜ(z; â, â†)
dz

= eâz[â, F̂(â, â†)]e−âz

= [â, Ĝ(z; â, â†)] = [â, F̂(â, eâzâ†e−âz)]. (C.4)

Equation (C.4) may be used to evaluate eâz â†e−âz. For this purpose, we
choose F̂= â†, so that

Ĝ = eâzâ†e−âz (C.5)

1) For more details we refer the reader to standard text books on quan-
tum mechanics.
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and

dĜ
dz

= eâz[â, â†]e−âz = 1. (C.6)

Since Ĝ|z=0 = â†, from Eq. (C.6) we find that

Ĝ = â† + z. (C.7)

Hence

eâzâ†e−âz = â† + z, (C.8)

e−â†z∗ âeâ†z∗ = â + z∗. (C.9)

Equation (C.8) [or (C.9)] is a special case of the Baker–Hausdorff lemma

eÂz B̂e−Âz =
∞

∑
n=0

zn

n!
[Â, B̂]n, (C.10)

where

[Â, B̂]n = [Â, [Â, B̂]n−1], [Â, B̂]0 = B̂, (C.11)

with Â and B̂ being arbitrary operators. It can be proved straightforwardly by
power-series expansion in z of the operator eÂz B̂e−Âz.

We now return to Eq. (C.4). Using the relation (C.8), we may rewrite
Eq. (C.4) as

dĜ(z; â, â†)
dz

= [â, F̂(â, â† + z)]. (C.12)

From this it is evident that

dĜ
dz

∣∣∣
z=0

= [â, F̂(â, â†)]. (C.13)

On the other hand, from Eq. (C.3) together with Eq. (C.8), we find that

Ĝ(z; â, â†) = F̂(â, â† + z), (C.14)

and thus

dĜ
dz

∣∣∣
z=0

= lim
z→0

dF̂(â, â† + z)
dz

=
∂F̂(â, â†)

∂â† . (C.15)

Comparing Eqs (C.13) and (C.15), we obtain the relation

[â, F̂(â, â†)] =
∂F̂(â, â†)

∂â† . (C.16)
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The relation

[F̂(â, â†), â†] =
∂F̂(â, â†)

∂â
(C.17)

can be proved analogously.
Let us now consider an exponential operator of the form

Ĝ(z; â, â†) = exp
{
[F̂1(â, â†) + F̂2(â, â†)]z

}
(C.18)

and seek a representation of Ĝ in the form of a product of two operator expo-
nentials. To find this disentangled form of Ĝ, we make the ansatz

Ĝ(z; â, â†) = Ĝ1(z; â, â†) Ĝ2(z; â, â†), (C.19)

Ĝ1(z; â, â†) = exp[F̂1(â, â†)z]. (C.20)

From Eqs (C.18) and (C.19) it follows that Ĝ2 obeys the differential equation

dĜ2

dz
= F̂′

2Ĝ2, F̂′
i = Ĝ−1

1 F̂iĜ1 (C.21)

(i=1, 2). As is well known, the solution of Eq. (C.21) (with the initial condition
Ĝ2|z=0 =1) may be written in the form of the Z-ordered exponential (z, real
number)

Ĝ2(z; â, â†) = Z exp
[∫ z

0
dz′ F̂′

2(z′; â, â†)
]

, (C.22)

where the Z ordering is defined by

Z F̂′
2(z1; â, â†)F̂′

2(z2; â, â†) =




F̂′
2(z1; â, â†)F̂′

2(z2; â, â†) if z1 > z2,

F̂′
2(z2; â, â†)F̂′

2(z1; â, â†) if z2 > z1.
(C.23)

The operator F̂′
2 obviously satisfies the differential equation

dF̂′
2

dz
= Ĝ−1

1 [F̂2, F̂1]Ĝ1 = [F̂′
2, F̂′

1]. (C.24)

If the commutator [F̂2, F̂1] is a c number, that is, [F̂2, F̂1]=α, from Eq. (C.24)
it follows that F̂′

2 = F̂2 + αz (note that the initial condition F̂′
2|z=0 = F̂2 holds).

Substituting this expression into Eq. (C.22), we can readily see that, in the
present case, the Z-ordering symbol can be omitted and the integration over
z can be performed directly in the exponent. In this way we derive

Ĝ2 = exp
(

F̂2z + 1
2 αz2), (C.25)
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so that Eqs (C.18)–(C.20) lead to the disentangling prescription2

exp(F̂1z + F̂2z) = exp(F̂1z) exp(F̂2z) exp
( 1

2 [F̂2, F̂1]z2), (C.26)

which for z = 1 yields the well-known Baker–Campbell–Hausdorff formula.
Making the identifications F̂1 = α1 â† and F̂2 = α2 â (with α1 and α2 being
c numbers), we can easily see that Eq. (C.26) leads to the relation (z=1)

eα1 â†+α2 â = eα1 â†
eα2 âe

1
2 α1α2 . (C.27)

C.2
Normal and anti-normal ordering

In quantum optics, various kinds of operator ordering play an important role.
In this context it is often useful, and in certain cases necessary, to bring opera-
tor functions into a given order. Let us consider the normal ordering indicated
by the N symbol or the : : notation, which means ordering of the operators â
and â† with the (creation) operators â† to the left of the (annihilation) oper-
ators. To bring a given operator function F̂(â, â†) into its normally ordered
form F̂(N)(â, â†) [by means of the commutation relation (C.1)], the operators â
and â† in F̂(â, â†) must be rearranged in such a way that

F̂(â, â†) = F̂(N)(â, â†) = : F̂(N)(â, â†) : . (C.28)

An example is given in Eq. (C.27). To formulate a general rule, let us consider
an operator function

F̂(â, â†) = â Ĝ(â, â†) (C.29)

and assume that the normally ordered form Ĝ(N) of the operator Ĝ is known,
so that

F̂(â, â†) = âĜ(N)(â, â†), (C.30)

which may be rewritten as

F̂(â, â†) = [â, Ĝ(N)(â, â†)] + Ĝ(N)(â, â†) â. (C.31)

Using Eq. (C.16) yields

F̂(â, â†) =
∂Ĝ(N)(â, â†)

∂â† + Ĝ(N)(â, â†) â. (C.32)

2) For a large variety of examples of disentangling prescriptions, see
Wilcox (1967).
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The expression on the right-hand side of Eq. (C.32) obviously represents the
operator F̂ in normal order. We may therefore write

F̂(â, â†) =
∂Ĝ(N)(â, â†)

∂â† + Ĝ(N)(â, â†) â = :
(

â +
∂

∂â†

)
Ĝ(N)(â, â†) : .

Clearly, since in Ĝ(N) the operators â† are to the left of the operators â, the
latter may be replaced by â+∂/∂â†:

F̂(N)(â, â†) = :
(

â +
∂

∂â†

)
Ĝ(N)

(
â +

∂

∂â† , â†
)

: . (C.33)

Recalling Eq. (C.30), we finally arrive at the result that

F̂(N)(â, â†) = : F̂
(

â +
∂

∂â† , â†
)

: . (C.34)

It is worth noting that this derivation implies that Eq. (C.34) not only applies
to the particular operator function in Eq. (C.29) but to any operator function
allowing power-series expansion. In the derivation of Eq. (C.34) we started
from an operator function of the form F̂(â, â†) = âĜ(â, â†). If we start from
F̂(â, â†)= Ĝ(â, â†)â† then, on the basis of similar arguments, it may be shown
that an operator function F̂ can also be brought into normal order by applying
the relation

F̂(N)(â, â†) = : F̂
(

â, â† +
∂

∂â←−

)
: . (C.35)

In contrast to Eq. (C.34), in Eq. (C.35) the operators â† are replaced by â† +
∂/∂â←−, where the arrow indicates that ∂/∂â must be thought of as acting on the
â operators to its left.

We finally note that the case of anti-normal order can be treated quite sim-
ilarly. An operator function is said to be in anti-normal order when the op-
erators â and â† are ordered with the operators â† to the right of the opera-
tors â. We indicate this kind of ordering prescription by the A symbol or the
‡‡ notation. To bring a given operator function F̂(â, â†) into the anti-normally
ordered form F̂(A)(â, â†),

F̂(â, â†) = F̂(A)(â, â†) = ‡F̂(A)(â, â†)‡, (C.36)

we may use, in close analogy to Eqs (C.34) and (C.35), the relations

F̂(A)(â, â†) = ‡F̂
(

â, â† − ∂

∂â

)
‡, (C.37)

F̂(A)(â, â†) = ‡F̂
(

â − ∂

∂â←−† , â†
)

‡ . (C.38)
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D
Sampling function for the density matrix in the number basis

In order to show that the function fmn(x) defined by Eq. (7.70) solves the inte-
gral equation (7.68), we follow the derivation given by Leonhardt (1997). We
first rewrite Eq. (7.69) as

φ′′
n(x) = [u(x)− n]φn(x), (D.1)

where

u(x) = 1
4 x2 − 1

2 . (D.2)

From Eq. (D.1) it follows that

(k + l)φk(x)φl(x) = 2u(x)φk(x)φl(x) + 2φ′
k(x)φ′

l(x)− [φk(x)φl(x)]′′. (D.3)

Thus we may write

(k + l)
∫

dx φk(x)φl(x)[φm(x)φn(x)]′ = −
∫

dx [φk(x)φl(x)]′′[φm(x)φn(x)]′

+
∫

dx
[
2u(x)φk(x)φl(x) + 2φ′

k(x)φ′
l(x)

]
[φm(x)φn(x)]′. (D.4)

Differentiating Eq. (D.3) and using Eq. (D.1), we derive

[φm(x)φn(x)]′′′ = 2[2u(x)− m − n][φm(x)φn(x)]′

+ 2u′(x)φm(x)φn(x)− (m−n)Wmn(x), (D.5)

where

Wmn(x) = φm(x)φ′
n(x)− φ′

m(x)φn(x). (D.6)

In the first integral on the right-hand side of Eq. (D.4) we integrate by parts,1

∫
dx [φk(x)φl(x)]′′[φm(x)φn(x)]′ =

∫
dx φk(x)φl(x)[φm(x)φn(x)]′′′, (D.7)

1) Here and in the following, we assume that the integrands which are
to be taken at x=±∞ vanish, which is of course the case for regular
wave functions. The assumption also remains correct if one of the
four wave functions is irregular.
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and substitute into the resulting integral the expression (D.5). Equation (D.4)
then takes the form of

(k + l)
∫

dx φk(x)φl(x)[φm(x)φn(x)]′

=
∫

dx φk(x)φl(x)
{

2[m+n− u(x)][φm(x)φn(x)]′ − 2u′(x)φm(x)φn(x)
}

+
∫

dx {2φ′
k(x)φ′

l(x)[φm(x)φn(x)]′ + W ′
kl(x)Wmn(x)}, (D.8)

where the relations

W ′
mn(x) = (m − n)φm(x)φn(x) (D.9)

and m− n = k − l have been used. Equation (D.9) follows by differentiating
Eq. (D.6) and applying Eq. (D.1). The second integral on the right-hand side
of Eq. (D.8) can be rewritten, on integrating by parts, as

∫
dx {2φ′

k(x)φ′
l(x)[φm(x)φn(x)]′ + W ′

kl(x)Wmn(x)}

= −
∫

dx {2[φ′
k(x)φ′

l(x)]′φm(x)φn(x) + Wkl(x)W ′
mn(x)}. (D.10)

Application of Eq. (D.1) [together with Eq. (D.6)] yields the relation

2[φ′
k(x)φ′

l(x)]′ = [2u(x)− k − l][φk(x)φl(x)]′ − (k − l)Wkl(x). (D.11)

Substituting it into Eq. (D.10), we derive (m−n=k− l)
∫

dx {2φ′
k(x)φ′

l(x)[φm(x)φn(x)]′ + W ′
kl(x)Wmn(x)}

= −
∫

dx [2u(x)− k − l][φk(x)φl(x)]′φm(x)φn(x)

=
∫

dx φk(x)φl(x){2u′(x)φm(x)φn(x) + [2u(x)−k−l][φm(x)φn(x)]′}.

(D.12)

We now combine Eqs (D.8) and (D.12) to obtain

2(m + n − k − l)
∫

dx φk(x)φl(x)[φm(x)φn(x)]′ = 0, (D.13)

from which it follows that
∫

dx φk(x)φl(x)[φm(x)φn(x)]′ = Cmnδkmδln (k − l = m − n). (D.14)

Obviously, Cmn = 0 if φm(x) and φn(x) are both regular wave functions,
i. e., φm(x) = ψm(x) and φn(x) = ψn(x). Let us now assume that one of the
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wave functions is irregular, i. e., φm(x)=ψm(x) and φn(x)= χn(x). Recalling
Eq. (D.9) [together with Eq. (D.6)], we can easily see that the Wronskian

Wn = ψn(x)χ′
n(x)− ψ′

n(x)χn(x) (D.15)

is a constant that must be nonvanishing, because of the linear independence
of the functions ψn(x) and χn(x). We thus derive

∫
dx ψm(x)ψn(x)[ψm(x)χn(x)]′

=
∫

dx {ψm(x)χn(x)[ψm(x)ψn(x)]′ + ψ2
m(x)Wn}

= −
∫

dx ψm(x)ψn(x)[ψm(x)χn(x)]′ + Wn, (D.16)

from which it follows that
∫

dx ψm(x)ψn(x)[ψm(x)χn(x)]′ = 1
2 Wn (D.17)

(Cmn =Wn/2). Choosing Wn =2/π, we just arrive at Eq. (7.68) together with
Eq. (7.71).
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– Λ configuration 391
– absorption 169
– balance equation 372
– Bloch equation 164, 168, 370, 388, 392
– bound state 51
– damped 161
– dephasing 163, 169
– depopulation rate 168
– dipole approximation 51, 353
– dipole transition 177, 338, 368, 448
– dressed state 384, 385
– electric-dipole operator 51
– energy relaxation 161, 163, 169
– filling rate 168
– flip operator 52
– induced emission 169
– ladder configuration 398
– Langevin equation 162, 163, 164, 165
– level shift 163, 342, 347
– Lorentz force 353
– master equation 163, 164, 166
– multipole transition 52, 449
– phase relaxation 169
– photodetector 174
– polarizability tensor 356
– population inversion 168
– quantum jump 395, 398
– radiation force 354
– radiationless dephasing 371
– radiationless relaxation 165

– radiative damping 165, 168
– resonance fluorescence 367
– saturation 374
– spontaneous emission 168, 338, 402
– three-level system 392
– transition rate 163
– transition-dipole moment 409
– trapped atom 443
– trapped ion 383, 398, 404
– two-level system 161, 339, 370, 408
– van der Waals force 354
– van der Waals potential 356
– vibronic coupling 398

b
Baker–Campbell–Hausdorff relation 490
Baker–Hausdorff lemma 488
balance equation 17
beam splitter 8, 9, 198, 205
– absorbing 210
– absorption matrix 211
– asymmetric 206
– coherent-state transformation 210, 212
– commutation relation 206
– dielectric plate 205
– homodyne detection 213
– input-output relation 206, 210, 211
– phase-space function 208, 212
– quantum-state transformation 208, 212
– reflectance 206
– SU(2) disentangling 210
– SU(2) group transformation 208
– SU(4) group transformation 211
– symmetric 206
– transformation matrix 211
– transmittance 206
– U(2) group transformation 206
– unitary transformation operator 208
Bernoulli transformation 193
– inverse 193
Bloch equation 7, 164, 168
– Laplace transformed 388
– resonance fluorescence 370, 388
– semi-classical 370
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– three-level system 392
Bochner theorem 282, 287
Born approximation 141
Born–Oppenheimer state 399
bosonic algebra 487
– exponential-operator disentangling 487
bosonic system
– coherent state 79
– displaced number state 87
– number state 73
– phase state 104
– quadrature eigenstate 102
– quantum state 73
– squeezed state 88
bunched light 3, 272

c
canonical equation
– electromagnetic field 22
canonical variable
– center-of-mass motion 445
– electromagnetic field 21, 23, 24, 31, 47
– matter 31
– mode expansion 23
Casimir effect 337
Casimir force 26, 353, 360
– Green tensor 364
– perfectly reflecting plate 365
– planar structure 364
– stress 363, 364
Casimir–Polder force, see van der Waals

force
cavity 299
– advanced Langevin equation 313
– cavity QED 299
– characteristic function 329
– commutation relation 317, 318, 321
– correlation function 323, 324, 326
– damping 299, 328
– damping rate 304, 328
– detection of light 435
– dielectric plate 301
– dissipative channel 328
– eigenfrequency 304
– external field 313, 321, 323, 326
– extraction efficiency 334
– Hamiltonian 327
– incoming field 306, 314, 315
– input-output relation 316, 325, 329
– input/output 9
– internal field 308, 318, 326
– Langevin equation 308, 312, 328
– leaky 15, 135, 299
– microwave cavity 428
– mode function 301
– multi-mode field 300, 306
– nonmonochromatic mode 311, 331

– outgoing field 306, 314, 315
– phase-space function 333
– QND measurement 437
– quality 303, 350
– quantum-state extraction 329
– quantum-state preparation 431
– quantum-state reconstruction 435, 438
– reconstruction of the Wigner function

440
– response function 302
– source-quantity representation 307, 314,

318, 320, 321
– spectral response function 303
– spontaneous emission 349, 415
– unwanted losses 327, 328
– Wigner function 333
chaotic light, see thermal state
charge conservation 17
charge density
– noise 45
coarse-grained averaging 54, 142, 308,

313
coherence condition 85
coherent state 3, 79, 272
– P function 129
– electric-field variance 84, 86
– light pulse 87
– mean field 84, 86, 87
– mean photon number 82, 85
– multi-mode system 85
– nonlinear 470
– nonorthogonality 83
– number basis 82
– number distribution 82
– over-completeness 82, 84
– photon-number variance 82, 85
– Poisson counting statistics 181, 274
– resolution of the identity 83
– single-mode system 79
– squeezed 90
commutation relation
– annihilation operator 25, 28
– beam splitter 206
– bosonic 25, 28, 74, 190
– cavity 317, 318, 321
– center-of-mass motion 445
– creation operator 25, 28
– damped harmonic oscillator 136
– different times 6, 16, 65, 66, 68, 136, 154,

190, 318
– electromagnetic field 21, 24
– equal times 21, 24, 25, 27, 31, 36, 43, 90,

136, 190, 317, 318, 445, 485
– free-space electromagnetic field 66
– noise generator 136, 319
– system–reservoir 154
– time delay 6, 68
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continuity equation 17, 45
correlation function
– cavity output 323, 324, 326
– classical counterpart 266
– damped system 169
– detected radiation 182, 186, 189, 266
– electromagnetic field 16, 69
– input-output relation 326
– intensity 184, 186, 203, 228, 266, 270, 375
– resonance fluorescence 368
– source quantity 16, 71
– spectral 202
Coulomb energy 20, 37, 43, 48, 49
Coulomb gauge 19, 22, 26, 47
– generalized 42
Coulomb potential 19
creation operator 24, 74
current density
– noise 45
– transverse 19

d
damping 3, 135
– (dynamic) system 135
– Born approximation 141
– center-of-mass motion 448
– coarse-grained averaging 142
– commutation relation 136, 154
– correlation time 142
– decay time 142
– density matrix 147
– expectation value 146
– Fokker–Planck equation 148, 156, 160
– harmonic oscillator 138, 151
– Heisenberg equation of motion 139
– Heisenberg picture 139, 170
– Langevin equation 135, 137, 142, 143,

145, 146
– leaky cavity 139, 328
– level shift 153, 160, 163
– line broadening 386
– Markov approximation 142, 145, 154,

169
– Markovian 136
– master equation 147, 155, 160, 163
– micromaser 432
– multi-level system 168
– multi-time correlation 169
– phase-space representation 148
– quantum regression theorem 169, 172
– radiationless dephasing 158
– rate 143, 154, 448
– reservoir 135
– Schrödinger picture 148, 170
– slowly varying amplitude operator 139
– system–reservoir Hamiltonian 137
– two-level system 161

dark resonance 391
decoherence 12
– nonlinear Jaynes–Cummings model 454
density matrix
– P function 267
– characteristic function 248
– coherent-state basis 116
– damping 147
– direct sampling 252, 255
– equation of motion 115, 175
– Jaynes–Cummings model 411
– master equation 147, 155, 160, 163
– phase-space representation 126
– properties 114
– reconstruction 10, 248, 254, 477
– reduced 116, 147
– relation to Q function 250
– relation to displaced number distribution

254
– relation to quadrature distribution 248,

250
– relation to Wigner function 249
– sampling function 493
– statistical operator 113
density operator, see density matrix
dielectric medium 15
– absorbing 44
– causality 40
– dispersing 44
– dissipation-fluctuation theorem 40
– frequency-dependent permittivity 15
– Kramers–Kronig relation 41
– multi-slab configuration 303
– noise charge density 45
– noise current density 45
– noise polarization 40
– nonabsorbing 41
– nondispersing 41
– permittivity 41
– susceptibility 40
dielectric plate 9
– beam splitter 205
– mode function 198
– response function 199, 201
dipole approximation 7, 51, 61, 176
– Lorentz force 353
– radiation force 354
– resonance fluorescence 367
– trapped atom 448
dipole-forbidden transition 52
dispersion relation 26, 44
displaced number distribution
– measurement 215, 439
– relation to density matrix 254
– relation to phase-space representation

256
displaced number state 87, 216
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– completeness relation 88
– number basis 88
displacement operator 80
– s-order 121
– anti-normal order 120
– normal order 119
dissipative system, see reservoir
dressed-atom state 384, 385, 410
– level splitting 386
– transition 386
duality transformation 360
dynamic Stark effect 410

e
effective Hamiltonian 7, 56, 72
– four-wave mixing 278
– squeezed-light generation 278
– three-photon resonance 59
– two-photon absorption/emission 56
Einstein’s hypothesis 2
Einstein–Podolsky–Rosen (EPR)
– paradox 291
– state 434
electromagnetic field 16
– balance equation 17
– canonical equation 22
– canonical variable 21, 24, 47
– commutation relation 6, 21, 24, 25, 27,

31, 36, 43, 66, 68, 190, 317, 318, 321, 485
– correlation function 69, 182, 184, 186,

202, 266, 270, 323, 368
– Coulomb gauge 19
– dielectric medium 39
– energy density 17
– free field 6, 20, 62, 65, 307, 314
– Green tensor representation 47
– Hamiltonian 21, 24, 25, 29, 32, 36
– input-output relation 316
– input/output 72
– Lagrangian 20
– longitudinal 19
– medium-assisted 44, 337
– mode expansion 22, 27, 28, 36, 44, 61,

86, 100, 305, 448
– momentum density 17
– monochromatic mode 22
– nonmonochromatic mode 28
– photoelectric detection 173
– photon 24
– propagation function 62, 65
– quantum-state reconstruction 237
– radiation 32
– reservoir 164
– resonance fluorescence 367
– source field 62, 65, 307, 315, 340, 367,

396
– source-quantity representation 60

– spontaneous emission 338
– time-dependent commutation relation

65
– transverse 19
– traveling plane wave 26, 27
– vacuum energy 25
– wave equation 22
electromagnetic field/matter 30
– canonical variable 31, 35
– Coulomb energy 20, 37, 48, 49
– coupling 32, 37, 50
– dielectric medium 39
– elementary excitation 46
– Hamiltonian 31, 32, 35, 43, 46, 47, 49
– Lagrangian 18, 20, 34, 42
– magnetization 33
– minimal coupling 31, 43, 47, 56
– multipolar coupling 33, 35, 49, 51, 56
– polarization 33, 40
– semi-classical 370
energy balance 17
energy density 17
energy transfer 55, 337
entanglement 6, 265, 290
– definition 292
– entropic measure 292
– EPR 291, 435
– moments-based criteria 295
– normally ordered moments 294
– partial transposition 293
– Peres–Horodecki condition 292
– special conditions 295
Euler–Lagrange equation 19, 20

f
Fabry–Perot 15, 198
Fano factor
– electronic 194
– photonic 194
Fock state, see number state
Fokker–Planck equation 148, 156, 160
– harmonic oscillator 156, 160
four-port device
– beam splitter 198
– dielectric plate 198
– spectral filter 198
four-wave mixing 278
free electromagnetic field, see electromag-

netic field
frequency mixing 56
frequency shift, see level shift

g
gauge freedom 19
Glauber state, see coherent state
Green tensor 45, 481
– Casimir force 364



Index 501

– field expansion 47
– free space 65, 342
– scattering part 342
– source-quantity representation 64
– spontaneous emission 341
– van der Waals force 357

h
Hamilton’s principle 18, 20
Hamiltonian
– approximate 16, 50
– center-of-mass motion 446
– center-of-mass motion/light 446
– decomposition 32, 36
– dynamic/dissipative system 163
– effective 7, 56, 59, 72, 278
– electromagnetic field 21, 24, 25, 29, 32,

36
– electromagnetic field/matter 31, 32, 35,

36, 43, 49
– Jaynes–Cummings 408, 453
– matter 32, 36
– medium-assisted electromagn. field 46
– mode expansion 24
– nonlinear Jaynes–Cummings 452
– nonmonochromatic modes 29
– photoelectric detection of light 174
– system–reservoir 137, 151, 159, 161, 165
– trapped atom 446
– vibronic system 398
Hanbury Brown–Twiss experiment 3, 270
harmonic oscillator
– annihilation/creation operator 25
– balance equation 156, 158
– center-of-mass motion 446
– coherent state 79
– damped 135, 151
– dephasing 156, 158
– displaced number state 87
– energy relaxation 151, 156, 158
– Fokker–Planck equation 156, 158, 160
– irregular wave function 252
– Langevin equation 135, 151, 160
– master equation 155, 160
– number state 73
– phase relaxation 158
– phase state 104
– quadrature state 102
– quantum 24
– radiationless dephasing 158
– radiationless relaxation 159
– squeezed state 88
– transition rate 153, 156
heat bath, see reservoir
Heisenberg equation of motion
– damping 139
– electromagnetic field/matter 53, 61

– free electromagnetic field 22
– photonic 25, 61
– source quantity 61
– two-photon absorption/emission 56
Heisenberg picture 22, 60, 139, 146, 170,

305
Heisenberg’s uncertainty principle 97,

135
Helmholtz equation 22, 44, 198, 301
higher-order harmonics 56
homodyne detection 10, 15, 205, 281
– Q function 10, 226
– balanced eight-port scheme 10, 223
– balanced four-port scheme 10, 217, 266
– beam splitter 205, 210, 213
– correlation measurement 228, 231, 266
– difference-count probability 10, 218
– displaced photon-number statistics 216
– four-port scheme 213
– higher-order moments 231
– joint-event probability 218
– local oscillator 205, 213, 219, 225
– mean number of counts 213
– photon-number fluctuation 214
– quadrature 213, 214, 217, 220
– quantum-state displacement 216
– shot-noise level 214
– signal field 205
– squeezed light 215, 280, 281
– unbalanced four-port scheme 213
– variance of counts 214
hot luminescence 400
Husimi function, see phase-space repre-

sentation, Q function

i
idler field 59
input-output relation
– beam splitter 206, 210, 211
– cavity 316
– correlation function 326
– spectral filter 200
intensity correlation, see correlation func-

tion, intensity
interaction Hamiltonian
– approximate 50
– bound atomic state 51
– electric-dipole approximation 51, 61,

176
– many atoms 61
– minimal coupling 33, 51, 446
– multipolar coupling 37
– photoelectric detection of light 174, 176
– rotating-wave approximation 53, 176
– trapped atom 446, 448, 451
interaction picture 175, 451
intra-atomic electric field 51
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inversion
– population 168

j
Jaynes–Cummings model 6, 7, 351, 408
– coherent preparation 422
– collapse 415, 416, 419
– decoherence effects 454
– density matrix 411
– eigenvalue problem 409
– electronic-state dynamics 413
– field dynamics 424
– Hamiltonian 408, 412
– level splitting 410
– micromaser 428
– multi-photon transition 412
– nonlinear 12, 449, 452
– reduced density matrix 413
– revival 415, 416, 417, 419
– spontaneous emission 415
– sub-Poissonian light 425
– time-evolution operator 411
– trapped atom 449
– two-photon transition 419
– vacuum Rabi oscillation 415

k
Kramers–Kronig relation 15, 41

l
Lagrangian
– Coulomb gauge 20
– electromagnetic field 20
– electromagnetic field/matter 18, 20, 34,

42
– generalized Coulomb gauge 42
Lamb shift, see level shift
Lamb–Dicke parameter 450
Lamb–Dicke regime 451
Lambert–Beer law 196
– extinction coefficient 197
Langevin equation 135, 137, 142, 151, 160,

162, 165, 300, 311
– advanced 313
– damping term 143
– drift motion 312
– harmonic oscillator 151, 160
– hierarchy 146
– level shift 143
– multiplicative noise 144
– noise generator 136, 143, 145, 312, 319
– two-level system 162, 165
Langevin force, see Langevin equation,

noise generator
laser 2, 3
– single-mode 131
laser spectroscopy 1

level shift 143, 153, 160, 163, 337, 342, 347
light absorption 174, 197
light cone 66
local oscillator 15, 205, 213, 219, 225, 280
Lorentz force 17, 52, 353, 361
– dipole approximation 353
– stress tensor 362
loss compensation 253

m
Mach–Zehnder interferometer 281
magnetization 33
– current 34
Markov approximation 142, 145, 154, 169,

341, 368
master equation 147, 148
– harmonic oscillator 155, 160
– trapped atom 467
– two-level system 163, 164, 166
matter
– commutation relation 31, 36, 43, 445
– Hamiltonian 32, 36
– magnetization 33
– nonrelativistic 18
– polarization 33, 40
– trapped atom 443
Maxwell equation 16, 40, 44
– Green tensor 45
– stress tensor 17, 362
medium-assisted electromagnetic field 7,

44
– canonical variable 47
– dynamical variable 46
– Hamiltonian 46
– source-quantity
micromaser 408, 428
– damping 432
– density matrix 429
– photon-number state 431
– sub-Poissonian light 432
– time scaling 429
– trapping state 431
– two-photon transition 429
micromotion 444
minimal coupling 31, 47
– Hamiltonian 31, 43, 47
minimum-uncertainty state 97
mixture of states, see density matrix
mode
– canonical variable 23
– cavity 301
– completeness relation 23, 44
– Coulomb gauge 22, 26
– dielectric plate 198
– expansion 22, 28, 36, 44, 61, 86, 100, 305,

448
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– expansion of the canonical momentum
23, 27

– expansion of the vector potential 23, 27
– function 22, 29
– monochromatic 22, 22, 44
– nonmonochromatic 28, 311, 331
– nonorthogonality 29
– operator 22
– ortho-normalization relation 23, 25, 44
– spatio-temporal 30
– traveling plane wave 26, 86, 100, 448
molecular optics 360
Mollow triplet 390
momentum balance 17, 362
momentum density 17
multi-mode system
– coherent state 85
– number state 78
– squeezed state 98
multi-photon absorption/emission 7, 56
multi-photon resonance 56, 59
multi-wave mixing 5, 7, 56
multipolar coupling 33, 49
– Hamiltonian 35, 49
– Lagrangian 34
multipole moment 35

n
negative-frequency part 54
Newtonian equation of motion 18
– trapped atom 444
nonclassical 5, 265
– characteristic function 281
– entanglement 6, 290
– normally ordered moments 288, 294
– quantum interference 290
– state 127, 131
nonclassical light 1, 5, 184
– P function 267
– anti-bunched light 5, 270, 272
– application 281
– condition 272, 274, 276
– generation 278
– squeezed light 5, 276, 278
– sub-Poisson counting statistics 184
– sub-Poissonian light 5, 273, 425, 432
nonclassicality
– Bochner condition 282, 288
– characteristic function criteria 281
– first order 283
– hierarchy of conditions 285
– higher order 285
– moments-based criteria 289, 295
– weak measurement 269
nonlinear optics 1, 7, 56
number operator 74
– eigenvalue problem 74

– photoelectric detection of light 190, 191
– photonic 25, 78
– QND measurement 437
number state 73
– P function 132
– Q function 133
– completeness relation 76
– displaced 87
– electric-field variance 78
– multi-mode system 78
– single-mode system 73
– Wigner function 134

o
off-resonant light–matter coupling 53
one-photon resonance 54
operator disentangling 490
operator ordering
– s-order 121
– anti-normal 80, 121, 127, 491
– anti-standard 121
– associated c-number function 117, 120,

122, 148, 219, 225
– cavity output 325
– normal 69, 75, 80, 117, 121, 127, 177,

182, 186, 189, 192, 203, 257, 266, 323, 490
– other than boson systems 148
– photoelectric detection of light 182, 183,

186, 189, 192, 203
– standard 121, 269
– symmetrical 121
– time 68, 69, 177, 182, 186, 266, 323
optical bistability 56
optical cavity, see cavity
optical homodyne tomography, see

quantum-state reconstruction, tomog-
raphy

optical parametric oscillator 7, 59, 281
optical path 199
optoelectronics 1

p
P function, see phase-space representation
parametric down-conversion 275
parity operator
– displaced 123
– Wigner function 123
passband width 200
passive instrument 8, 15, 65, 72
– absorbing beam splitter 210
– beam splitter 198
– cavity 7, 299
– four-port device 206
– linear macroscopic body 8
– nonabsorbing beam splitter 205
– spectral filter 7, 198
Paul trap 444
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periodic boundary condition 26
permittivity 41
– absorption 41
– complex 41
– dispersion 41
– Drude–Lorentz type 344
– space-dependent 41
phase
– canonical 107, 260
– commutation relation 109, 111
– cosine/sine 109
– difference 111
– Dirac 104
– exponential 105
– exponential moment 260
– Hermitian 109, 111
– London 107
– operational 228
– operator 5, 104, 105, 109
– reconstruction 260
– relation to quadrature distribution 261
– state 5, 107, 108
– Susskind–Glogower 105
– truncated Hilbert space 108
– uncertainty 109
phase conjugation 56
phase state 104
– canonical 107
– cosine/sine 109
– resolution of the identity 107, 110
phase-rotated quadrature, see quadrature
phase-space function, see phase-space

representation
phase-space representation 113
– P function 119, 166, 222, 267, 274, 276
– Q function 120, 124, 226, 228, 250
– s-order 121, 124, 156, 333
– s-ordered moment 128
– anti-normal order 120
– associated c-number function 118, 120,

123
– cavity 333
– characteristic function 128, 149, 281
– classical 117
– density operator 126
– Fokker–Planck equation 147, 151
– normal order 117
– operator expansion 124
– other than bosonic systems 148
– positive P representation 129
– reconstruction 226, 244, 246, 256
– relation to displaced number distribution

256
– relation to quadrature distribution 242,

244, 246
– symmetric order 120
– Wigner function 121, 123, 244, 440, 477

– Wigner function matrix 479
photoelectric detection of light 3, 9, 69,

173, 266
– Bernoulli transformation 193
– broad-band photodetector 178, 180
– correlation of counts 183, 184, 186
– counting probability 179, 181, 182, 191,

194
– counting statistics 9, 187
– detection operator 191
– efficiency 181, 190, 218, 228, 246, 253
– electric-field correlation function 182,

186, 189, 266
– factorial moments of counts 180
– Fano factor 194
– homodyne detection 205
– interferometric detection 198
– mean number of counts 183, 196
– mean number of photons 194
– measurement time 189
– moments of counts 181, 183, 186
– multiplication process 186
– nonperturbative corrections 195
– perfect detection 193
– photocounting rate 183
– photocurrent 173, 186
– photocurrent correlation 187
– photoelectron 174, 179
– photon-number statistics 187, 191, 193
– point-like detector 181
– probability of photoelectron emission

177
– renormalized efficiency 196
– spectral detection 197
– sub-Poisson counting statistics 184, 194,

274
– sub-Poisson photon statistics 194, 274
– super-Poisson counting statistics 184
– variance of counts 183, 194
– variance of photons 194
– volume of detection 191
– volume of quantization 191
photoelectric effect 2
– photoelectric detection of light 9
photon 3, 24
– annihilation/creation operator 24, 28,

74
– cavity 312
– coherent state 5
– micromaser 431
– nonmonochromatic 29
– number operator 25, 74, 78
– number state 5, 74
– number statistics 191
– number-density operator 28
– photoelectric detection of light 190, 191
– QND measurement 437
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– time of flight 304, 308, 309, 313
photon anti-bunching, see anti-bunched

light
photon bunching, see bunched light
Poisson bracket 21
Poissonian distribution 82, 184, 273, 401
polarizability tensor 356
polarization
– current 34
– matter 33, 40
– noise 40
– plane wave 27
positive operator valued measure (POVM)

192, 217, 224
positive-frequency part 54
potential
– Coulomb 19
– scalar 18, 19, 47
– trap 444
– vector 18, 47
potential energy surface
– distorted 398
– shifted 398
power spectrum, see Wiener–Khintchine

spectrum
Power–Zienau transformation 38
principle of least action, see Hamilton’s

principle

q
Q function, see phase-space representation
quadrature 94
– eigenstate 102
quadrature distribution
– characteristic function 240
– coherent state 103
– joint 228, 244, 258
– measurement 220
– relation to canonical phase 260
– relation to density matrix 248, 250
– relation to moments 257
– relation to phase-space representation

242
– relation to quantum state 240
– relation to Wigner function 244
– sum 244
quadrature state 102
– coherent-state basis 103
– completeness relation 104
– number basis 103
quadrupole trap, see Paul trap
quantization
– canonical 15, 21, 31, 36, 43
– center-of-mass motion 445
– dielectric medium 39
– electromagnetic field/matter 6, 15, 31,

36, 43

– magnetodielectric medium 47
– medium-assisted electromagn. field 45
– volume 26, 191
quantized center-of-mass motion
– coherent displacement 460
– coherent state 463
– cold atom 11
– dark state 466, 468, 470
– entangled state 464, 478
– even/odd coherent state 468
– Hamiltonian 446
– nonlinear coherent state 470
– nonlinear coupling 458
– nonlinear displacement 461
– nonlinear dynamics 456
– nonlinear parametric interaction 459
– nonlinear squeezing 461
– number state 464
– Raman-driven 457
– reservoir engineering 471
– Schrödinger-cat state 464
– squeezed state 464
– trap potential 444
– trapped atom 443
quantum coherence 85
quantum communication
quantum computation 291
quantum efficiency, see photoelectric de-

tection of light, efficiency
quantum electrodynamics 15
quantum information 291
quantum interference 290
– trapped atom 470
quantum Langevin equation, see Langevin

equation
quantum noise theory, see damping
quantum nondemolition (QND) measure-

ment 173, 437
quantum ruler 217
quantum state
– bosonic system 73
– coherent 79, 463
– coherent-state expansion 83
– dark state 466
– displaced number 87
– entangled 99, 291, 422, 433
– EPR 434
– even/odd coherent 283, 468
– motional 461
– nonlinear coherent 470
– number 73, 464
– phase 104
– preparation, see quantum-state prepara-

tion
– quadrature 102
– reconstruction, see quantum-state recon-

struction
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– Schrödinger cat 291, 433, 464
– squeezed 88, 464
– thermal 130
quantum-state determination, see

quantum-state reconstruction
quantum-state measurement, see

quantum-state reconstruction
quantum-state preparation 10
– cavity 431
– EPR state 434
– number state 275, 431, 464
– Schrödinger-cat state 433, 464
– single-photon state 275
– squeezed state 278, 464
– trapped atom 461
quantum-state reconstruction 10, 237
– Q function 226
– canonical phase 260
– cavity 435, 438
– density matrix 248, 250, 254, 477
– direct sampling 250, 255, 261
– displaced number distribution 215, 439
– endoscopy 436
– entangled state 478
– local 256, 475
– moments 257
– operational phase 228
– phase-space representation 226, 244,

256
– quadrature distribution 220
– tomographic 472
– tomography 239, 472
– trapped atom 472
– Wigner function 244, 256, 440, 477
quantum-state transformation 208, 212
quasi-probability distribution, see phase-

space function
quorum 238

r
Rabi frequency 371, 385, 400, 410, 451
– n-photon state 385, 410
– photon vacuum 350, 415
Rabi oscillation 375, 402
– damped 350
– photon vacuum 350, 415
radiation force 354, 362
radiationless dephasing
– harmonic oscillator 158
– two-level system 169
Radon transformation 244
– inverse 244
Raman line 404
Raman resonance 394
Rayleigh line 389
reciprocity relation 481
regression theorem

– quantum 169, 172
– resonance fluorescence 377, 386, 400
relaxation, see damping
reservoir 135
resonance fluorescence 4, 6, 367
– V configuration 394, 398
– Λ configuration 391
– anti-bunched light 272, 375, 379
– Bloch equations 370, 388
– coherent 389
– correlation function 368
– dark periods 395
– dark resonance 391
– field-strength variance 379
– high-driving-field limit 375, 380, 389
– higher-order spectral properties 390
– hot luminescence 400
– incoherent 375, 389, 390
– intensity 372, 374, 400
– intensity correlation 375, 378, 403
– intermittent 394, 398
– ladder configuration 398
– line splitting 390, 404
– Markov approximation 368
– Mollow triplet 390
– multi-level system 391
– power spectrum 383, 404
– Raman line 404
– Raman resonance 394
– Rayleigh component 380, 389
– regression theorem 370, 377, 386, 400
– sample of atoms 381
– single atom 229, 370, 375, 379
– source field 367, 396
– spectral filtering 370
– spectral intensity correlation 391
– spectral properties 369
– spectral squeezing 390
– squeezed light 379
– squeezing pattern 382
– sub-Poissonian light 379
– trapped electron 394
– trapped ion 383, 398
– two-level system 370
– vibronic coupling 398
– weak-driving-field limit 375, 389
– Wiener–Khintchine spectrum 384, 387
resonant light–matter coupling 53
resonator, see cavity
response function
– cavity 302, 303
– dielectric plate 199, 201
– photoelectric detection of light 178
– reflection 199, 202, 302
– spectral 178, 199, 302, 303
– transmission 199, 201, 302
retarded solution 61
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rotating-wave approximation 7, 53, 57,
139, 142, 176

– resonance fluorescence 367
– spontaneous emission 339
– trapped atom 447, 449

s
sampling 238
– density matrix in number-state basis

250, 255
– exponential phase moment 261
– normally ordered moment 258
scanning near-field optical spectroscopy

348
scattered light 71
Schrödinger equation 115, 251
Schrödinger picture 115, 147, 148, 170
Schwarz inequality 271
separation of variables 22
setting frequency 200
signal field 15, 59, 213
single-atom Rydberg maser, see micro-

maser
source-quantity representation 60
– cavity 307, 314
– commutation relation 66, 67
– correlation function 69, 183
– Green tensor 64
– medium-assisted electromagn. field 63
– operator ordering 70, 177, 183
– photoelectric detection of light 183
spectral filter 15
– correlation function 202
– Fabry–Perot 9, 198
– Fourier decomposition 204
– input-output relation 200
– intrinsic spectral property 202
– physical spectrum 202
– power spectrum 205
– resonance fluorescence 369
spontaneous emission 6, 338
– cavity 349, 415
– decay rate 165, 168, 342
– dielectric bodies 338
– enhancement 9, 344
– Green tensor 341
– inhibition 9, 344
– intensity 340
– level shift 342, 347
– magnetodielectric bodies 338
– Markov approximation 341
– microsphere 344
– nonradiative decay 346
– quantum yield 343
– Rabi oscillation 350
– Schrödinger equation 339
– source field 340

– spherical-shell cavity 351
– strong atom–field coupling 348
– two-level system 339
– vacuum Rabi frequency 350
– vibronic system 402
– weak atom–field coupling 341
squeeze operator
– multi-mode system 99
– single-mode system 88
– two-mode system 99
squeezed light 5, 276
– P function 276
– application 281
– condition 276
– four-wave mixing 279
– higher-order squeezing 277
– homodyne detection 215, 280, 281, 382
– intensity measurement 281
– Mach–Zehnder interferometer 281
– normally ordered field variance 98, 99
– optical parametric oscillator 281
– polarization interferometer 281
– resonance fluorescence 379, 390
– second-order squeezing 277
– spectroscopy 281
– squeeze operator 278
squeezed state 88, 276
– amplitude-squared 289
– coherent 90, 91
– coherent-state basis 92
– field correlation 101
– minimum uncertainty 97
– multi-mode system 98
– nonorthogonality 91
– normally ordered field variance 100
– number basis 92
– over-completeness 91
– quadrature squeezing 88
– quadrature variance 94
– resolution of the identity 91
– squeeze operator 88, 99, 278
– squeezing spectrum 101
– SU(1,1) group transformation 89
– two-mode squeezed vacuum 99
– vacuum 90, 99
– white noise 102
– Wigner function 134
squeezing, see squeezed state and

squeezed light
statistics 174
– Bernoulli’s scheme 179
– characteristic function 128, 179, 181, 182
– joint probability 266
– marginal probability 267
– multiplication process 186
– stochastic process 169
sub-Poissonian light 5, 273



508 Index

– P function 274
– anti-bunched light 274
– condition 274
– Franck–Hertz scheme 275
– Jaynes–Cummings model 425
– micromaser 432
– parametric down-conversion 275
– pump-noise-suppressed lasing 276
– resonance fluorescence 275, 379
– short-time measurement 274
– shot-noise level 273
– sub-Poisson counting statistics 274
– sub-Poisson photon statistics 274
super-radiance 381

t
thermal state 130
– P function 131
– chaotic light 130
– coherently displaced 131
– density operator 130
three-photon resonance 60
time resolution 54, 304, 308, 309
time-delay term 68
time-evolution operator 175, 278
transformation matrix 211
transition probability
– harmonic oscillator 153, 156
– multi-level atom 168
– photoelectric detection of light 174
transition rate, see transition probability
transverse current density 19
transverse vector function 19, 20
trapped atom 443
– Doppler cooling 462
– effective potential 444
– Lamb–Dicke parameter 450
– Lamb–Dicke regime 451
– laser-cooling 461
– master equation 467
– micromotion 444
– nonlinear Jaynes–Cummings model

449, 452
– Paul trap 444
– quantized motion 443, 445
– quantum-state preparation 461
– quantum-state reconstruction 472
– reconstruction of entangled state 478
– reservoir engineering 471
– resolved sideband cooling 462
– resolved sideband regime 449, 451
– secular motion 445
trapped ion 398

trapped ion, see trapped atom
two-mode squeezed vacuum 99
two-photon absorption/emission 56
two-photon coherent state, see squeezed

state, coherent

v
vacuum
– Casimir effect 337
– energy 25
– Rabi splitting 410
– squeezed 90, 99
van der Waals force 55, 337, 348, 352
– body-assisted vacuum 354
– Green tensor 357
– ground-state atom 357
– long-distance limit 359
– perfectly reflecting plate 359
– planar structure 358
– potential 356
– short-distance limit 359
vibronic system 398
– Born–Oppenheimer state 399
– density-matrix equations of motion 400
– electronic matrix element 400
– electronic quantum state 399
– electronic relaxation 400
– hot luminescence 400
– non-Markovian dephasing 401
– normal coordinate 401
– population/depopulation 402
– potential energy surface 398
– Raman line 404
– relaxations 400
– resonance fluorescence 398
– spontaneous emission 402
– trapped ion 404
– vibrational frequency 399
– vibrational overlap integral 400
– vibrational quantum state 399
– vibrational relaxation 400
– vibronic coupling 400
volume of detection 191

w
wave equation 22
wave-number vector 26
white noise 102
– squeezed 102
Wiener–Khintchine spectrum 205
– resonance fluorescence 384, 387
Wigner function, see phase-space represen-

tation
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